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Despite the extensive research on developing robust image inpainting algorithms in recent years, there are almost no objective
metrics for the quality assessment of inpainted images currently. Inspired by the feature coherence in the inpainted image and the
human visual perception mechanism, this paper proposes an image inpainting quality assessment (IIQA) that takes into account
both visual saliency and structural features. First, the quality issues associated with image inpainting are categorized into three
aspects: incoherent structure, unreasonable texture, and other results that are inconsistent with human visual perception. These
quality problems are further expressed as “regions of interest” and extracted by the visual saliency method using the natural
statistics model. Subsequently, the structural features are computed based on the nonlinear diffusion of the horizontal and vertical
gradient field of the inpainted image. Finally, the IIQAmetric incorporates brightness, gradient similarity, structural similarity, and
visual saliency is established. The quality evaluation process is conducted by comparing each patch within the inpainted region
with its best match from the known region. The quantitative experimental results demonstrate the effectiveness of the proposed
method, especially for images with structural discontinuity. A comparative study also shows that the Spearman rank order
correlation coefficient of our method achieves 0.875 on certain databases, which outperforms existing IIQA metrics.

1. Introduction

The primary goal of image inpainting is to carefully select
appropriate patches from the known region and subse-
quently utilize them to fill in the repaired area, thereby
achieving a comprehensive restoration of the entire image.
It involves estimating and speculating about the missing
information. With the development of science and modern
technology, methods such as super-resolution [1], attention
mechanism [2], and deep learning [3] have been widely
applied to image inpainting and achieved satisfactory results.
However, inpainted image quality assessment (IIQA) cur-
rently depends on observers’ subjective expertise. For obser-
vers, as long as there are no noticeable visual imperfections in
the repaired image, the image inpainting task is considered to
be successful. Despite the extensive research conducted on the
development of robust image inpainting algorithms, there has
been a lack of focus on creating effective quality assessment
metrics to evaluate the performance of image inpainting

techniques. Due to the absence of reference images for com-
parison, the commonly used metrics for assessing image qual-
ity, such as mean squared error and peak signal-to-noise ratio,
cannot be directly applied.

In recent years, efforts have been made by scholars to
tackle these concerns using techniques such as feature anal-
ysis and machine learning. Wang et al. [4] believed that
human eyes are highly adaptive to the changes in the struc-
ture information in images. Therefore, an indicator named
structural similarity image measurement (SSIM) was pro-
posed to measure the similarity between the reference image
and the distorted image. Feie [5] proposed an image evalua-
tion indicator, Borsal, to estimate the attention density of the
sight in a narrow band around the target boundary. Mean-
while, they also proposed the StructBorSal index, which
combined SSIM with visual saliency to evaluate the quality
of structural regions in the inpainted image. Liu et al. [6] also
proposed an image quality assessment metric based on the
variant of SSIM. When it comes to the quality evaluation of
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inpainted images, SSIM may not be reliable for images con-
taining large inpainted regions as these areas can significantly
deviate from the actual ones. Qureshi et al. [7] classified IIQA
methods into three categories: structure-based methods,
saliency-based methods, and machine learning-based meth-
ods. The performances of typical inpainting approaches were
also tested in [7]. Hu et al. [8] proposed a nonreference quality
evaluation metric for the Thangka image. The structural fea-
tures of the Thangka image were extracted, and the differ-
ences between the original region and the repaired region
were further analyzed. However, this metric is only available
for Thangka images. Liu et al. [9] introduced the preattention
theory to emulate visual perception by refining luminance-
channel data and developed an image quality assessment met-
ric of distorted images. The study in [10] utilized sample-
based image completion methods to generate a set of 100
inpainted images. Subsequently, an evaluation metric based
on the saliency map and repaired region was proposed and
discussed. Unfortunately, only part of the image features were
considered in [9, 10], and they performed well only in some
special cases. Additionally, a significant limitation shared by
the aforementioned metrics is the need for a reference image,
which is not available for image inpainting.

Image quality evaluation approaches based on machine
learning offer effective functional approximations of image
features and evaluation scores [11]. Voronin et al. [12] pro-
posed to extract the local binary pattern features of images
and collect quality rating scores from subjective experiments.
These data are utilized to train a support vector regression
network for image quality prediction. The database consisted
of 300 images, and a total of 10 participants were engaged in
conducting subjective assessment. The findings demonstrated
that the objective evaluation results have a strong connection
with human perception. Isogawa et al. [13] proposed a
learning-based sorting method to automatically estimate the
optimal parameters for image inpainting algorithms. The rel-
ative ranking of different inpainted images was determined by
employing a learning-to-rank approach. Meng et al. [14]
introduced a novel approach for assessing the performance
of nonreference image inpainting algorithms using deep rank
learning. A pair of inpainted images were taken as input, and
their ranking order was predicted. This method can be
applied for the evaluation of both inpainted images and
inpainting algorithms. Madhusudana et al. [15] tried to solve
the problem of image quality assessment by using a deep
convolutional neural network. Images containing synthetic
and realistic distortions were taken as the database for the
prediction of distortion type and degree. This method is
more applicable for the quality assessment of images affected
by synthetic or authentic distortions. Chen et al. [16] first
applied unlabeled data to conduct self-supervised pretraining
for blind image quality assessment. Distorted images are gen-
erated from high-quality samples and taken as the database.
Additionally, a contrastive loss function is introduced to cap-
ture information that is sensitive to image quality. For
machine learning-based image quality assessment methods,
it is crucial to have subjectively and manually annotated rat-
ing scores for the training of regression models. In addition,

the current no reference-based image quality assessment algo-
rithms rely on artificially created distorted image features. The
learning phase needs a substantial amount of labeled samples;
however, there are currently no public databases available for
different machine learning-based IIQA methods.

The challenge in assessing the quality of image inpainting
lies in the fact that the inpainting procedures might result in
visible anomalies within and surrounding the inpainted
regions. IIQA is essentially based on the consistency of the
repaired region and the known region. Although reference
images do not exist, available information can still be extracted
from the known region and used for quality evaluation, which
also makes feature extraction and feature comparison key fac-
tors for image quality assessment. Hence, we propose a new
inpainted image quality assessment metric that reformulates
visual inconsistency problems as human attention alterations
and quantifies the similarity between inpainted regions and
their best-match patches in the known region. The main con-
tributions of the present work are as follows:

(i) We propose to extract the “regions of interest” in
the inpainted image by applying an improved visual
saliency method using natural statistics model
(ISUN).

(ii) The structure map of the inpainted image is
extracted through the nonlinear diffusion of the
horizontal and vertical gradient field.

(iii) The IIQA metric involves brightness, gradient sim-
ilarity, structure similarity, and visual saliency is
proposed and tested on different inpainted images.

The rest of this paper is organized as follows: the visual
saliency of inpainted images is calculated in Section 2, and
the IIQA metric is established in Section 3. Experimental
results and discussion are presented in Section 4, and the
conclusion is drawn in Section 5.

2. The Extraction of “Regions of Interest” in the
Inpainted Image

The reason why human eyes can recognize various image
quality problems is that the inpainted regions often contain
features that are not similar to their surroundings or even the
entire image. As shown in Figure 1, we summarized some
typical problems in the inpainted image. The main factors
that affect the quality of image inpainting are structural
inconsistencies, unreasonable texture, and other issues that
do not align with human visual perception.

In the inpainted image, it is expected that the inpainted
region will exhibit a coherent structure and texture to the
known region. Two structural inconsistency problems are
illustrated in the red squares in Figure 1. The edge of the
water is discontinuous in Figure 1(a), and there is an
unknown structure, a special circle, in Figure 1(b). According
to human perception, the interlacing between different tex-
tures, the repetition of the same texture in a large area,
and the block effect should be avoided. Examples of typical
texture problems are given in Figures 1(c) and 1(d).
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Although texture irrationality is not as obvious as structure
problems for human perception, it still has a great impact on
the image quality. In addition, there are still some other
problems, as shown in Figures 1(e) and 1(f). Although there
is no structural discontinuity or texture irrationality in these
images, we still believe that the plants in Figure 1(e) should
not multiply infinitely in the water; also, no objects can cast a
shadow at the given position in Figure 1(f).

It is not difficult to find that these areas in Figure 1 are
“regions of interest” that will attract human attention easily.
Therefore, the human visual perception model is applied to
extract “regions of interest” in the inpainted image. In this
way, traditional image evaluation approaches, which include
feature extraction, feature comparison, and other processes,
can be transformed into human visual attention alterations
in the inpainted region. Image features are always used to

measure whether the region can attract human attention or
not. Typically, regions with sparser features or more distinc-
tive features compared to their surroundings exhibit higher
saliency. In this paper, we introduced the ISUN statistics
model [17], which utilizes the inherent statistical properties
of images to extract the distorted region in inpainted images.
In ISUN, massive natural images in a specific image library
are taken as sample sets. Subsequently, the unsupervised
learning of sample images is used to obtain basic indepen-
dent component analysis (ICA) filters, which can represent
image characteristics. Based on the probability distribution
of the ICA feature set, we can get the saliency map of an
image.

In ISUN, image features are acquired by applying ICA
and principal component analysis (PCA) to a group of pre-
processed images from a database [17]. For each image, 100

ðaÞ ðbÞ

ðcÞ ðdÞ

ðeÞ ðfÞ
FIGURE 1: Examples of typical problems in image inpainting: (a) incoherent structure; (b) structure inconsistent with human cognition;
(c) staggered texture; (d) overly repetitive texture; (e) abnormal result 1; (f ) abnormal result 2.
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patches with size b × b × 3 from random locations are
extracted, and each patch is treated as a 3b2 dimensional
vector. The dimensionality of the patch collection is first
reduced using PCA, and then the number of image features
is limited to d. Afterward, ICA filters are applied to these
patches to get the learned filters. In this way, features can
be extracted from an image by filtering it with each of the
learned ICA filters. As discussed in the ISUN model,
the visual saliency of an image is defined as PðXÞ−1 [9],
where X represents the obtained ICA feature set. The com-
ponents of X are statistically independent after ICA proces-
sing, so PðXÞ−1 can be described as a product of a series of
1D distributions, as shown in Equation (1).

P X ¼ xð Þ ¼∏
i
P xið Þ; ð1Þ

where xi is the ith element in vector x, i.e., the ith feature. The
generalized Gauss distribution (GGD) given in Equation (2)
is applied to simulate each 1D distribution shown in
Equation (1).

P xið Þ ¼ θi
2σiΓ θi

−1ð Þ exp −
xi
σi

����
����θi

� �
; ð2Þ

where θi>0 is the shape function, σi>0 is the scale function
and Γ is the gamma function. For each ICA filter, select a
suitable 1D GGD function and estimate the parameters of
the GGD function using the algorithm mentioned in [5].
Each feature is assigned a weight based on its frequency of
occurrence to enhance the visual saliency of rare features.
The flowchart of saliency map extraction is shown in
Figure 2.

Taking the image to be impaired in Figure 3(a) as an exam-
ple, the methods proposed in [18, 19] are applied to repair this
image, and the results are shown in Figure 3(b). The visual
saliency map of each inpainted image is extracted using the
ISUN model, and the results are shown in Figure 3(c). Obvi-
ously, the incoherent structure and unreasonable contents in the
inpainted region have notable saliency. The visual saliency map
of the inpainted region is directly related to image quality. Both
the saliency region size and the corresponding saliency degree
indicate where image inpainting has not been effectively per-
formed. In addition, not all regions in an image are equally
important to human eyes, according to the visual cognitive the-
ory. Take Figure 3(c), for example; human visual perception
exhibits greater sensitivity toward structural breaks, shields,
and discontinuities, while displaying relatively lower sensitivity
toward texture details. Thus, structural features should be
emphasized in image quality assessment.

3. IIQA Metric Using Structural Features and
Visual Saliency

The SSIM proposed by Wang et al. [4] provided an effective
way for image quality evaluation from the perspective of
structural distortion. In SSIM, the mean, standard deviation,
and covariance of an image are utilized as estimations for

brightness, contrast, and structural similarity, respectively.
The SSIM metric is defined in Equation (3).

SSIM f ; f 0ð Þ ¼ l f ; f 0ð Þ½ �α × c f ; f 0ð Þ½ �β × s f ; f 0ð Þ½ �γ; ð3Þ

where f and f ’ represent the reference image and the image
under evaluation. The parameters α, β, and γ serve to cali-
brate the weight of different indicators. In general cases, α=
β= γ= 1. The brightness function l( f, f ’), contrast function
c( f, f ’), and structure function s( f, f ’) are illustrated in
Equations (4)–(6).

l f ; f 0ð Þ ¼ 2μf μf 0 þ C1

μ2f þ μ2f 0 þ C1
; ð4Þ

c f ; f 0ð Þ ¼ 2σf σf 0 þ C2

σ2f þ σ2f 0 þ C2
; ð5Þ

s f ; f 0ð Þ ¼ σff 0 þ C3

σf σf 0 þ C3
; ð6Þ

where σff 0 ¼ 1
N−1∑

N
i¼1ð fi − μf Þ :ð f 0i − μf 0 Þ :, C1, C2, and C3 are

constant, μf and μf ’ represent the average brightness of two
images, σf and σf ’ denote the standard variance of two
images. According to Equations (3)–(6), structural similarity
remains invariant to changes in contrast and brightness.
However, SSIM computes the brightness, contrast, and struc-
tural similarity indiscriminately for all image regions. As

Start

End

Input: public image library, inpainted image

Randomly select 100 b × b × 3 patches from each image in the library

d learned filters are obtained by applying  PCA and ICA on the patches

 Extract figures of the inpainted image by applying a
filtering process using the learned filters

Fit each figure using generalized Gauss distribution (GGD)

Output the saliency map using the weighted product of
each GGD function

FIGURE 2: The flowchart of saliency map extraction.
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discussed in Section 2, the subjective sensitivity of human
eyes to texture regions and structure regions is quite differ-
ent. In this paper, the spatial variation of image gradient
features extracted by the structure tensor method is consid-
ered to replace the contrast function and structure function
in SSIM.

The anisotropic diffusion-based structure tensor method
[20] effectively enhances structure contours by employing
nonlinear diffusion in color space, as well as horizontal, ver-
tical, and 45° gradient spaces, thereby reducing feature
redundancy and computational complexity. For an image I
(x, y), the feature space extracted by the structural tensor
method is given in Equation (7).

Jσ ¼ Kσ × rIrITð Þ ¼ Kσ × I2x Kσ × IxIy

Kσ × IxIy Kσ × I2y

 !
; ð7Þ

where Kσ is a Gaussian kernel with variance σ, Ix is the
horizontal gradient, and Iy is the vertical gradient of an
image. The convolution of Kσ with different gradient fields
can smooth the gradient features in different directions.
Unfortunately, the convolution with the Gaussian kernel
often leads to the misalignment of target boundaries in the
feature space. In order to solve the problem caused by
the linear filter, the Gaussian convolution can be replaced
by the nonlinear diffusion [21], as given in Equation (8).

ðaÞ ðbÞ ðcÞ
FIGURE 3: The saliency map of an inpainted image: (a) original image; (b) inpainted image; (c) saliency map.
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∂tui ¼ div g ∑
N1

k¼1
rukj j2

� �
rui

� �
; 8i; ð8Þ

where N1 represents the number of gradient channels, we set
N1=2 in this paper, which means only the gradient features in
the horizontal and vertical directions are considered. g is the
diffusion coefficient with gðjrujÞ : ¼ðjruj þ ξÞ−1, ξ is a small
positive number and we set ξ¼ e−10 here. Additive operator
separation [22] is used to solve Equation (8). In the initial
moment, t= 0, u1

0 and u2
0 represents the horizontal gradient

I2x ¼ ½Iði; jÞ − Iðiþ 1; jÞ�2and the vertical gradient I2y ¼ ½Iði;
jÞ − Iði; jþ 1Þ�2. When t=K, iteration stops, and features are
recorded as u1

K and u2
K. Gradient featureU of image I (x, y) can

be obtained by adding the horizontal gradient and vertical gra-
dient, as given in Equation (9).

U ¼ 1
rI

uK1 þ uK2ð Þ; ð9Þ

where ðrIÞ−1 is a coefficient used to adjust the value range of
U. Based on the gradient feature, the gradient similarity of
images f and f ’ is defined in Equation (10).

d f ; f 0ð Þ ¼ 2φfφf 0 þ C4

φ2
f þ φ2

f 0 þ C4
; ð10Þ

where the value of φf and φf ’ represent the average gradient
features Uf and Uf ’, C4 is a smaller constant. The structural
similarity function based on gradient features is defined in
Equation (11).

s0 f ; f 0ð Þ ¼ φff 0 þ C5

φfφf 0 þ C5
; ð11Þ

where φff 0 ¼ 1
N−1∑

N
i¼1ðUf ;i −φf Þ :ðUf 0;i −φf 0 Þ :. Accordingly, the

proposed IIQA metric is defined as follows:

IIQA f ; f 0ð Þ ¼ l f ; f 0ð Þ½ �α × d f ; f 0ð Þ½ �β × s0 f ; f 0ð Þ½ �γ: ð12Þ

It is worth noting that in image inpainting, the reference
image f does not exist for quality evaluation. We propose to
measure the quality of image inpainting by comparing the
inpainted region with the known region. For each pixel p in
the repaired region, a patchM(p) centered at p with size w×
w is selected. Subsequently, the proposed IIQA is employed
to search for the best match M of patch M(p) within the
known region. The similarity between M(p) and the known
region is defined as follows:

IIQAp ¼ min
X2ΦC ;X pð Þ2ΦS

IIQA M pð Þ;Mð Þ; ð13Þ

where ФC represents the known region, and ФS represents the
inpainted region. As discussed in Section 2, human eyes are
more sensitive to the fracture, occlusion, and discontinuity of
the structure in the image rather than texture or other details.

The objective quality evaluation of image inpainting is thus
defined as the linear weighted sum of saliency degree and IIQAp

for all patches within the inpainted region. Let Sp be the normal-
ized saliency degree of pixel p in the inpainted region, and the
quality Q of an inpainted image considering visual saliency and
structural features is given in Equation (14).

Q¼ ∑
P

p¼1
Sp ⋅ IIQAp; ð14Þ

where P is the number of pixels in the inpainted region. The
IIQA algorithm is described in detail as follows:

4. Results and Discussion

Typical images shown in Figure 4(a) are taken as examples
and repaired by the Criminisi algorithm [23], PAMSRIC algo-
rithm [24], priority-BP algorithm [25], and DLIC algorithm
[26], respectively. Sixteen inpainted images are obtained for
quality evaluation, as shown in Figures 4(b) and 4(c). For
subjective rating, 18 observers were selected to score the
inpainted image according to the criteria given in Table 1.
The proposed approach was employed for objective evalua-
tion. The Pearson linear correlation coefficient (PLCC) and
the Spearman rank order correlation coefficient (SROCC)
[27] are applied to test the performance of IIQA.

As shown in Figure 4, inpainted images are classified into
group (b) and group (c). The average subjective rating scores
from 18 observers are shown in Figure 5(a). The objective
scores using the proposed IIOA method are given in
Figure 5(b). The value of PLCC and SROCC between the
subjective scores and objective scores is shown in Table 2.

As shown in Table 2, the correlation between subjective
and objective evaluation scores is very high, indicating that
the objective evaluation results are basically consistent with
the subjective rating. These results verified the effectiveness
of the proposed IIQA method. It is also worth noting that the
PLCC and SROCC coefficients of images in group (c) are
lower than those of images in group (b). This is because some

Input: Image I(x, y)

Output: Q

u1
0= Ix, u2

0= Iy, k= 0

if k<K

ui ← uki ; vi ← Kσ × ui; g← ð∑2
k¼1jrvki j2 þ ξÞ−1

ui ← vix þ viy; u
kþ1
i ← ui; k← kþ 1

else U ← 1
rI ðuK1 þ uK2 Þ:

for all M (p)ɛФS do

M0 ← argminX2ΦC ;XðpÞ2ΦS
IIQAðMðpÞ; MÞ

IIQAp ← IIQAðMðpÞ; M0Þ
end for

Q← ∑p
p¼1Sp ⋅ IIQAp

ALGORITHM 1: Quality Assessment of Inpainted Images.
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(a) (b)
Image 1

Image 2

Image 3

Image 4

(c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

FIGURE 4: Continued.
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inpainted images in group (b) are obviously not in line with the
subjective perception of human eyes and are easier to be noticed
by observers. However, the inpainted images in group (c) had no
obvious structure or texture problems, which resulted in a cer-
tain difference between the subjective rating and objective eval-
uation. This is because, rather than texture issues, our approach
exhibits a higher sensitivity toward structural defects that tend to
capture human attention more easily.

(a) (b)
Image 5

Image 6

Image 7

Image 8

(c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

FIGURE 4: Collection of inpainted images. Image 1: (a) original image, (b) Criminisi’s, and (c) PAMSRIC; Image 2: (a) original image,
(b) Criminisi’s, and (c) PAMSRIC; Image 3: (a) original image, (b) Criminisi’s, and (c) DLIC; Image 4: (a) original image, (b) Criminisi’s, and
(c) PAMSRIC; Image 5: (a) original image, (b) Criminisi’s, and (c) DLIC; Image 6: (a) original image, (b) Criminisi’s, and (c) DLIC; Image 7:
(a) original image, (b) priority-BP, and (c) DLIC; Image 8: (a) original image, (b) priority-BP, and (c) DLIC.

TABLE 1: The criteria for subjective rating.

Subjective perception Score

Successful 5
Preferably 4
Common 3
Unsatisfying 2
Failed 1

8 Advances in Multimedia



The results in Figure 5 also indicate that the proposed
approach does not directly depend on the size of the inpainted
regions. For example, the inpainted regions are large in image
5 and image 7 compared to others; however, both the subjec-
tive and objective rating scores of these two images are rela-
tively high. In contrast, the inpainted regions in image 1 and
image 4 are smaller, but the rating scores of images 1(b) and
4(b) are much lower. The reason for this lies in the fact that our
IIQA metric incorporates both visual saliency and structural
features, thereby yielding consistent results with subjective eval-
uation, particularly for images with structural problems.

To further verify the performance of the proposed
approach, we tried to compare our method to the related
works. Unfortunately, IQA methods based on machine
learning were trained using datasets generated locally, mak-
ing it challenging to compare other methods with those
metrics. Therefore, we chose StrucBorSal [5], OIM [10],
and B-IIQA [28] for the comparative study. All these

methods were applied on a public database TUM-IID which
contains 272 inpainted images. The obtained SROCC values
of these approaches are summarized in Table 3. Obviously
the SROCC value of our method is higher than other
metrics, indicating the effectiveness and superior perfor-
mance of the proposed IIQA metric.

5. Conclusions

The absence of a reference image has consistently posed a
significant challenge for the IIQA. In this paper, we proposed
to address the IIQA problem by employing image feature
extraction techniques and visual saliency analysis. The tex-
ture and structure defects in the inpainted image were con-
verted into “regions of interest” and analyzed through the
extraction of a visual saliency map. Based on the structure
feature obtained by the nonlinear diffusion of gradient space,
the IIQA metric, including brightness, gradient similarity,
and structural similarity, was proposed and tested on differ-
ent types of images. Experimental results showed that the
rating scores by our method are consistent with the subjec-
tive rating results, especially for images with structural
defects. The proposed metric also performed better than
the existing ones. The limitation of our method is that
when there are no obvious structure or texture problems in
the inpainted image, the result showed a lower correlation
with objective evaluation. In the future, our focus will be on
IIQA metrics that integrate both human perception and deep
learning to enhance its performance.

Data Availability

The data used to support the study are openly available in a
public repository.
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FIGURE 5: The rating scores of inpainted images: (a) subjective rating scores; (b) objective rating scores.

TABLE 2: Correlation coefficient between subjective and objective
scores.

Image group PLCC SROCC

(b) 0.9432 0.9286
(c) 0.7662 0.8121

TABLE 3: Performance comparison of IIQA metrics.

IIQA metrics SROCC

StrucBorSal 0.740
OIM 0.834
B-IIQA 0.840
Our method 0.875
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