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Malaria continued to be a deadly situation for the people of tropical and subtropical countries. Although there has been a marked
reduction in new cases as well as mortality and morbidity rates in the last two decades, the reporting of malaria caused 247 million
cases and 619000 deaths worldwide in 2021, according to the WHO (2022). Te development of drug resistance and declining
efcacy against most of the antimalarial drugs/combination in current clinical practice is a big challenge for the scientifc
community, and in the absence of an efective vaccine, the problem becomes worse. Experts from various research organizations
worldwide are continuously working hard to stop this disaster by employing several strategies for the development of new
antimalarial drugs/combinations. Te current review focuses on the history of antimalarial drug discovery and the advantages,
loopholes, and opportunities associated with the common strategies being followed for antimalarial drug development.

1. Introduction

Malaria continues to be a major public health concern and
has a signifcant global impact. Malaria is a vector-borne
disease caused by certain species of unicellular eukaryote
Plasmodium spp. [1]. However, P. falciparum infection is
mainly responsible for most of the malaria-related morbidity
and mortality, mostly among African children and pregnant
women. WHO and other independent research organiza-
tions worldwide are continuously working to manage this
lethal infection [2, 3]. Tere are two main strategies for the
management and control of malaria infection. Te frst is to
control the vector, and the second is to manage the infected
cases [4, 5]. However, several agencies are also involved in
the development of an efective vaccine. Te most common
vaccine, RTS, S has promising results. However, it has no
efect on transmission, hence endemicity [6].

Management of infected cases basically relies on anti-
malarial drugs/combinations. However, the development of
drug resistance and cross-resistance against most of the
antimalarials (including atovaquone, sulfadoxine, pyri-
methamine, and mefoquine, and even more recently the
most efcacious artemisinin derivatives) and the declining
efcacy of combinations in clinical practice is a big hurdle to
case management [7, 8]. Terefore, there is an urgent need
for the development of new therapeutic agents/drug com-
binations, which are efective in tackling drug resistance and
have higher efcacy with faster action for the treatment of
malaria, especially in developing countries. Antimalarial
drug discovery can follow several strategies, ranging from
minor modifcations of existing agents to the design of novel
agents that act against new targets. Tis article will discuss
some common and important strategies for antimalarial
drug discovery and the major associated challenges.
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2. History of Drug Development for Malaria

Cinchona bark was the frst efective antimalarial used in the
seventeenth century, and its active ingredient, quinine, was
isolated in 1820. Quinine became a treatment of reference
for intermittent fever throughout the world, and it is still an
important and efective treatment for malaria. Te actual
action mechanism of quinine remains controversial, but it is
hypothesized that it acts on the asexual stage of the malaria
parasite by inhibiting its heme polymerase enzyme, thereby
inhibiting hemozoin formation, an essential process for the
survival of the malaria parasite [9].

Te frst synthetic antimalarial drug, pamaquine, was
developed in 1925 by German researchers by modifying
methylene blue. Due to its low efcacy and high toxicity,
pamaquine cannot be used for the treatment of malaria. But
it provided lead compounds for the development of better
antimalarial agents like mepacrine (quinacrine) [10].

Chloroquine (CQ) was frst synthesized in Germany by
Bayer Corporation in 1934 as a cheaper alternative to the
costly naturally occurring quinine, but it was then consid-
ered toxic for any signifcant biological use [11]. However, in
the late 1950s, a high level of resistance against CQ was
reported from several parts of tropical and subtropical re-
gions. Te proposed action mechanism of CQ is the same as
that of quinine [12].

Proguanil, a pyrimidine derivative and folate pathway
inhibitor, was also introduced during World War II. Pro-
guanil is currently being used as a fxed-dose combination
with atovaquone for treatment and chemoprophylaxis
agents for preventing malaria in travelers. It is an inhibitor of
dihydrofolate reductase (DHFR) [13].

Atovaquone is a hydroxynaphthoquinone drug active
against all Plasmodium species. Atovaquone acts by inhib-
iting parasite mitochondrial electron transport as it is an
analogue of ubiquinone, a parasite mitochondrial electron
carrier, which is the cofactor of dihydroorotate de-
hydrogenase [14].Te atovaquone-proguanil combination is
well more efective than CQ alone, CQ-SP, or mefoquine
(MQ) against multidrug-resistant P. falciparum. It is also
efective in proguanil-resistant regions [15].

Pyrimethamine, which belongs to the same chemical
class as proguanil, was further developed and is now being
used as a fxed-dose combination with sulphadoxine (a
sulfonamide and the structural analogues and competitive
antagonists of p-aminobenzoic acid) for uncomplicated
malaria since the late 60s. Te sulphadoxine-pyrimethamine
(SP) combination is commonly called Fansidar. Resistance
to SP in Africa remained low until the late 1990s, but since
then it has spread rapidly. Te combination works by
inhibiting two important enzymes of the folate pathway,
dihydropteroate synthase (DHPS) and DHFR,
respectively [16].

In the late 80s, MQ was developed as an efective
treatment option for uncomplicated malaria through a col-
laborative project of the US Army Medical Research and
Development Command, WHO/TDR, and Hofman-La
Roche, Inc [17]. MQ is an efective blood schizontocidal
against all malaria species that infect humans, including the

ffth species, Plasmodium knowlesi. Resistance to mefoquine
was reported in Asia in 1985, around the time the drug
became generally available. Te exact mode of antimalarial
action and biochemical basis of resistance to MQ are not
known, but clinical resistance to MQ is associated primarily
with the amplifcation of the pfMDR1 gene, which encodes
a P-glycoprotein homologue1. MQ inhibits β-haematin
formation, leading to a toxic accumulation of haem (ferri-
protoporphyrin IX) in the parasite’s food vacuole [18].

Another important antimalarial drug, piperaquine
(PPQ), was synthesized by the Shanghai Research Institute
of Pharmaceutical Industry in 1966 and was used as a re-
placement for CQ as the frst-line monotherapy in China for
malaria treatment [19]. Te exact mechanism of action of
PPQ is unknown. But it has been shown that it acts on the
polymerization of haematin. Te exact mechanism of re-
sistance against PPQ is not well known yet; however, a copy
number variation event on chromosome 5 of the malaria
parasite was observed in PPQ resistance [20, 21].

Lumefantrine (LMF) was synthesized originally by the
Academy of Military Medical Sciences in Beijing, China.Te
structure and mode of action are similar to those of QN and
MQ. LMF is now recommended in combination with fast-
acting artemisinin derivatives, such as artemether. In this
combination, LMF is responsible for eliminating the residual
parasites [22].

Pyronaridine, a benzonaphthyridine, was synthesized in
China in 1970 [23].Te actionmechanism of pyronaridine is
similar to that of CQ [23]. Pyronaridine has been used
extensively as monotherapy to treat P. falciparum and
P. vivax infections by oral and parenteral routes in Hunan
province. Te action and resistance mechanism of pyro-
naridine are similar to those of CQ, but it has better anti-
malarial potential than CQ [24].

Artemisinin (ART) and its derivatives are derived/ob-
tained from the plant Artemisia annua. Artemisia annua, an
annual herb belonging to the Asteraceae family, has been
used as an antimalarial herb in China for over 1000 years.
Artemisia annua, also known as sweet wormwood, sweet
annie, sweet sagewort, annual wormwood, or qinghao, is
a common type of wormwood that is native to temperate
Asia (mainly northern parts of China) but naturalized
throughout the world. In 1971, the antimalarial activity of
plant extract was experimentally proved in a primate model,
and in 1972, ARTwas isolated and its chemical structure was
described [24].

ART is an endoperoxide sesquiterpene lactone produced
by the aerial parts (leaves) of Artemisia annua L. and is
efective even against multidrug-resistant strains of the
malaria parasite. Several derivatives of ART have been de-
veloped by semisynthetic substitutions to enhance the
pharmacological profle of ART. ART and its derivatives are
potent blood schizontocidal and gametocytocidal com-
pounds that can cure infected patients and also act as
transmission-blocking agents [24]. Te presence of the
endoperoxide bridge is the key factor and is responsible for
the potent antimalarial potential of this class [25]. It is
supposed that ARTderivatives perform their action through
the production of free radicals and reactive aldehydes [26].
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ARTs perform their antimalarial action in two successive
steps. Te frst step is the iron-mediated cleavage of the
endoperoxide bridge, which generates an unstable organic
free radical and/or other electrophilic species. Te second
step of alkylation involves the formation of covalent adducts
between the drug and malarial proteins [26]. All the ART
derivatives have specifc physicochemical as well as bi-
ological properties. Te main ART derivatives are arte-
mether, arteether (AE), dihydroartemisinin (DHA), and
artesunate (AS). Artemether (AM) is a methyl ether de-
rivative of dihydroartemisinin, and it is synthesized by the
reduction of dihydroartemisinin. AM can be given as an oil-
based intramuscular injection or orally. It is also cofor-
mulated with LMF for combination therapy [27]. α/β
arteether is an ethyl ether derivative of artemisinin. It is
a potent, oil-soluble antimalarial. AE was developed by the
CSIR-Central Drug Research Institute (CDRI), Lucknow,
India, and consists of a mixture of α and β forms of AE in
a 30 : 70 ratio. It was registered in India in January 1997 for
use in malaria patients. Tis drug was marketed in India as
an oil-based intramuscular injectable formulation [28].
Dihydroartemisinin (DHA) is the main active metabolite of
the ART derivatives. It is relatively insoluble in water. Its
antimalarial potential is similar to that of oral AS [29]. It can
be given orally as well as by the rectal route. A fxed-dose
formulation with PPQ [30]is currently being used as
a promising new ART-based combination treatment (ACT).
It is the most efective ART compound, has a strong blood
schizonticidal action, and reduces malaria transmission.
Artesunate (AS) is the sodium salt of the hemisuccinate ester
of ART. It is soluble in water as well as in alkaline water but
has poor stability in aqueous solutions at neutral or acidic
pH. AS can be given orally, rectally, or by the intramuscular
or intravenous routes [31]. A combination of MQ and AS is
highly efective in treating multidrug-resistant malaria.
Researchers are continuously working to fnd some new,
potent, and safe antimalarial agents. Several new antima-
larials and/or combinations are in diferent developmental
stages and may be ready for use in the future for malaria
patients (Table 1).

3. The Challenges with Antimalarials

Resistance to antimalarial drugs hampers control eforts and
increases the risk of morbidity and mortality from malaria.
Antimalarial drug resistance has been defned as the ability
of a parasite strain to survive and/or multiply despite the
administration and absorption of a drug given in doses equal
to or higher than those usually recommended but within the
tolerance of the subject [32]. In general, drug resistance
appears to occur through spontaneous mutations in the
target genes of the malaria parasite and is thought to be
independent of the drug used. It may be a single mutation or
multiple mutations. Tese genetic mutations in the genes
responsible for producing the proteins related to the drug’s
parasite target or infux/efux pumps lead to a reduction of
intraparasitic concentrations of the drug. For example,
mutations in the genes encoding the transporters PfCRTand
PfMDR1 are responsible for CQ drug resistance and cross

resistance to closely related drugs. However, the role of
mutations in PfMDR1 in determining the therapeutic re-
sponse following chloroquine treatment remains unclear.
Tere are several other examples, like single-point mutations
in the gene encoding cytochrome b (cytB), which confer
atovaquone resistance, or in the gene encoding dihydrofolate
reductase (dhfr), responsible for pyrimethamine resistance
[33]. Immunity also plays a major role in the emergence and
spread of drug resistance. Even a previously nonimmune
individual develops a specifc immune response to a malaria
infection, and eventually the malaria parasite evades this
response by programming antigenic variation in its main red
cell surface-expressed epitopes. For example, P. falciparum
infects erythrocyte membrane protein 1 (PfEMP1), which is
encoded by the var multigene family and changes in 2-3% of
parasites each asexual cycle. Drug resistance also depends on
transmission in geographical areas, immunity, parasite load,
and the PK-PD properties of the drug. Drugs with long half-
lives, for which resistance is conferred by single-point
mutations, select resistant parasites rapidly. Uncontrolled
use and poor-quality or fake drugs also contribute to the
emergence of resistance [32–35].

4. Important Strategies for Antimalarial
Drug Discovery

4.1. Developing Analogues of Existing Drugs. During the last
two decades, only a few chemical series have been identifed
and are in clinical practice as a new class of antimalarial
drugs, including aminoalcohols (mefoquine, halofantrine,
and lumefantrine), sesquiterpene trioxanes (artemisinin
derivatives), and naphthoquinones (atovaquone)
[13, 36, 37]. Identifcation and lead optimization of a new
chemical series as potent antimalarial have several fnancial,
social, and scientifc hurdles. Tese challenges include
toxicity, cost, and ethical issues [38–40]. On the other hand,
the development of analogues of existing antimalarial drugs
is an important and easy way to design new chemothera-
peutic interventions, which can tackle the above problems to
a greater extent [10, 41]. Te development of trioxanes and
analogues of 4-aminoquinolines are the best examples of this
category [42]. Chloroquine (CQ) analogues synthesized by
linking 4,7-dichloroquinoline with monoalkynes, ferro-
quine, a methalocenic CQ analogue, and 1,2,4-trioxane,
which has a similar nucleus to artemisinin, are in clinical
trials for the treatment of uncomplicated malaria [43–45].

4.2. Analysis of Compounds from Natural Products.
Natural products have been used as traditional medicine for
thousands of years and have contributed to the arsenal of
modern medicine [46–52]. Most of the important and ef-
fcacious antimalarial drugs like atovaquone, artemisinin
(and its semisynthetic derivatives), clindamycin (a derivative
of the natural product lincomycin), erythromycin, and
tetracycline have been identifed from natural resources only
[53–55].

Tere are several hurdles to overcome to develop anti-
malarial drugs from natural products, including moderate
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activity, toxicity, and characterization of physicochemical
and biological properties, and most of the time, the isolation
of a single drug candidate from the crude will lose the
antimalarial potential. However, continuous research is
going on worldwide for antimalarial drug development from
natural products, and some of them are in clinical trials as
well. Te development of Argemone mexicana as a potent
antimalarial is the best recent example of this [56, 57].

4.3. Drug Repurposing. Drug repurposing is an emerging
trend to develop new chemotherapeutic interventions for
many life-threatening diseases like malaria, cancer, tuber-
culosis, and diabetes [58–65]. It is safe, economic, and less
time-consuming to reach the clinical stage as they are al-
ready approved for human use, and most of the clinical,
pharmacological, pharmacokinetics, and pharmacody-
namics information is available.

Several successful eforts have been done in this feld, and
various molecules have been identifed with this approach,
particularly for malaria treatment. Itraconazole (an anti-
fungal agent) [66], atorvastatin (widely used to reduce
cholesterol levels) [67], lopinavir and tipranavir (HIV
protease inhibitors) [68], and the antifungal and anti-
helminthic compound imidazolopiperazine [68] are the best
examples in this context. Tese molecules have been found
to have potent antimalarial activity at diferent stages and
against specifc targets of the malaria parasite.

Moreover, several antibiotics like doxycycline, azi-
thromycin, clindamycin, tetracycline, and fosmidomycin are
in clinical use as combination partners for malaria treat-
ment. One of the most important antimicrobial agents,
sulfadoxine, has the most synergistic antimalarial efects
when combined with pyrimethamine. Several countries have
adopted this combination in their antimalarial policies
[69–71].

4.4. Identifcation of New Drug Targets and Synthesis of Teir
Selective Inhibitors. Identifcation of new drug targets for
antimalarial drug discovery is a major challenge in the
context of multidrug-resistant malaria. Development of
drug resistance against one particular antimalarial also re-
duces the efcacy of closely related drugs called “cross re-
sistance,” which reduces the options for case management to
a greater extent [8, 35, 72, 73]. It is therefore necessary to
identify some new vital targets and develop new pharma-
cophores against these targets [74–76].

Whole-genome sequencing of the malaria parasite
opened new avenues for the identifcation of a new drug
target [77]. Several key pathways and specifc targets like
type II fatty acid synthesis (FASII) [78], apicoplast and its
various pathways [79–81], shikimate pathway [82], enzymes
of the folate pathway [83], and many more from diferent
vital pathways of the malaria parasite are being explored to
identify a safe, vital target and its validation, as well as to

Table 1: Important antimalarial drugs and their developmental stages.

Antimalarial Year of development Developmental phase
Quinine 1820 In clinical use
Chloroquine 1934 In clinical use
Proguanil 1945 In clinical use
Pyrimethamine 1952 In clinical use
Piperaquine 1966 In clinical use
Lumefantrine 1967 In clinical use
Pyronaridine 1967 In clinical use
Mefoquine 1974 In clinical use
Sulphadoxine 1981 In clinical use
Artemisinin 1972 In clinical use
Atovaquone 1991 In clinical use
Artefenomel Under development Phase 1
DSM265 Under development Phase 1
M5717 Under development Phase 1
Meplazumab Under development Phase 1
MMV688533 Under development Phase 1
SAR441121 Under development Phase 1
ZY-19489 Under development Phase 1
Cipargamin Under development Phase 2
DM1157 Under development Phase 2
MMV390048 Under development Phase 2
SJ733 Under development Phase 2
Tafenoquine Under development Phase 2
5-ALA HCl with SFC Under development Phase 2
Artefenomel-ferroquine Under development Phase 2
Imatinib-DHA-piperaquine Under development Phase 2
Methylene blue with artemether and lumefantrine Under development Phase 2
Ganaplacide with LUM-SDF Under development Phase 3
Artemether-lumefantrine Under development Phase 4
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develop some new and safe therapies against these identifed
targets [84, 85].

High-throughput in vitro or virtual screening of
chemical libraries from diferent resources is an emerging
tool for identifcation and lead optimization [86]. Tis ap-
proach is not only valuable to develop a new antimalarial
drug or combination but also its unique action mechanism
will be benefcial to reduce/delay the chances of drug re-
sistance either with existing antimalarial or with newly
developed other candidates [87].

4.5. Identifcation of Resistance-Reversal Agents.
Antimalarial drug resistance is emerging at a faster rate due
to several reasons, like drug abuse, mutations in transporter
genes, and mutations in identifed target genes. Drug dis-
covery is a time-consuming process that is primarily limited
by the duration of lead optimization and clinical trials, their
high cost, and strict regulatory rules. Terefore, it is im-
portant to optimize the existing antimalarials with proper
strategies to reintroduce them into the mainstream.

However, the identifcation of resistance reversal agents
is also a challenging task limited by a lack of action
mechanisms and toxicity. Several resistance reversal agents
have been identifed for most of the traditional drugs like CQ
(verapamil, chlorpromazine, promethazine, chlorphenir-
amine, and citalopram) [88–90], mefoquine, quinine, and
quinidine (NP30) [91, 92].

Drug metabolizing enzymes also play an important role
in declining efcacy and drug resistance. Te excessive
metabolism of traditional drugs like mefoquine, quinine,
and quinidine may lead to reduced bioavailability, thereby
declining the efcacy and inducing the chances of drug
resistance. Inhibition of these drug metabolizing enzymes by
specifc inhibitors can reverse the situation, and the drug
might remain efective. However, toxicity might be a major
concern for these combinations and should be taken into
consideration [93, 94]. Successful research has been done
employing this resistance reversal approach. With the re-
sistance reversal action of ketoconazole for mefoquine [95],
the combination of clarithromycin with mefoquine/qui-
nine/quinidine against multidrug-resistant malaria [93, 96]
has been proved to be benefcial against MDR malaria.

4.6. Combination Terapy. Due to the emergence of drug
resistance towards most of the antimalarial drugs, WHO
bannedmonotherapy formalaria to reduce the chances of drug
resistance. Te rationale behind the combination is that if two
drugs are used with diferent modes of action and therefore
diferent resistance mechanisms, then the probability of de-
veloping resistance to both drugs at the same cell division is the
product of their individual probabilities [97, 98].

Combination therapy with antimalarial drugs is the si-
multaneous or combined use of two or more blood schiz-
ontocidal drugs with independent modes of action. Te
diferent biochemical targets enable the combinations to
improve therapeutic efcacy as well as delay the develop-
ment of resistance to the individual components
[33, 99–101].

Artemisinin-based combinations (ACTs) are recom-
mended as frst-line treatments for uncomplicated falcipa-
rummalaria worldwide.Tese derivatives are fast-acting and
active against diferent stages of the malaria parasite. It is
recommended that the other ACTpartner drug have a longer
half-life due to the shorter half-life of the artemisinin de-
rivatives. Te artemisinin derivatives are eliminated rapidly,
and the partner drugs are eliminated slowly; therefore, there
is complete protection for the artemisinin derivatives
[99, 101].

Moreover, resistance/delayed parasite clearance against
widely used antimalarial combinations, including ACTs,
deteriorates the problem and poses a major threat to the
development of new therapies [102–105].

4.7. Omics-Based Strategy. Multiomics technologies such as
genomics, proteomics, and metabolomics have been widely
used in recent years to provide a more holistic perspective of
biological mechanisms, functional principles, and dynamics
[106]. Omics approaches incorporating high-throughput
technology, automation, and data mining have aided in
a faster, more reliable, and economical understanding of the
molecular pathways and critical proteins required in the
parasite’s life cycle, and hence the pathogenesis of this disease
[107]. Te transition to cell-based phenotypic screening has
been a signifcant advancement in antimalarial drug dis-
covery, with noteworthy improvements in the screening of
compounds against the asexual blood stage, liver stage, and
gametocytes. In vitro development of compound-resistant
parasites followed by whole-genome scanning is a common
strategy for therapeutic target deconvolution in Plasmodium
falciparum [107]. Tis approach has been used to identify or
confrm several of the most promising antimalarial drug
targets, including translation elongation factor 2 (eEF2) and
phenylalanine tRNA synthetase (PheRS). One disadvantage of
this strategy is that if a mutant gene is uncharacterized, it may
take a lot of time and efort to fgure out whether it is a drug
target, a drug resistance gene, or just a background mutation.
As a result, having high-throughput, functional genomic
datasets available can considerably aid target deconvolution.
P. falciparum genome-wide essentiality mapping and tran-
scriptional analysis of the host and parasite during P. berghei
liver-stage infection have discovered potentially druggable
pathways. Te discovery of essential pathways involved in
parasite development has been aided by advances in deci-
phering the epigenomic regulation of the malaria parasite
genome. Furthermore, studying the host genome during
infection has led to the discovery of new gene candidates
linked to severe malaria susceptibility. One of the most
successful omics-based approaches for discovering or redis-
covering numerous specifc novel targets of promising small
compounds has been the forward genetics IVIEWGA (in vitro
evolution and whole-genome analysis) method [108, 109].

4.8. Immunotherapy. Immunotherapy is an emerging and
successful strategy to fght against several diseases, including
malaria and cancer [110]. Checkpoint blockade immuno-
therapy is the most notable immunotherapy of recent times,
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in which monoclonal antibodies (mAbs) are used to break
the interaction between immune inhibitory receptor-ligand
pairs [110]. Tis blocking leads to the facilitation of normal
immune system function, thereby permitting enhanced
immune responses against upregulated ligands. Cytotoxic T-
lymphocyte-associated protein 4 (CTLA4), death 1 ligand 1
(PD-L1), T-cell immunoglobulin, mucin domain-containing
protein 3 (TIM3), OX40, GITR, and CD69 are the main
targets for these mAbs [110].

Recently, one independent preclinical study showed that
a multimeric form of PD-L2 fused with the Fc part of
immunoglobulin (PD-L2-Fc) was sufcient to reduce the
lethal malaria infection and mediate survival following re-
infections after several months without additional PD-L2-Fc
[111]. Combined inhibition of PD-L1 and LAG3 by mAbs
increases the clearance of malaria parasites, facilitates CD4+
Tcell function, and increases antibody titres [112]. It has also
been shown that inhibition of OX40 signaling also increases
helper CD4+ T cells and humoral immunity, thereby in-
creasing parasite clearance during nonlethal malarial in-
fections [113]. Preclinical studies have also shown that
inhibition of CTLA4 or PD-L1 increases Tcell activation and
increases the incidence of cerebral malaria [114].

5. Conclusions and Future Directions

Although a marked reduction in malaria incidence and
mortality has been reported in recent years due to the
introduction of ACTs in antimalarial policy, the develop-
ment of drug resistance against most of the antimalarials,
especially artemisinin derivatives, is an alarming situation.
Te introduction of new drugs/combinations in the anti-
malarial arsenal is an immediate need. Based on resources,
one or more of the strategies discussed above should be
explored for the development of new chemotherapeutic
interventions for malaria. Importantly, the use of genomics
and omics-based methodologies has resulted in signifcant
breakthroughs in the identifcation of novel targets in
protozoan diseases.
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