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Human abnormal action recognition is crucial for video understanding and intelligent surveillance. However, the scarcity of
labeled data for abnormal human actions often hinders the development of high-performance models. Inspired by the multimodal
approach, this paper proposes a novel approach that leverages text descriptions associated with abnormal human action videos.
Our method exploits the correlation between the text domain and the video domain in the semantic feature space and introduces a
multimodal heterogeneous transfer learning framework from the text domain to the video domain. The text of the videos is used
for feature encoding and knowledge extraction, and knowledge transfer and sharing are realized in the feature space, which is used
to assist in the training of the abnormal action recognition model. The proposed method reduces the reliance on labeled video data,
improves the performance of the abnormal human action recognition algorithm, and outperforms the popular video-based
models, particularly in scenarios with sparse data. Moreover, our framework contributes to the advancement of automatic video
analysis and abnormal action recognition, providing insights for the application of multimodal methods in a broader context.

1. Introduction

The analysis of abnormal human actions is a critical task in
many video surveillance applications. It involves detecting
and classifying human body movements or crowd behavior,
which can provide warning information to prevent or mini-
mize the occurrence of injuries. Human action recognition
has been a popular research topic in computer vision and
artificial intelligence for many years [1].

In recent times, the use of deep learning driven by big data
and high-performance parallel computing has gained signifi-
cant attention in the computer vision. This approach has
achieved remarkable results in various tasks, such as image
classification, target detection, and image segmentation, with
notable improvements in accuracy and speed [2–6]. Deep-
learning-based methods have become the dominant approach
in the field of human action recognition [7, 8].

Despite the success of deep-learning-based methods in
various scenarios, they encounter certain challenges. These
methods heavily rely on the models with a large number of
parameters. According to the fundamental theory of machine

learning, the complexity of a model directly affects the
amount of labeled data required to train it. In the case of
abnormal human action recognition, these actions occur
less frequently in the real situations, making it challenging
to collect video data. Moreover, cleaning and labeling these
data are a laborious and expensive process. Although, various
sample enhancement methods have been proposed to
increase the size of the training data, the growth is still mini-
mal compared to the vast sample space. Consequently, train-
ing complex deep-learning models with sparse samples
remain a significant challenge.

Recently, a lot of work has been devoted to multimodal,
cross-domain research [9]. Many studies of text and image
intergeneration have also demonstrated that image data and
text data expressing image-related information share com-
mon high-level semantic features [10, 11]. Inspired by these
works, in this paper, we use the text data describing human
abnormal action videos as the source domain data and the
video data as the target domain, and propose a heterogeneous
transfer learning framework for multimodal transfer learning.
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In order to implement ourmethod, we need some relevant
video and text materials. We find that a considerable amount
of video recordings depicting abnormal human actions,
including news footage, user-generated content, and other
forms of visual media, are often accompanied by textual
annotations, such as news releases, comments, subtitles, and
other forms of textual information. Based on the highly inter-
dependent nature of text-based and video-based data, we have
constructed a text-video dataset for recognizing abnormal
human actions, named the abnormal action dataset (AAD).
The dataset comprises 181 videos and 1,160 textual annota-
tions, classified into eight distinct categories of actions.

In addition, using video data for human abnormal action
recognition has some weaknesses, including the higher stor-
age space requirement and computational complexity com-
pared to joint sequences, as well as increased sensitivity to
noise and occlusion. In view of these reasons, a sequential
human action normalized descriptor (SHAND) is proposed
in this paper to replace the video as the input of the model.
The SHAND consists of temporal information of multiple
human keypoints and has the same representation of human
action in different camera views. Therefore, it is invariant to
changing views and can accurately represent the changing
pattern of human action.

In summary, for this paper, the main contributions are as
follows:

(i) We propose a multimodal learning framework for het-
erogeneous transfer learning that enables the model to
better learn features from both text and data domains
for human abnormal action recognition.

(ii) We propose a SHAND, which offers a simpler and
more robust representation, greatly accelerating the
training and inference speed of the model.

(iii) We build a human abnormal action recognition
dataset named AAD, which has a more realistic sam-
ple distribution and contains samples from both text
and video domains for multimodal learning.

2. Related Work

Recently, multimodal learning has attracted extensive atten-
tion from the researchers. Among all the multimodal learn-
ing methods, transfer learning has become an important
technique and idea due to its powerful transfer ability and
remarkable enhancement effect.

Transfer learning can be categorized into four types based
on the learning styles: instance-based transfer learning, fea-
ture representation-based transfer learning, model-based
transfer learning, and knowledge-based transfer learning
[12]. The most typical traditional domain adaptation algo-
rithm is transfer component analysis (TCA) [13]. TCA aims
to achieve feature transfer by minimizing the distance
between source and target domain data distribution after fea-
ture mapping.

Many works have been improved based on TCA, such as
Xu et al. [14] and Li et al. [15]. Yosinski et al. [16] pioneered

the study of the method based on deep neural networks.
Tzeng et al. [17] proposed deep domain confusion (DDC)
to improve deep network adaptation by using the maximum
mean discrepancy (MMD) criterion to measure the gap
between two distributions and adding adaptive metric loss
[18]. Long et al. [19] then improved DDC and proposed the
deep adaptation network (DAN) network structure. They
used a multikernel MMD metric (MK-MMD) instead of a
single-kernel MMD to calculate the distance between the
source and target domain feature spaces, achieving better
results on several tasks [20].

After Goodfellow proposed generative adversarial net-
works, Ganin et al. [21] conducted research on transfer learn-
ing using adversarial networks and proposed domain-
adversarial neural network (DANN). The learning goal of
the DANN network is to generate features that are indistin-
guishable between the two domains as much as possible.
Later, Bousmalis et al. [22] extended DANN and proposed
the domain separation networks (DSN) architecture. DSN
considers that both the source and target domains consist of
a public part and a private part. The public part can learn the
features of the public, and the private part is used to keep the
independent features of each domain. Finally, multiple losses
in the network are combined simultaneously as the final loss.
In addition, the agile domain adaptation networks (ADANs)
proposed by Chen et al. [23] and the method using Wasser-
stein GAN proposed by Shen et al. [24] have also achieved
better results on DAN transfer algorithms.

When the source and target domain data are distributed
in the different feature spaces, researchers have proposed the
heterogeneous domain adaptation (HDA) scheme to build a
bridge between two heterogeneous domains [25, 26]. Current
HDAmethods usually choose to project one distribution onto
the other, such as Chen et al. [23] and [27, 28], or to find a
common domain-invariant subspace for both domains, such
as Hsieh et al. [29], Xiao and Guo [30], and Yao et al. [31].
Chen et al. [32] proposed the transfer neural trees (TNT)
method, in which the random pruning method Transfer neu-
ral decision forest (Transfer-NDF) was used as the final pre-
diction layer of the network, achieving promising results. Yao
et al. [33] proposed an end-to-end joint learning algorithm
soft transfer network (STN) for domain sharing classifier and
domain invariant subspace, which achieved better perfor-
mance for the first time using the scheme of giving soft labels
to unlabeled data. Liu et al. [34] proposed an infrared human
motion recognition framework using visible light assisted data
to solve the problem of limited infrared motion data. Liu et al.
[35] used joint sparse representation and distribution adapta-
tion to hierarchically learn view invariant representation,
achieving feature representation transfer across views. Deep
image-to-video adaptation and fusion networks (DIVAFNs)
[36] were also proposed by them, using video keyframes as a
bridge to enhance action recognition in videos by transferring
knowledge from images. Semantics-aware adaptive knowl-
edge distillation networks (SAKDNs) [37] were proposed to
use wearable sensors as the teacher mode and RGB videos as
the student mode, the action recognition in the visual sensor
mode is enhanced by adaptively transferring and distilling
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knowledge from multiple wearable sensors. Liu et al. [38]
proposed temporal contrastive graph for self-supervised video
representation learning (TCGL), utilizing multiscale time
dependencies in videos, a hybrid graph is used to compare
learning strategies and jointly model time dependencies
within and between segments for learning.

At present, domain adaptation methods have achieved
promising effects on several experimental datasets, but the
performance of the model will be generally poor when faced
with more realistic scenarios and sparse sample distribution.
When the source and target domains are only related in
semantic space, designing a better feature mapping network
to make the source domain better assist in the training is still
a challenging task for heterogeneous transfer learning.

3. Human Abnormal Action Recognition
Based on Multimodal Heterogeneous
Transfer Learning

Video as a type of frame sequence has large amounts of data.
It occupies excessive memory and storage space and has
particularly high-information redundancy, resulting in sig-
nificant computational overhead. Extracting representative
and effective information can be helpful to solve this prob-
lem. Based on this consideration, in this paper, we use
human keypoint estimation to describe action features, pro-
pose a descriptor named SHAND, and perform multimodal
heterogeneous transfer learning based on the SHAND.

This section presents the categories and scope of involved
abnormal actions, the construction method of the SHAND,
the design method of the model, and the loss function for
abnormal action recognition based on the multimodal het-
erogeneous transfer learning.

3.1. Categories and Scope of Involved Abnormal Actions. To
facilitate the study, this paper focuses on eight classes of
abnormal human movements in the common situations:
fighting, falling, lying down, waving, shaking hands, walking,
running, and hugging. It should be noted that while shaking
hands and hugging may not be considered abnormal actions
in daily life, they can hold special significance in different

scenarios. As a result, they have been included in our recog-
nition analysis.

Among these action categories, fighting, handshaking,
and hugging are dual/multiplayer interaction actions, while
the remaining five classes are single-person execution
actions. Each video frame in the dual/multiplayer interaction
action contains two or more target characters. Multiple tar-
get characters as a whole for input are not easy to extract to
the interrelationship between targets. Therefore, we adopt a
multistage discrimination method approach, i.e., when dis-
criminating the actions of multitarget interactions, each tar-
get action is separately captured and extracted, and the
interactions between the targets are then matched.

Viewing as a whole, if Person A and Person B in a video
frame perform the same kind of action, their human key-
point coordinates will be simultaneously obtained by the
posture estimation algorithm. These coordinates will be sep-
arately input to the abnormal action discriminator for rec-
ognition operation, as shown in Figure 1.

3.2. Constructing Sequential Human Action Normalized
Descriptor. Human action in the video has two types of infor-
mation: the position of the human joint points in the spatial
domain and the mutual variation relationship of each joint
point in the temporal domain. The former can be generally
extracted by human pose estimation, while the latter is mostly
represented by the temporal sequence of the regressed joint
point coordinates.

To efficiently and accurately represent the change of the
human joints in the video, we propose a SHAND, which
consists of multiple human keypoint temporal information
and could uniquely determine the relative position of each
joint. By normalization, it has the same representation of
human action under different camera views, thus it is invari-
ant in changing views, and can accurately represent the
changing pattern of human action, which has better repre-
sentation capability theoretically.

Considering the higher accuracy and robustness of the
OpenPose method in the human pose estimation algorithm,
we use the OpenPose method in this paper for extracting the
human keypoint coordinates, as shown in Figure 2 [39].

Person B Person A

Posture estimation

Coordinates of the key
points of A’s body

Coordinates of the key
points of B’s body

algorithm

FIGURE 1: Diagram of double/multiperson action recognition.
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Total of 25 human keypoint coordinates are obtained by
the OpenPose human pose estimation algorithm, and 15 of
them are selected for constructing SHAND, which are: the
nose (Point A), the center point of the neck (Point B), the
midpoint of the left and right hip joints (Point C), the left
and right shoulder joints, the left and right elbow joints, the
left and right wrist joints, the left and right hip joints, the left
and right knee joints, and the left and right ankle joints in the
video, as shown in Figure 3.

When the coordinates of each keypoint position are
obtained, the normalization of the relative position of each
keypoint is performed with a reference vector. Since, the
upper torso of the human body in general is not easily dis-
turbed by the movements, the vector pointing from the mid-
point of the left and right hip joints (Point C) to the neck
point (Point B) is selected as the reference vector. The angle
(≤180°) between each vector and the normalized module
ratio is then obtained. Assuming that point M is the target
point of the motion, then is the target vector. The normalized
module ratio of the target vector is calculated by Equation (1),
the cosine of the angle between the target vector and the
reference vector is calculated by Equation (2), and the angle
between the target vector and the reference vector can be
calculated by Equation (3).
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where X and Y represent the horizontal and vertical coordi-
nates of the keypoints, respectively. These normalized ratios
of module length and the angles between the vectors will be
used as the main features to construct the description vector.

The human action normalized descriptor is obtained by
connecting point C with the other 13 keypoints, the pinch
angle and normalized module are then respectively calcu-
lated by Equations (1) and (3). The size of the descriptor is
13× 2 (without keeping any information). In the human abnor-
mal action recognition task, we use n frames of the video to
capture an action, and the operation is repeated for each frame
to obtain a set of n× 13× 2 sized temporal description vectors,
i.e., the SHAND.

SHAND effectively captures changes in the human
movements while filtering out variations due to different
camera views. In addition, the size can be reduced by several
orders of magnitude compared to raw video data due to the
concise expression form that can effectively reduce redun-
dant calculations. Although, it takes extra time to get the
human keypoints, relying on the current efficient human
pose estimation algorithm, our method could still signifi-
cantly improve the speed of human action recognition,
reducing the computing resource, and simplifying the recog-
nition model.

3.3. Design of Multimodal Heterogeneous Transfer Learning
Model. For video data that simultaneously contains text infor-
mation, the text domain data and video domain data carry
similar semantic information, and thus have common seman-
tic features. By performing multimodal human abnormal
action recognition with data from the two domains, the rec-
ognition performance and training stability can be improved,
and the heavy dependence on labeled training data can be
alleviated. In the light of this idea, we try to map the two
data distributions to the same common feature space through
a heterogeneous transfer learning method with the text
domain as the source domain and the video domain as the
target domain. Specifically, we obtain the human keypoints
through the human pose estimation algorithm, calculate the
SHAND, get the data input of the target domain, then process
the text data using Word2Vec encoding (the specific process
is described in detail in 4.1), and use the resulting word vector
as the data input of the source domain.

The framework of the heterogeneous transfer learning is
shown in Figure 4, where XS represents the source domain
data, i.e., the word vector extracted from the text domain

FIGURE 2: OpenPose human keypoints detection [39].

C

M

B

A

FIGURE 3: Construction of SHAND.
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data, and XT represents the target domain data, i.e., the
SHAND converted from the human action images. The
two data distributions go through two feature mapping func-
tions, namely FS and FT, and finally to the same common
subspace.

The proposed framework extracts features from both the
text and video domains. Specifically, it uses the Word2Vec
model to extract word embeddings as input features from the
text domain, and the ResNeXt−50 as a backbone network
model to extract features from the video data and the word
embeddings.

Initially, the network employs a convolutional layer with 64
output channels and a kernel size of 3× 3 as the initial layer.
Subsequently, the network constructs three residual blocks,
each comprising eight branches. Each branch consists of two
convolutional layers with 64 output channels. Within each
residual block, a transition layer is employed, encompassing a
convolutional layer with 64 output channels. In the final layer
of each residual block, the outputs of the branches are com-
bined with the residual connection and activated using the
ReLU activation function, yielding the output of the residual
block. This identical network architecture is applied to both the
video data and word embeddings.

After the feature extraction and mapping to a common
subspace process, we apply CORrelation ALignment (CORAL)
as the loss function for computing the loss between the features
of different domains. This loss function has been widely used in
the domain adaptation tasks [40].

During the backpropagation process, we update the net-
work parameters to simultaneously train the target and
source domain data. Specifically, we use the gradient descent
algorithm to minimize the loss function to improve the mod-
el’s recognition accuracy. In updating the network parame-
ters, we adopt learning rate decay and weight decay strategies
to help the model converge faster.

In summary, our proposed framework uses the word2vec
model to extract features from the text domain and use the
ResNeXt−50 model as a backbone network to extract fea-
tures from them. These features are mapped to a common
subspace for comparing the feature distributions of different
domains. The framework has excellent domain adaptation
ability and can handle data distribution differences between
the different domains.

3.4. Loss Function. In transfer learning, the loss function is a
measure of the distance between the distribution of data in
the source domain and that in the target domain, which is an
important metric to guide transfer learning. Through design-
ing and optimizing the loss function, the neural network
could learn the features of the training data, which can be
used for feature representation and classification. In this
paper, the total loss function is shown as Equation (4).

Loss¼ K × ℓCORAL þ ℓclass Tð Þ þ ℓclass S þ λℓ2; ð4Þ

where ℓclass_S is the classification loss of the source domain
data, ℓclass_T is the classification loss of the target domain
data, ℓ2 represents the L2 regularization of the weights as
Equation (5), which can be considered as the penalty term
of the loss function to avoid overfitting by limiting the
values of parameters ω, and the space of the model. K is
a hyperparameter to control the distance between the
source and target domain distribution of the backpropaga-
tion process and the gradient size of the classification loss in
the target domain. To make the gradient calculation pri-
marily depend on the classification loss of the source
domain data in the early stage of training, the initial value
of K is set to a small value of 0.3. And ℓCORAL represents
CORAL loss, proposed by Sun et al. [40], for aligning source
and target domain data distribution. The equation is shown

Common feature space

ResNeXt block

h0

h1

h2

......

......
......

hout_c
FT

FC

Softmax

Classification
results

Cross-
entropy

loss

CORAL
loss

CBOW

Labels

......

×n

FSXS

XT

......
......

......
......

......
......

......
......

FIGURE 4: Framework of multimodal heterogeneous transfer learning.
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as Equation (6) and the optimization objective is defined in
Equation (7).

ℓ2 ¼ ωk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
ωið Þ2

r
; ð5Þ

ℓCORAL ¼ ATCSA − CTk k2F; ð6Þ

min
A

ATCSA − CTk k2F: ð7Þ

The ultimate goal of ℓCORAL is to find a second-order
feature transformation matrix A that minimizes the distance
between the source and target domain distribution, where CS

and CT, respectively, represent the covariance matrices of the
source and target domains.

4. Experiment and Analysis

Human abnormal action data are often difficult to collect,
hence fewer relative video datasets are publicly available.
Therefore, by collecting and adding samples of video and
text, we construct a video-text dataset named AAD. The
keypoint information extracted from the abnormal action
videos will be used to construct the SHAND vectors, and
we will demonstrate the capability of better representation
of the SHAND and its efficiency with experiments. In addi-
tion, we also conduct relevant experiments on the proposed
multimodal heterogeneous transfer learning method to show
the enhancement effect of the multimodal approach on
abnormal action recognition.

4.1. Dataset and Preprocessing

4.1.1. Constructing the Dataset. Since few abnormal action
video datasets are publicly available, in this paper, we collect
some open human action datasets and add some new abnor-
mal action videos captured by ourselves to build the target
domain dataset. We name the dataset AAD. AAD contains
eight classes of action, including “falling,” “fighting,” “lying
down,” “waving hand,” “hugging” “running,” “walking,” and
“shaking hands”. Some samples are shown in Figure 5. The
entire dataset consists of 181 videos, with video durations
ranging from 1.5 to 7 s, and the frame rate is 30 fps.

To meet the demands of our multidomain transfer learn-
ing, corresponding textual descriptions are needed for each
type of action. We manually add artificial textual descriptions
to match each type of human abnormal action. Specifically,
for each type of action, we add corresponding description
sentences ranging from 71 to 226. In total, 1,160 sentences
are constructed for the eight types of actions. By this means,
we construct a video-related textual dataset suitable for het-
erogeneous transfer learning. In the experiments of this paper,
75% of the AAD is used as the training data and 25% as the
test data.

4.1.2. Text Data Processing. The text data describing human
abnormal actions constructed in this paper are processed by
separation, alignment, and feature extraction, respectively.
After the word separation operation, the Word2Vec model

is used for word vector encoding. Word2Vec model has two
types of trainingmodels: CBOW (Continuous Bag-of-Words)
and Skip-Gram. The CBOW model is trained by predicting
the central word using the context, while the Skip-Gram
model uses the central word to predict the context. In this
paper, the CBOW model is used to encode the word vector.

In the word vector training process, a corpus consisting
of more than 8 -million Baidu online encyclopedia entries,
more than 4 -million Sohu news items, and 229GB of novels
are used, which are collected from the Internet. The param-
eters of the pretraining process are set as follows: the word
vector dimension is 128, the maximum distance of the word
vector context is 5, and the words with occurrences below 10
are removed. The corresponding word vectors are then
obtained by inputting the text data describing the human
abnormal actions as the source domain data.

4.2. Experimental Settings. To fully verify the performance of
the abnormal action recognition algorithm proposed, com-
prehensive experiments are conducted on AAD, including
the following experimental steps:

(i) Extract the human keypoint coordinates by Open-
Pose human pose estimation algorithm.

(ii) Construct the SHAND obtained from the extracted
keypoint coordinates.

(iii) Use the angle values of SHAND and normalized
modulus length for action recognition.

(iv) Only use video frame images for input.
(v) Other popular video-based motion recognition

methods are used to compare with the model pro-
posed in this paper [41–45].

(vi) Perform abnormal action recognition based on mul-
timodal heterogeneous transfer learning.

The video frame images are resized to 128× 171 and
cropped to 112× 112 for matching the machine’s computa-
tional power in the experiments. The network framework
selected for all experiments is ResNeXt-50, except the other
methods in the comparison experiment. The initial learning
rate of training is set to 0.1 with exponential decay. The batch
size is set to 20, the number of training epochs is set to 150, and
the validation is performed once after each epoch. To ensure
the fairness and reasonableness of the experiment, the network
structure, parameters, and other underlying conditions will be
guaranteed to be unchanged, and the training and testing sets
used for the experimental process are the same.

The experiments are carried out under Linux Ubuntu
16.04 system. The programing language is Python 3.8 and
the deep learning framework used is TensorFlow 2.4. The
CPU is Intel i9-9900X and the GPU is NVIDIA RTX2080Ti
11GB.

4.3. Experimental Results and Analysis

4.3.1. Experiments and Analysis of SHAND. All experiments
are conducted on the AAD. The methods of human keypoint
coordinates, angle vector, normalized ratios of module
length, SHAND, and video frame images are trained and
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evaluated, respectively. The results are shown in Figure 6, where
the horizontal coordinate represents the number of epochs and
the vertical coordinate represents the human abnormal action
recognition accuracy. The detailed accuracy of each method in
the test is shown in Table 1.

Figure 6 shows that, except for the video-based method,
the other methods achieve a fast convergence and high-
training accuracy, attesting to the remarkable performance
of the proposed algorithm’s feature extraction and represen-
tation ability.

From the experiment, it can be concluded that the video-
basedmethod exhibits limited capability in learning the sample
distribution, leading to weak feature representation and limited
learning ability for human abnormal action recognition. In
contrast, the SHAND-based methods have stronger represen-
tations and significant performance advantages. Using the
coordinates of human keypoints and constructing SHAND
can extract more distinctive features by deep convolutional

neural networks, improving the human action recognition per-
formance remarkably.

In terms of convergence speed, it is observed that both
the method with SHAND as input and that with angle value
or normalized ratios of module length as input have signifi-
cantly faster convergence proceed than the original counter-
part. This indicates that SHAND has a strong ability for
expressing human action features, and thus enhances the
convergence proceed noticeably.

We, respectively, use the angle values and the normalized
ratios of module length in SHAND as input data for ablation
experiments. As shown in Table 1, SHAND possesses excel-
lent human action representation capability. The angle-based
descriptors perform relatively better than the module-based
descriptors. Intuitively, the ratios of module length are sensi-
tive to factors such as pose, scale, and perspective, while the
angle is relatively less sensitive to these factors and thus per-
forms more robustly.

ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ

ðgÞ ðhÞ
FIGURE 5: Examples of human abnormal action dataset. (a) falling, (b) fighting, (c) lying down, (d) waving, (e) shaking hand, (f ) running,
(g) hugging, and (h) walking.
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The time taken to complete the model training for each
of the above methods is shown in Table 2. It can be found
that the time taken by all the methods is very close except for
the video-based method. It takes about 5.9 times longer than
the other methods since the input video frame image is
reduced to 112× 112, which is significantly larger than the
SHAND vector with a size of only 2× 13, indicating that the
representation of the keypoints of the human body and its
related features could replace the video frame image with a
simpler and more direct form of the feature representation
input, resulting in a faster action recognition task.

4.3.2. Experiments and Analysis of Multimodal Heterogeneous
Transfer Learning. For verifying the enhancement effect of
our method on abnormal action recognition, the text data

domain constructed using the previously described method
serves as the source domain, and the video domain serves as
the target domain. Experiments are then conducted on the
AAD using the multimodal heterogeneous transfer learning
framework. The training and testing processes and results
are, respectively, shown in Figure 7.

The training curves of the model demonstrate that with
or without using heterogeneous transfer learning, the rising
rate and training accuracy are higher than the video-based
method when using SHAND as the input as shown in
Figure 7 (a)). However, the slower rise rate of the transfer
learning curve indicates that the convergence rate is slower
when using text data as the source domain for knowledge
transfer. This could be because using multiple networks and
performing modal fusion could be more complicated than
directly using one convolutional neural network.

The comparison results between our proposed method
and several popular video-based models for human action
recognition are presented in Figure 8 and Table 3, showing
that our method outperforms them. Notably, we use text and
SHAND as the mode of input data, which enables the model
to train and reason much faster than other video-based mod-
els. By using text data to describe abnormal human action
videos as source domain data and employing a multimodal
heterogeneous transfer learning-based approach, the model’s
generalization ability is improved. This is likely due to the
fact that the text and target domain data are mapped to the
same common subspace, resulting in the presence of com-
mon features in the high-level semantic space that benefit the
model’s performance.

4.4. Visualization of the Examples. To gain a more compre-
hensive understanding of the strengths and weaknesses of the
proposed method, we conducted visualizations of carefully
selected common and error-prone samples using feature heat
maps. Specifically, we transformed the preclassification feature
maps and classification weights of our model into heat maps,
which were subsequently combined with the samples to facili-
tate more detailed observations. Partial results are depicted in
Figure 9. The failed samples are represented by the red boxes.
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FIGURE 6: The training and the testing accuracy of the SHAND experiment. (a) Training accuracy variation curve of each method and
(b) testing accuracy variation curve of each method.

TABLE 1: Test accuracy comparison of different methods.

Method
Testing

accuracy (%)

Using the video frame images as input data 73.33
Using the human keypoints as input data 85.00
Using the normalized ratios of module length of
SHAND as input data

76.67

Using the angles of SHAND as input data 85.00
Using the SHAND as input data 86.67
The multimodal heterogeneous transfer learning +
SHAND

91.67

TABLE 2: Training time comparation of different methods.

Method Training time (min)

Using the videos as input data 57.75
Using the human keypoints as input data 9.79
Using the module ratios of SHAND as
input data

9.74

Using the angles of SHAND as input data 9.69
Using the SHAND as input data 9.81
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Remarkably, our model demonstrates a robust capability in
accurately identifying several prevalent abnormal actions within
the common category. Despite the presence of substantial back-
ground noise, themodel effectively detects key regions of interest

related to the subject in the video, enabling the determination of
abnormality. Nevertheless, certain challenging samples, such as
distinguishing between fighting and shaking hands, pose inher-
ent difficulties and introduce a certain degree of error.
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FIGURE 7: The training and the testing accuracy of the multimodal heterogeneous transfer learning experiment. (a) Training accuracy
variation curves of the three methods and (b) testing accuracy variation curves of the three methods.
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FIGURE 8: The testing accuracy of comparison with different popular video motion recognition models.

TABLE 3: Test accuracy comparation of multimodal and other methods.

Method Parameters (M) Testing accuracy (%)

R(2+ 1)D [41] 33.2 90.00
X3D [42] 3.8 83.33
SlowFast [43] 22.9 88.33
C2D [44] 25.6 88.33
CSN [45] 13.6 90.00
The multimodal heterogeneous transfer
learning+ SHAND (ours)

25.0 91.67
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5. Conclusion

In this paper, we research the problem of video abnormal
action recognition under sparse training data. The research is
also an attempt to solve the difficult problems in multimod-
ality and cross-domain, etc. We build a human abnormal
action recognition dataset AAD, propose a SHAND with a
simpler and more robust representation, and design a multi-
modal heterogeneous transfer learning framework, which
maps the feature distribution in different domains to a com-
mon subspace and completes the knowledge transfer of com-
mon features. Our method makes the human abnormal
action recognition model have better generalization perfor-
mance and provides an idea for the practice and application
of multimodal methods.

However, our framework still has much room for improve-
ment, such as finding more suitable backbone networks for the
migration learning and finding more suitable loss functions
between the text and video modalities. Thus, future work can
focus on improving the efficiency of multimodal heterogeneous
transfer learning models as well as the generalization perfor-
mance. In addition, more work exploring how features in the
text and video domains map to a common subspace is urgently
needed. Furthermore, we hope to investigatemore effective ways
to utilize more modal information, enabling human abnormal
action recognition tasks to be applied more robustly.
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