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As virtual reality technology advances, 3D environment design and modeling have garnered increasing attention. Applications in
networked virtual environments span urban planning, industrial design, and manufacturing, among other fields. However, existing
3D modeling methods exhibit high reconstruction error precision, limiting their practicality in many domains, particularly
environmental design. To enhance 3D reconstruction accuracy, this study proposes a digital image processing technology that
combines binocular camera calibration, stereo correction, and a convolutional neural network (CNN) algorithm for optimization
and improvement. By employing the refined stereo-matching algorithm, a 3D reconstruction model was developed to augment 3D
environment design and reconstruction accuracy while optimizing the 3D reconstruction effect. An experiment using the Shape-
Net dataset demonstrated that the evaluation indices—Chamfer distance (CD), Earth mover’s distance (EMD), and intersection
over union—of the model constructed in this study outperformed those of alternative methods. After incorporating the CNN
module in the ablation experiment, CD and EMD increased by an average of 0.1 and 0.06, respectively. This validates that the
proposed CNN module effectively enhances point cloud reconstruction accuracy. Upon adding the CNN module, the CD index
and EMD index in the dataset increased by an average of 0.34 and 0.54, respectively. These results indicate that the proposed CNN
module exhibits strong predictive capabilities for point cloud coordinates. Furthermore, the model demonstrates good generaliza-
tion performance.

1. Introduction

With the development of Internet technology, image processing
technology has become an important means of information
technology. People can easily use image processing technology
to obtain information, so as to construct different technicalmod-
els. The improvement of the image processing effect by com-
puter is an important part of information realization. With the
increasing demand for information technology in the whole
society, image engineering is playing amore andmore important
role in contemporary science and technology.

With the development of virtual reality technology, 3D envi-
ronment design and modeling technology have been paid more
and more attention. It has been applied in virtual network envir-
onments, urban planning, industrial design, manufacturing, and
other fields [1]. However, the existing 3Dmodelingmethods have
large error accuracy defects. In many fields, especially in environ-
mental design, the practicability is limited to some extent [2].

Moreover, the 3D modeling of environmental design requires
a high degree of 3D reduction. This is because the restoration
accuracy of reconstruction methods based on a single perspec-
tive is limited [3]. With the progress of technology, the 3D
modeling method based on double-view multidimensional
data has gradually become the mainstream [4]. Under the mul-
tidirectional 3D modeling framework, the environment model-
ing method based on texture mapping can achieve 3D
restoration to a certain extent [5]. In order to further improve
the modeling accuracy, 3D reconstruction methods based on
learn-perception classes have been widely studied.

There are many methods and theories for image-based
3D reconstruction. Among them, structure from motion
recovery (SfM) is one of the most widely used classical meth-
ods [6]. SfM calculates that the feature points successfully
matched between images have 3D information and can be
restored to 3D coordinates to form 3D point clouds. How-
ever, the feature point information contained in the image is
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relatively small [7]. Therefore, the point cloud model calcu-
lated by SfM is sparse, and the accuracy of the reconstructed
model is low. The multiview stereo (MVS) [8] method can
calculate the dense 3D point cloud of the scene frommultiple
view images of the object. Patch-based MVS [9] takes sparse
point cloud reconstructed by SfM as input information.
Then, using the image surface neighborhood information
iteration, a point cloud expansion strategy is used for point
cloud expansion and filtering. Finally, dense point clouds are
reconstructed by this method. Wang et al. [10] took the
sparse reconstruction model and camera attitude obtained
by SfM as input. This method uses depth map fusion to
recover dense point clouds. The MVS method based on
learning is shown in literature [11]. The depth map fusion
method used in literatures [12, 13] is also effective in restor-
ing high-precision dense point clouds in the scene. Literature
[14] proposed a 3D model reconstruction method based on
point cloud, which achieved better reconstruction accuracy
by defining loss functions such as chamfering distance and
spatial distance. Literature [15] classifies internal points and
external points based on fusion features and proposes a point
cloud sampling optimization strategy. The scheme allows for
a more detailed reconstruction of the point cloud. In order to
effectively restore the occlusion area of the single view of the
object, literature [16] combines the 3D encoder–decoder
structure with the generative antagonism network. The
detailed dimensional structure of the object is reconstructed
from a single view, and good experimental results are
obtained on the synthesized dataset.

In order to improve the accuracy of 3D object recon-
struction with a single view, a fusion of digital image proces-
sing technology and convolutional neural network (CNN)
algorithm is proposed to optimize and improve CNN.
Through the improved stereo-matching algorithm, the 3D
reconstruction model was constructed to improve the 3D
environment design and reconstruction accuracy and opti-
mize the 3D reconstruction effect. Experiments on the data-
set of ShapeNet [17] show that the evaluation indexes of
Chamfer distance (CD), Earth mover’s distance (EMD),
and intersection over union (IoU) in the model experiments
constructed in this paper are superior to other traditional
methods. The ablation experiment also verifies that the
CNN module proposed in this paper can effectively improve

the reconstruction accuracy of point clouds, has a good pre-
diction of point cloud coordinates, and the generalization
performance of the model presented in this paper is
also good.

2. State of the Art

2.1. Structure and Principle of CNNs. CNN is a representative
algorithm in deep learning [18]. The algorithm is a deep
feed-forward neural network with local connection and
weight sharing. CNN continuously extracts features through
multiple convolution kernels to realize image classification
and natural language processing. CNN consists of an input
layer, convolution layer, pooling layer, flattening layer, for-
getting layer, and fully connected (FC) layer. Its structure is
shown in Figure 1.

The convolution layer mainly realizes feature extraction
of data. The convolution kernel in the convolutional layer
slides on the input data one by one and carries out the dot
product operation with the data at each position, and the
output is the feature graph. The convolution operation can
be expressed as shown in Formula (1):

Cx ¼ f   g × Ix:xþb−1 þ hð Þ: ð1Þ

In the above formula, g represents weight and h repre-
sents bias.

The pooling layer replaces the network output in the
region by using the region’s overall characteristics. This
can achieve the purpose of reducing network parameters
and reducing the amount of calculation, so as to avoid the
overfitting problem.

The flattening layer is the realization of 2D data 1D.
The forgetting layer is to temporarily hide some weight

values by setting parameters to alleviate the occurrence of
overfitting. This can achieve the regularization effect to a
certain extent.

The FC layer completes the classification task. Output the
data, get the classification result, and use the Sigmoid func-
tion to output the classification probability value. The func-
tion formula is shown in Formula (2):

Input layer
Convolution layer Pooling layer

Flattening layer Forgetting layer

Fully connected
layer

Output
layer

FIGURE 1: CNN structure diagram.
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a sð Þ ¼ 1
1þ e−s

: ð2Þ

In Formula (2), s represents the output of the upper layer
of the model.

2.2. Digital Image Processing Technology. Digital image pro-
cessing technology is widely used for the practical needs of
environment design. Among them, stereo imaging technol-
ogy is developing rapidly. This paper studies the principle of
3D environment design based on stereo imaging technology.
Digital image processing technology can effectively model
3D scenes and improve the authenticity of environmental
design. See Figure 2 for the specific method principle.

The 3D coordinates of scenes in different coordinate
systems can be extracted by triangular projection. On this
basis, this paper uses the stereo projection-matching algo-
rithm to coordinate the pixel points of the 3D scene. Con-
sidering the 3D reconstruction modeling using 2D images
will have stereo distortion. Based on traditional 3D model-
ing, this paper can make stereo compensation for the
extracted image depth information and finally realize the
reconstruction of a highly restored 3D scene. The schematic
diagram of the nonparallel bidirectional stereoscopic imag-
ing 3D modeling method is shown in Figure 3.

In Figure 3, U is projected sterically in two coordinate
systems, O1 and O2. Its projection points in the projection
plane are, respectively, U1 and U2. The observed coordinates
of U1 and U2 in the coordinate system with the origin of O1

and O2 are U1ði1; j1Þ and U2ði2; j2Þ, respectively. Let In repre-
sent the true coordinates of U. Use I1 and Ir to represent the
coordinates of U1 and U2, respectively, in the observed coor-
dinate system, then the corresponding relationship can be
obtained, as shown in Formula (3):

I1 ¼ z1In þ n1

Ir ¼ zrIn þ nr

(
; ð3Þ

where z1, zr, n1, and nr are the parameters of the stereoscopic
projection transformation between the two observed coordi-
nate systems and the real 3D coordinate systems. Transform

Formula (3), as shown in Formula (4).

Ir ¼ KI1 þ T; ð4Þ

where K and T are stereoscopic projection transformation
parameter matrices. It is defined as shown in Formula (5).

K ¼ zrz−11
T ¼ nr − Zn1

(
: ð5Þ

The stereo projection transformation parameters are dif-
ferent at different points. 3D matching is a nonlinear opti-
mization to determine the optimal stereo projection
transformation parameter matrix.

3. Methodology

The algorithm in this paper is a combination of digital image
processing technology and an improved CNN algorithm.
The stereo-matching algorithm model can be constructed
by this algorithm.

In the experiment part, the reconstruction accuracy of
the data is measured, and the 3D reconstruction effect of
different models is analyzed. Through the analysis and veri-
fication of the model, the model with higher reconstruction
accuracy and better 3D reconstruction effect is selected.
Through this model, the precision of 3D reconstruction
can be improved, so as to achieve the purpose of optimizing
3D environment design.

3.1. Stereo-Matching Algorithm Based on Improved CNN.
Deformable CNN is a deep learning model for image proces-
sing that adaptively adjusts the shape of the convolution
kernel to better capture nonlinear features in images. By
introducing deformable convolution, the algorithm is able
to more accurately capture the subtle differences in the
surface of an object in a stereoscopic image, which improves

3D coordinate extraction

Image 1 Image 2

Stereo projection matching

Depth information compensation

3D reconstruction

FIGURE 2: Principle of bidirectional 3D imaging method.
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FIGURE 3: Nonparallel bidirectional stereoscopic imaging 3D model-
ing diagram.
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the accuracy and detail representation of point cloud
reconstruction.

The stereo-matching algorithm based on deformable
convolution is composed of feature extraction, matching
cost space, cost postprocessing, parallax/residual regression,
and parallax optimization modules. The design structure of
the stereo-matching algorithm is shown in Figure 4.

The feature extraction module is an encoder–decoder
that introduces a 2D deformable convolution hourglass in
the encoding stage. The matching cost space is constructed
by the associated operation of DispNetC to form the 3D cost
space. In the cost postprocessing module, the 3D deformable
convolution of the residual structure is used to regularize the
matching cost space. The parallax regression module adopts
the softargmin method proposed by GC-Net. Its expression
is shown in Formula (6):

bd ¼ ∑
D−1

max

d¼0
 d × σ −cdð Þ; ð6Þ

where bd represents the predicted parallax value. d represents
the parallax value of the candidate. Dmax represents the max-
imum candidate parallax. σ indicates the softmax function. cd
indicates the matched generation value.

The parallax optimization module is a spatial propaga-
tion network [19]. The network can extract the similarity
matrix of the image and optimize the predicted parallax
value.

The algorithm is divided into three stages to get a paral-
lax map with different precision.

In the first stage, the feature extraction module extracted
feature map F1 with a resolution of 1/16. Therefore, the
candidate parallax value ranges from 0 to 1/16 Dmax. After
parallax regression and optimization, it is necessary to obtain
the parallax map of the first stage by up-sampling operation
and multiplying by 16 times.

In the second stage, the range of candidate residual d is
set to −2–2. According to the parallax map from Stage 1, the
new feature map is warped on the right feature map F2 at 1/8

resolution. Then, the matching cost space is formed with the
left feature map. The residuals of regression are added to the
parallax map of Stage 1. Then, the parallax map is optimized
to get the parallax map of the second stage.

The third stage is the same as the second stage.

3.2. Deformable Convolution. An ordinary convolution con-
sists of two steps. The process is shown below:

(1) A regular grid R is used for sampling on input feature
graph i.

(2) The sampling value is multiplied by the weightm and
summed. For example, R= {(−1, 0),…,(0, 1), (1, 1)}
represents a 3× 3 grid with expansion rate of 1. For
each position u0 on the output feature graph y, the
expression is shown in Formula (7):

j u0ð Þ ¼ ∑
ut2R

 m utð Þ ⋅ i u0 þ utð Þ; ð7Þ

where ut represents every position belonging to R. In the
deformable convolution, R has an offset fΔutjt ¼ 1;⋯T ¼
jRjg. Transform Formula (7) into Formula (8):

j u0ð Þ ¼ ∑
ut2R

 m utð Þ ⋅ i u0 þ ut þ Δutð Þ: ð8Þ

Now, the sampling is ut þΔut at the regular and offset
position. Because Δut is a decimal, Formula (8) needs to be
implemented by linear interpolation. Its expression is shown
in Formula (9):

i uð Þ ¼ ∑
v
 A v; uð Þ ⋅ i vð Þ: ð9Þ

In the above formula, u represents any position. In For-
mula (8), u¼ u0 þ ut þΔut . v represents each integer posi-
tion in the feature graph i. Að∗Þ has two dimensions and can
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FIGURE 4: Design of the stereo-matching algorithm.

4 Advances in Multimedia



be divided into two 1D cores. Its expression is shown in
Formula (10).

A v; uð Þ ¼ g vi; uið Þ ⋅ g vj; uj
À Á

; ð10Þ

where gðvi; uiÞ¼maxð0; 1− jvi − uijÞ.
Figure 5 shows a 2D deformable convolution with a con-

volution kernel size of 3× 3. The offset value is obtained by
adding a layer of convolution to the same feature graph. The
size and expansion rate of the convolution kernel are similar
to the current deformable convolution kernel. 2N is the num-
ber of channels in the convolution, corresponding to N 2D

offsets. 3D deformable convolution is a generalization of 2D
deformable convolution. The principle is the same as in two
dimensions, but one dimension is added to the dimension of
the convolution.

3.3. Space Propagation. The spatial propagation network
structure is shown in Figure 6, a parallax map used to opti-
mize regression. It mainly consisted of a differentiable linear
propagation module and a deep CNNmodel that learned the
similarity matrix. Linear propagation of spatial propagation
network is to scan the matrix row by row or column by row
in four fixed directions. The four fixed directions are left to

Convolution

Offset region

Offset value

Output features

Input features

2N

FIGURE 5: 3× 3 2D deformable convolution.
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Parallax map

after optimization
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Deep
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FIGURE 6: Spatial communication network structure.
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right, right to left, top to bottom, and bottom to top. The
following is mainly introduced from left to right direction,
and other directions are the same principle.

First, assume two 2D images, I and B, both of size t× t,
where I is the image before spatial propagation. B is the
image after space propagation. it and bt are their respective
tth columns. They are both t× 1 in size. Linear propagation
is performed from left to right in two adjacent columns using
the t× t linear transformation matrix Mn. Its expression is
shown in Formula (11):

bn ¼ X − Dnð Þin þMnbn−1; n 2 2; t½ �; ð11Þ

where M denotes the t× t identity matrix. The initial condi-
tion is b1 ¼ i1. Dnðx; xÞ is the diagonal matrix. The xth entry
is the sum of row x inMn. Its expression is shown in Formula
(12):

Dn x; xð Þ ¼ ∑
t

y¼1;y≠x
 Mn x; yð Þ: ð12Þ

Therefore, the matrix Bð 2B; n2 ½1; t�Þ is updated recur-
sively by column. For each column, bn is the preceding col-
umn bn−1 multiplied by the matrix Mn and combined with
xn, which is linear.

When the recursion is complete, the matrix expression of
Formula (11) is shown in Formula (13):

Hq ¼

I 0 ⋯ ⋯ 0

M2 λ2 0 ⋯ ⋯
M3M2 M3λ2 λ3 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮
⋯ ⋯ ⋯ ⋯ λt

26666664

37777775Xq ¼ GXq; ð13Þ

where G represents a triangular transformation matrix under
T×T (T = t2). Hq ¼ ½bN1 ; ⋯; bNt �N ;Xq ¼ ½iN ; ⋯; iNt �N . The
dimension is T× 1. The parameter is fλn;Mn;Dn;Xg, n2
½2; t� and the size is t× t, λn=X−Dn.

The deep CNN module is mainly used to output the
similarity matrix A, and then linear propagation is carried
out to obtain Hq. The algorithm mainly uses deep CNN and
linear propagation modules to learn H from the left image to
guide the optimization of the regression parallax map.

3.4. Loss Function. In order to predict the position of a point
cloud, EMD, CD, symmetric loss, and an equidistant prior
loss are used as loss functions for model training. The specific
definition is as follows:

(1) EMD

EMD is defined as the minimum sum of the distances
between elements u in the set and all elements in the set San.
Its expression is shown in Formula (14).

LEMD S1; Sanð Þ ¼minσ:S1→San   ∑
u2S1

  ∥ u − σ uð Þ∥2; ð14Þ

where S1 stands for reconstructed point cloud, and San stands
for ground truth (GT) true point cloud. σ is the bijective
relation.

(2) CD

The CD is used to measure the distance between two sets
of point clouds. Formally defined as Formula (15):

LCD S1; Sanð Þ¼ ∑
i12S1

 mini22Ssn   i1 − i2k k22
þ ∑

i22Ss
 mini12S1   i2 − i1k k22:

ð15Þ

The first term represents the sum of the minimum dis-
tances from any point in S1 to San, and the second term
represents the sum of the minimum distances from any point
in San to S1.

(3) Equidistant prior loss

Let S1 be the reconstructed point cloud and s be any point
in S1. SxðSxi ; Sxj ; SxkÞ is the xth adjacent point to s. After Gauss-
ian filtering, the position of s changes accordingly. Take x
coordinate as an example, as shown in Formulae (16) and
(17).

s
0
i ¼ ∑

x
 f sxið Þ × sxi ; ð16Þ

f sxið Þ ¼ 1
2πσ2

exp −
sxi − sið Þ2
2σ2

� �
: ð17Þ

Equidistant prior losses are defined as shown in Formula
(18):

Liso ¼ LCD S0; S1ð Þ; ð18Þ

where S1 is the initial point cloud, and Sʹ is the point cloud
after Gaussian filtering. The introduction of equidistant prior
loss function can make adjacent points close to each other.

(4) Symmetric loss

In order to maintain the symmetry of the point cloud
model in the deformation process, the symmetric loss func-
tion of the point cloud is introduced, and the expression is
shown in Formula (19).

L sym ¼ LCD M S1ð Þ; Sanð Þ: ð19Þ

In the above formula, M (S1) is the specular reflection
transformation.
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4. Result Analysis and Discussion

4.1. Experimental Setup. In all experiments, the model inputs are
RGB color images, and the output is a 3D point cloud with 2,048
vertices. Meanwhile, in order to train the graph-convolutional
network end-to-end, the Ad-am optimizer is used in the experi-
ments, and the learning rate is initialized to 5×10−5. The num-
ber of iterations of the model is 50 epochs, and the batch size is
32. All the experiments are implemented on NVIDIA GeForce
GTX1080Ti GPUs using the open-source machine learning
framework Pytorch.4.2 Experimental data and evaluation
criteria

In order to evaluate the reconstruction performance of
the proposed algorithm, ShapeNet synthetic dataset, Model-
Net, and dataset and Pix3D [20, 21] real scene dataset were
used for experiments. ShapeNet has a total of 51,300 3D
models in 13 model categories. The ModelNet dataset con-
tains about 17,210 3D models in about 50 different catego-
ries. The partially occluded or truncated data is excluded,
and the training set and test set are randomly divided accord-
ing to the ratio of 4 : 1. The same Pix3D dataset is used to do
the preprocessing, with the background of the mask infor-
mation to remove useless background and moved to the
center of the object, will eventually image zooming or cut
to 224 by 224 as the input image. In this paper, IoU, CD, and
EMD were used as indicators to measure experimental
results. IoU represents the intersection ratio between the
3D voxel shape of the network reconstruction and the shape
of the true solid element. Here, the same voxel generation
method as literature [14] is adopted. CD and EMD represent
the difference between two point clouds. Here, the GT point
cloud is sampled to generate a point cloud model with a
number of vertices of 2,048, and the reconstructed point
cloud is compared with the reconstructed point cloud in
this paper.

4.2. Experimental Data and Evaluation Criteria. Verify the
robustness of the loss function design strategy proposed in
this paper, as shown in Figure 7. Figure 7(a) shows the com-
parison of the effects of loss function on different training
sets. By comparison, it can be seen that on the three different
training sets, the loss function of the training set generally
keeps a downward trend during the training. The loss func-
tion of the training set decreases rapidly in the first 25 times
of the epoch and tends to be stable after the 40th time. It can
be seen that the method in this paper has high robustness.
Further, Figure 7(b) shows the convergence of the loss func-
tion in the point cloud deformation process of the CNN. It
can be seen from Figure 7(b) that the CNN has a good
convergence result in the deformation stage, indicating that
the model has a good 3D reconstruction effect.

4.3. Quantitative Comparison of Experimental Results. In
order to quantitatively analyze the differences between the
proposed method and other methods, Tables 1 and 2 show
the comparison of reconstruction accuracy in the ShapeNet
dataset and ModelNet dataset. The evaluation index was
scaled 100 times and compared with the methods of litera-
tures [14, 22, 23]. In terms of CD evaluation indexes, the
method in this paper achieves higher reconstruction accu-
racy in 13 categories, such as airplanes. Similarly, in terms of
EMD evaluation indexes, the method in this paper is super-
ior to other methods in all categories. The average recon-
struction accuracy of CD and EMD is higher than that of
other methods.

Further, we compared the differences between the pro-
posed method and literatures [22, 23] in different categories
of IoU. As can be seen from Table 3, the IoU of this paper’s
method is higher in eight categories, such as airplane and
literature [22], and is higher in sofa and speaker.
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FIGURE 7: Convergence curve of training loss function: (a) 3D-matching algorithm training process loss function convergence curve; (b) figure
convergence curve of the loss function in the convolution training process.
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Literature [23] achieved the best performance in the car
and phone categories under 5-view reconstruction. Overall,
on the ShapeNet dataset, the average IoU of the proposed
method is improved by 9.16% over the literature [23] in five
views and 7.63% over the literature [22]. On ModelNet data-
set, the average IoU of the proposed method is improved by
11.11% over literature [23] at five views and 9.22% over
literature [22].

4.4. Comparison of Ablation Data

(1) CNN module ablation experiment comparison

In this paper, the CNN module is used to adjust the 3D
reconstructed point cloud model of the stereo-matching
algorithm. In order to verify the effectiveness of this method,
the CNN module is replaced by a common FC layer, and the

model is trained and tested. CD and EMD are used to mea-
sure the quality of the generated point cloud, and the test
results are shown in Table 4.

As can be seen from Table 4, after the CNN module is
added, CD and EMD have a certain improvement in most
datasets. CD and EMD schemes only showed slight declines
in some datasets. CD increases by 0.1 on average, and EMD
increases by 0.07 on average. For the CD indicator, the chair
dataset was increased by 0.34. For EMD indicators, the mon-
itor dataset is increased by 0.44. It can be seen that the
introduction of the CNN module can effectively improve
the accuracy of point cloud reconstruction.

The performance of the stereo-matching algorithm is
verified by experiments. Evaluation indicators were trained
and tested on bench, monitor, and phone datasets. As shown
in Table 5, after the CNN module is added, the evaluation
indexes of different datasets are improved. CD index

TABLE 2: CD, EMD evaluation indicators on ModelNet dataset.

Item
CD EMD

Literature [14] Literature [22] Literature [23] Ours Literature [14] Literature [22] Literature [23] Ours

Airplane 2.65 2.21 2.23 1.26 5.3 3.64 2.71 1.54
Bench 3.5 3.43 3.54 2.27 4.8 3.93 3.21 2.32
Cabinet 5.86 5.03 5.01 3.36 4.95 5.26 3.85 3.22
Car 4.13 3.46 3.25 2.2 3.03 3.72 2.54 1.81
Chair 5.3 5.29 5.43 2.32 8.6 6.92 5.36 2.41
Lamp 5.22 6.01 5.49 3.77 15.12 14.8 7.43 5.06
Monitor 5.02 5.31 5.35 3.41 6.5 6.13 4.83 3.02
Phone 3.44 3.51 3.13 2.34 4.02 4.3 2.71 2.34
Rifle 1.82 1.63 1.72 1.21 7.34 5.06 3.11 2.6
Sofa 5.91 4.73 4.82 3.05 6.34 4.5 3.93 2.74
Speaker 7.61 7.05 7.33 4.51 7.6 8.05 6.23 3.95
Table 4.91 4.97 5.14 2.93 7.3 6.73 4.92 3.24
Vessel 3.27 3.33 3.42 2.4 5.13 4.64 3.82 2.75
Mean 4.49 4.32 4.33 2.72 6.6 5.95 4.21 2.83

The bold data represent a comparison of the data obtained by the method used in this article compared to other methods.

TABLE 1: CD and EMD evaluation indicators on ShapeNet dataset.

Item
CD EMD

Literature [14] Literature [22] Literature [23] Ours Literature [14] Literature [22] Literature [23] Ours

Airplane 3.76 3.32 3.34 2.37 6.41 4.75 3.82 2.65
Bench 4.61 4.54 4.65 3.38 5.91 5.04 4.32 3.43
Cabinet 6.97 6.14 6.12 4.47 6.06 6.37 4.96 4.33
Car 5.24 4.57 4.36 3.31 4.14 4.83 3.65 2.92
Chair 6.41 6.40 6.54 3.43 9.71 8.03 6.47 3.52
Lamp 6.33 7.12 6.60 4.88 16.23 15.91 8.54 6.17
Monitor 6.13 6.42 6.46 4.52 7.61 7.24 5.94 4.13
Phone 4.55 4.62 4.24 3.45 5.13 5.41 3.82 3.45
Rifle 2.93 2.74 2.83 2.32 8.45 6.17 4.22 3.71
Sofa 7.02 5.84 5.93 4.16 7.45 5.61 5.04 3.85
Speaker 8.72 8.16 8.44 5.62 8.71 9.16 7.34 5.06
Table 6.02 6.08 6.25 4.04 8.41 7.84 6.03 4.35
Vessel 4.38 4.44 4.53 3.51 6.24 5.75 4.93 3.86
Mean 5.60 5.43 5.44 3.83 7.71 7.06 5.32 3.94

The bold data represent a comparison of the data obtained by the method used in this article compared to other methods.
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increased by 0.36 on average, and the EMD index increased
by 0.53 on average. It is proved that the CNN module has a
good prediction for point cloud coordinates.

(2) Loss function ablation experiment comparison

In order to verify the effectiveness of the loss function
adopted in this paper, different combinations of loss func-
tions are selected, and the model is retrained. Based on
bench, rifle, and vessel datasets, the test results are shown
in Table 6. It can be seen from Table 5 that after all loss

TABLE 3: IoU evaluation indicators.

Item

ShapeNet dataset ModelNet dataset

Literature [22]
Literature [23]

Ours Literature [22]
Literature [23]

Ours
3 views 5 views 3 views 5 views

Airplane 0.605 0.551 0.562 0.721 0.494 0.44 0.451 0.61
Bench 0.553 0.504 0.531 0.764 0.442 0.393 0.42 0.653
Cabinet 0.775 0.761 0.776 0.73 0.664 0.65 0.665 0.619
Car 0.832 0.836 0.843 0.654 0.721 0.725 0.732 0.543
Chair 0.541 0.533 0.554 0.682 0.43 0.422 0.443 0.571
Lamp 0.462 0.414 0.427 0.634 0.351 0.303 0.316 0.523
Monitor 0.552 0.547 0.563 0.665 0.441 0.436 0.452 0.554
Phone 0.751 0.736 0.754 0.752 0.64 0.625 0.643 0.641
Rifle 0.607 0.593 0.604 0.714 0.496 0.482 0.493 0.603
Sofa 0.714 0.692 0.703 0.636 0.603 0.581 0.592 0.525
Speaker 0.743 0.714 0.725 0.747 0.632 0.603 0.614 0.636
Table 0.601 0.563 0.58 0.652 0.49 0.452 0.469 0.541
Vessel 0.615 0.602 0.613 0.635 0.504 0.491 0.502 0.524
Mean 0.642 0.619 0.633 0.691 0.531 0.508 0.522 0.58

TABLE 4: Evaluation indicators of CNN ablation experiments CD.

Item
CD

Deviation
EMD

Deviation
FC CNN FC CNN

Airplane 2.42 2.32 0.22 2.67 2.63 0.04
Bench 3.38 3.35 0.03 3.56 3.42 0.14
Cabinet 4.52 4.44 0.08 4.15 4.31 −0.16
Car 3.43 3.31 0.12 3.03 2.9 0.13
Chair 3.76 3.42 0.34 3.68 3.53 0.15
Lamp 4.75 4.91 −0.16 5.76 6.11 −0.35
Monitor 4.53 4.51 0.02 4.58 4.14 0.44
Phone 3.74 3.46 0.27 3.51 3.48 0.03
Rifle 2.45 2.33 0.12 3.98 3.71 0.27
Sofa 4.18 4.13 0.05 4.07 3.83 0.24
Speaker 5.82 5.65 0.17 4.85 5.02 −0.17
Table 3.96 4.07 −0.13 4.46 4.35 0.11
Vessel 3.67 3.52 0.15 3.92 3.84 0.08
Mean 3.9 3.8 0.1 4.01 3.94 0.07

TABLE 5: Evaluation indicators of ELAS ablation experiments.

Item
CD

Deviation
EMD

Deviation
FC CNN FC CNN

Bench 3.73 3.39 0.34 4.12 3.47 0.65
Monitor 4.75 4.51 0.24 4.94 4.17 0.77
Phone 3.96 3.45 0.51 3.65 3.48 0.17
Mean 4.14 3.78 0.36 4.23 3.71 0.53
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functions are adopted, CD performs better than the other
two strategies and is effective for different datasets, improv-
ing the generalization performance of the model.

4.5. Comparison of 3D Modeling. In order to test the effec-
tiveness of the algorithm, the reduction degree of this paper
and different algorithm models is compared, which is shown
in Figure 8. In this paper, the lotus flower is chosen as the
experiment in the reconstruction of the natural environment.
The algorithm in this paper, literatures [24, 25] are used to
reconstruct the 3D model of the same lotus flower in the
collected sample data. The model effect after reconstruction
is shown in Figure 8(b).

According to Figure 8(c), by comparing the image mod-
els reconstructed by the three algorithms, we can see that the

model reconstructed by the proposed algorithm is clearer.
The distortion degree of both rod diameter part and petal
part is small. After texture mapping, the image restoration
degree is higher, and the feature point recognition is more
accurate.

In order to verify the distortion degree of reconstructed
images, PSNR values of red dog images were compared by
the above three methods. The comparison results are shown
in Figure 9. The image with a higher PSNR value has a lower
distortion degree, which proves that the image restoration
quality is higher.

5. Conclusion

In this study, we combine binocular camera calibration and
stereo correction of digital image processing technology with
a CNN to optimize and improve the 3D reconstruction
method, constructing a 3D reconstruction model using a
stereo-matching algorithm. In the experimental portion, we
measure the reconstruction accuracy of the data and analyze
the 3D reconstruction effects of different models. Experi-
ments demonstrate that the proposed method achieves
higher reconstruction accuracy in 13 categories, such as air-
planes. Regarding EMD evaluation indices, the proposed
method outperforms other methods in all categories. In
terms of average reconstruction accuracy, the proposed algo-
rithm yields better CD and EMD results compared to other
methods. The proposed algorithm also demonstrates good
performance in terms of average IoU. After incorporating
the CNN module in the ablation experiment, CD and
EMD increased by an average of 0.1 and 0.06, respectively.
This validates that the proposed CNN module effectively
enhances point cloud reconstruction accuracy. Upon adding
the CNN module, the CD index and EMD index in the
dataset increased by an average of 0.34 and 0.54, respectively,
indicating that the proposed CNN module has strong

TABLE 6: CD comparison of loss function ablation experiments item.

Item Remove isometric prior loss Remove symmetry loss All loss

Bench 3.3632 3.3597 3.3447
Rifle 2.3502 2.3466 2.3339
Vessel 3.5753 3.5464 3.5275
Mean 3.0962 3.0842 3.0687

ðaÞ
ProposedLiterature [24] Literature [25]

ðbÞ
ProposedLiterature [24] Literature [25]

ðcÞ
FIGURE 8: Comparison of 3D reconstruction results: (a) original image; (b) the modeled image; (c) image after texture map.
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FIGURE 9: Analysis result of image distortion degree.
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predictive capabilities for point cloud coordinates. Furthermore,
the model demonstrates good generalization performance.

Despite the significant 3D reconstruction accuracy
improvement achieved by the proposed method, however,
there are some limitations of the method and areas that
need to be further explored. For example, (1) the CNN may
be sensitive to input variations such as lighting conditions,
object orientation, and occlusion. There is a need to further
investigate the robustness of the method to these variables.
Techniques to improve the robustness of the method to noise,
uncertainty, and occlusion will be further explored in the
future to enhance its performance in real-world scenarios.
(2) The paper provides an overview of stereo-matching algo-
rithms based on deformable CNNs, but the complexity and
computational cost of the algorithms are not discussed in
detail. It is necessary to elaborate on the practical feasibility
of the method in real-time or resource-limited situations.
Carry out case studies in specific application scenarios. In
the future, some real-world scenarios, such as industrial auto-
mation, robot navigation, urban planning, and industrial
design, will be selected for practical applications, and the
performance of the algorithm will be tested in these scenarios.

Data Availability
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