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The land use and land cover change (LUCC) is one of the prime driving forces of climate change.Most attention has been paid to the
influence of accuracy of the land cover data in numerous climate simulation projects. The accuracy of the temporal land use data
from Chinese Academy of Sciences (CAS) is higher than 90%, but the high-precision land cover data is absent. We overlaid land
cover maps from different sources, and the grids with consistent classification were selected as the sample grids. By comparing the
results obtained with different decision tree classifiers with theWEKA toolkit for data mining, it was found that the C4.5 algorithm
was more suitable for converting land use data of CAS classification to land cover data of IGBP classification. We reset the decision
rules with Net Primary Productivity (NPP) and Normalized Difference Vegetation Index (NDVI) as the indicators. The accuracy
of the reclassified land cover data was proven to reach 83.14% through comparing with the Terrestrial Ecosystem Monitoring Sites
and high resolution images. Therefore, it is feasible to produce the temporal land cover data with this method, which can be used
as the parameters of dynamical downscaling in the regional climate simulation.

1. Introduction

The land cover change, which plays an important role in
the climate system at the global, regional, and local scales,
contributes to the climatic change and variability [1]. With
the progress of the research on the climatic modeling over
the past decade, it has been widely recognized that there is a
more urgent need to accurately characterize the land surface
as the boundary conditions in the climate modeling [2–6].
The precise contribution of the land cover change to the
global climate change remains a controversial but growing
concerned issue. Many land cover data of China have been
produced in recent years with the remote sensing data. The
previous study showed that the result of the precipitation
study would be greatly influenced if the accuracy of land
cover data is under 80%, and the result may be worse as the
accuracy continues to decrease [7]. Unfortunately, neither the
overall nor class-specific accuracy of most datasets can meet
the common requirements of the regional climate modeling.

Therefore, it is necessary to produce the land cover dataset
with high accuracy for the climate simulation based on the
existing land use dataset, land cover datasets, and some
ancillary datasets. These available data with a high level of
uncertainty may be improved by combining the different
data sources so as to meet the requirement of the climate
simulation.

The researches on the climatemodeling vary substantially
in the spatial and temporal scales. So the temporal land cover
datasets are essential to the development of the cohesive
climate model. The Chinese Academy of Sciences (CAS)
has constructed a land use dataset that includes the data
of 1988, 1995, 2000, and 2005 [8–10]. However, there are
still no comparisons of land cover datasets at the regional
scale, especially in China where the land use is changing
drastically due to the rapid economic development and
the anthropogenic disturbance. Many studies have indi-
cated that the disagreement among the land cover datasets
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primarily resulted from the differences in the sensors, spatial
resolutions, algorithms, and classification schemes [11, 12];
among them, the difference in the classification schemes was
considered to be the key reason for the disagreement of the
land cover datasets and the main obstacle to comparing the
data from different land cover datasets [13, 14]. Therefore,
great contribution may be made to climate change research
if we can take full advantage of the long-term land use
datasets from the CAS and use an appropriate method
to convert them to the International Geosphere Biosphere
Programme (IGBP) land cover classification scheme which
consists of seventeen categories (Table 1) and is widely
accepted and used in the simulation of climate changes
[15, 16].

Thedecision tree is one of themost powerful classification
algorithms to classify land cover type of remote sensing
image [17, 18]. The decision tree technique is more suitable
for the analysis of the categorical outcomes. Besides, it is
easy to interpret, computationally inexpensive, and capable of
dealing with the noisy data. Moreover, its predictionmodel is
more understandable to the users. In addition, it can find the
significant high-order interactions quicklywith the automatic
interaction detection, and it can produce more informative
outputs [19–21]. The decision tree classifiers include the
C4.5/C5.0/J48, NBTree, SimpleCart, REPTree, and BFTree,
among which the C4.5/C5.0/J48 classifier is the most popular
and powerful one [22, 23]. The C4.5 classifier was selected in
this study according to the accuracy assessment to identify
the vegetation disaggregation classification in the farming-
pastoral ecotone of North China.

The ecotones are recognized as one of themost important
objects of the ecological research, since they are unstable and
very sensitive to the surrounding environment [24]. Besides,
the ecotones are more suitable for the study of the land cover
mapping for the climate simulation. The farming-pastoral
ecotone has received a lot of attention from the academic
community due to its largest area, longest span, and typical
characteristics [25]. It involves 9 provinces and 106 counties,
with a total area of 654, 564 km2 [26]. The total population
in this area is 3.14 × 107, with the average population
density of 47.9 persons per square kilometer.The land use has
changed drastically throughout the farming-pastoral ecotone
of North China after the widespread and profound economic
reform that was initiated in the early 1980s [27, 28], and
the current ratio of the cropland, forest land, and grassland
is 1.0 : 1.17 : 3.67 (Figure 1). The temperature rise has been
more and more obvious in the past 50 years, with an average
increase rate of 0.4∘C/10a [29].Therefore,more attention shall
be paid to the interaction between the land cover change and
climate change during the control of the eco-environment
degradation in the ecozone.

This article is organized as follows. Section 1 discussed the
significance of the land cover to the climate simulation and
introduced the objectives of this study. Section 2 introduced
the input and reference data, and Section 3 presented the
spatial data mining approach. Section 4 analyzed the results,
along with an evaluation of the accuracy and uncertainty of
the obtained map in comparison with other land cover maps.
Section 5 discussed the findings and concluded.

2. Data Preparation

This paper presents an inference rule of spatial data
mining to distinguish forest types based on the consistent
grids in the data of the International Geosphere-Biosphere
ProgrammeData and Information System (IGBPDIS: https://
lpdaac.usgs.gov/products/modis products table/mcd12q1
[30], Global Land Cover2000 (GLC2000: http://bioval.jrc.ec
.europa.eu/products/glc2000/glc2000.php [31], Multisource
Integrated Chinese Land Cover (WESTDC: http://westdc
.westgis.ac.cn/) [32], and UMD (http://www.landcover.org/)
land cover data in 2000. The classification rule was first
rectified so as to improve the accuracy in 2000. Then the
land use data of 1988, 1995 and 2005 were converted to the
land cover data according to this inference rule.

In this paper, we also used the land use database devel-
oped by the Chinese Academy of Sciences (CAS). The data
are available during four periods, that is, year 1988, year
1995, year 2000, and year 2005. A hierarchical classification
system of 25 land cover classes was applied to the data.
The data team also spent considerable time validating the
precision of the interpretation of TM images and land cover
classification by extensive field surveys (ground validation).
The validation result indicated that the average precision of
the interpretation reached 95% [33]. The 1 km land use map
of China was derived from the 1 : 100,000 land use database.
It includes two kinds of data; one was geocoded with the
greatest-area method (i.e., if a cell has more than one possible
code or it contains two or more polygons, the code of the
polygon with the greatest area in the cell is used). The other
was geocoded with area percentage grid method, in which
each cell can be divided into 25 layers to record the area of
each type [10]. Besides, the vegetation map can provide the
reference information of vegetation since the change of forest
categories is slight in the short term. The vegetation map
of China reflects detailed information on the distribution of
vegetation and includes the horizontal and vertical zones of 11
vegetation groups, 54 vegetation types, 135 biome units, and
796 subbiome units [34].

The mapping of land cover data in 2000 based on the
data mining is a benchmark of the long-term land cover
dataset. It is necessary to collect the ancillary data due to
the absence of other data series. Data of physical geography
include information on terrain slope and information on
vegetation property variability. Information on the terrain
slope and the plain area proportion were derived from DEM
data covering the entire China at the scale of 1 : 250,000.These
data were provided by the Data Center for Resources and
Environmental Sciences Chinese Academy of Sciences. The
meteorological data, including the annual temperature and
annual precipitation, were acquired from China Meteorolog-
ical Bureau. The NDVI dataset came from the Pathfinder
dataset of Earth Resources Observation System (EROS); it
was extracted from the NOAA/AVHRR-NDVI images. The
spatial resolution of the images is 1 km × 1 km, and their
temporal resolution is 15 days. In order to guarantee the
data quality, all the data have all been preprocessed with the
internationally accepted reliable approach [35]. Besides, in
order to eliminate the noise caused by the cloud pollution
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Table 1: Types and descriptions of IGBP land cover classification scheme.

Code Type Descriptions

1 Evergreen needle leaved
forest

Lands dominated by trees with a per cent canopy cover >60% and height exceeding
2m. Almost all trees remain green all year. Canopy is never without green foliage.

2 Evergreen broad leaved
forest

Lands dominated by trees with a per cent canopy cover >60% and height exceeding
5m. Almost all trees remain green all year. Canopy is never without green foliage.

3 Deciduous needle leaved
forest

Lands dominated by trees with a per cent canopy cover >60% and height exceeding
2m. Consists of seasonal needle leaved tree communities with an annual cycle of
leaf-on and leaf-off periods.

4 Deciduous broad leaved
forest

Lands dominated by trees with a per cent canopy cover >60% and height exceeding
2m. Consists of seasonal broad leaved tree communities with an annual cycle of
leaf-on and leaf-off periods.

5 Mixed forests
Lands dominated by trees with a per cent canopy cover >60% and height exceeding
2m. Consists of tree communities with interspersed mixtures or mosaics of the
other four forest cover types. None of the forest types exceeds 60% of the landscape.

6 Closed shrublands Lands with woody vegetation less than 2m tall and with shrub-canopy cover >60%.
The shrub foliage can be either evergreen or deciduous.

7 Open Shrublands Lands with woody vegetation less than 2m tall and with shrub canopy cover
between 10–60%. The shrub foliage can be either evergreen or deciduous.

8 Woody savannas Lands with herbaceous and other understorey systems and with forest canopy
between 30–60%. The forest cover height exceeds 2m.

9 Savannas Lands with herbaceous and other understorey systems and with forest canopy
between 10–30%. The forest cover height exceeds 2m.

10 Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than 10%.

11 Permanent wetlands
Lands with a permanent mixture of water and herbaceous or woody vegetation that
cover extensive areas. The vegetation can be present in either salt, brackish, or fresh
water.

12 Croplands
Lands covered with temporary crops followed by harvest and a bare soil period
(e.g., single and multiple cropping systems). Note that perennial woody crops will
be classified as the appropriate forest or shrubs land cover type.

13 Urban and built up
Land covered by buildings and other man-made structures. Note that this class will
not be mapped from the AVHRR imagery but will be developed from the populated
places layer that is part of the digital chart of the world.

14 Cropland/natural
vegetation mosaic

Lands with a mosaic of croplands, forest, shrublands, and grasslands in which no
one component comprises more than 60% of the landscape.

15 Snow and ice Lands under snow and/or ice cover throughout the year.

16 Barren or sparsely
vegetated

Lands of exposed soil, sand, rocks, or snow and never have more than 10%
vegetated cover during any time of the year.

17 Water bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt water.

and the atmospheric influence, we have also smoothed the
time-series NDVI data with the Savitzky-Golay smoothing
filtering method [36]. The NPP data during 1985–1999 came
from the remote sensing data of NOAA/AVHRR and that
during 2000–2010 came from the NPP product of MODIS.

3. Methodology

Theworking procedure of the classification is as follows. First,
based on the definition of mosaics type, we produced the
cropland/natural vegetation mosaics data using the grid area
percentage dataset in CAS land use system. Then other types
of land use except for forest and woods were achieved by
utilizing grid maximum area mapping with two subclassi-
fication definition between the CAS and IGBP. Thereafter,
we checked out and determined the grids whose types were
consistent with the forest and woods among the WESTDC,

UMD, GLC, and IGBPDIS land cover data; at the same
time we identified the boundary of the forest and woods,
which were consistent with CAS land use, that generated
them into the sample data. Finally, we realized the conversion
of forest types of IGBP scheme with the C4.5 classifier
(Figure 2).

3.1. Mapping the Land Use Types to Determinate the Land
Cover Classification. The land use types were first trans-
formed into the land cover types. It is easy to transform some
land use types, for example, 3 classes of developed andmosaic
lands, 2 classes of artificial lands, and 1 class of water among
the IGBP land cover classification.

It only needs to transform frommany to one or one to one
(Table 2). For example, the paddy land and dry land in the
land use map of CAS are explicit and correspond to the crop-
land class definition in the IGBP, so it only needs to aggregate
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Figure 1: The location and 2000 years’ land use map of farming-pastoral ecotone in North China.

them into cropland with the binary grid. It is more feasible to
judge the land cover classification of cropland/natural vegeta-
tionmosaic with the area percentage grid data of Paddy lands,
dry lands, forest, shrublands, among which no single type
comprises more than 60% of the landscape.The land cover of
cropland/natural vegetation mosaic is mainly located in the
Inner Mongolia, Liaoning, Hebei, Shaanxi, Shanxi provinces,
with a total area of about 730,00 km2 in 2000 (Figure 3). The
8 classes of land cover types including the IGBP10-IGBP17
were transformed, which account for nearly half of the total
land area. In addition, there is a little savanna in China, which
is convenient to judge based on the temperature and land
use type. However, the 8 classes of vegetation (forest, shrubs,

and herbaceous vegetation), the leaf attributes (evergreen and
deciduous), and the leaf types (broadleaved and coniferous)
are difficult to determine because we lack the information of
vegetation.

3.2. Selecting the Spatial Agreement Samples of Vegetation for
Data Mining. The closed forest and other forest classes are
arbor forest classes in land use classifications of CAS.They do
not concretely specify the forest type information. However,
this provides an accurate boundary for the forest; therefore,
we need an inference rule to transform between forest in
the land use classification system and IGBP forest cate-
gories: evergreen needle-leaf forest, evergreen broadleaved



Advances in Meteorology 5

Land use data from CAS Land cover data

C4.5 classifier

WESTDC UMD GLC IGBPDIS

The agreement grids of classification

Export the spatial data to ASCII file

Forest/woodsOther classificationCropland/natural 
vegetation mosaics

Geocoded with area 
percentage grid method

Geocoded with the greatest-area method

Land cover data using IGBP scheme

Mapping

Overlay analysis

Figure 2: The work flow of mapping based on multisource spatial data mining approach.

Table 2: Comparison between the CAS land use classification scheme and IGBP land cover classification scheme.

(a)

Paddy land Dryland Stream and
rivers Lakes Reservoirs

and ponds
Permanent
ice and snow

Beach and
shores Bottomland Dense grass Moderate

grass
IGBP12 f f

IGBP15 f

IGBP17 f f f f f

IGBP10 f f

Note: f stands for match.
(b)

Urban built up Rural settlement Other built up Sandy land Gobi Salina Swamp land Bare soil Bare rock other
IGBP11 f

IGBP13 f f f

IGBP16 f f f f f f

Note: f stands for match.

forest, deciduous needle-leaf forest, deciduous broadleaved
forest, and mixed forest based on the ancillary data in
2000.

The degree of overlap between any two land cover classes
based on the feature definitions of the classification schemes
was used to select the sample grids among the IGBPDIS,
WESTDC, UMD, and GLC data [37]. The degree of agree-
ment for each grid was determined by the overlap metric,
which indicates the feature-based similarity among different
land cover products. If the classes of the two products are
identical or mostly overlapped for a given grid, then the grid
will be assigned a value of 1, which indicates that the two
classes of the different classification schemes completely agree
with each other. Otherwise, the grid will be assigned a value
of 0. Finally, the agreement and disagreement maps will be
created over the entire region, which highlight the areas that
have a high confidence of classification (Figure 4). In other

words, the sample grids could be selected from the agreement
degree maps.

In this study, the method improves the classification
results by further applying the data mining technique and
using the ancillary information. The detailed DEM data,
NDVI, NPP, and meteorological data were utilized as the
ancillary information to separate the vegetation classes,
which have very different ecological characteristics. The veg-
etation types are closely related to the physiographic factors
and meteorological conditions. The topography at every grid
could be described by landform classes (e.g., hill, slope,
depression etc.) by processing the raw elevation data, and the
meteorological data of observation could be interpolated to
1 km grid cell. Therefore, these datasets could be expressed
with the 1 km grid data. The additional information sources
were used to refine the result of the C4.5 classifier. We
overlapped land cover maps and these ancillary data and
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Figure 3: The distribution of cropland/natural vegetation mosaics in 1 km grid all over North China.

sampled the dataset for ASCII text format with the ArcInfo
WorkStation toolkit. Thereafter the dataset for the training
and testing the classifier of data mining in the WEKA toolkit
was constructed.

3.3. Constructing the Classification Method to Identify Vegeta-
tion Types. Many classification methods have been proposed
by researchers in the fields of machine learning, pattern
recognition, and statistics. In this study, we focused on the
classification methods to convert the forest and grassland
classification to the IGBP land cover scheme. In this case,
the hidden and valuable knowledge discovered in the related
ancillary databases was summarized in the decision tree
structure. This classification with the decision tree technique
can be performedwithout complicated computation, and this
method can be used for both the continuous and categorical
variables. We found that the C4.5 classifier achieved the
highest accuracy among these methods for the land cover
identification. The classifier was developed on the basis of
the decision tree learning, which is a heuristic, one-step
lookahead (hill climbing), nonbacktracking search through
the space of all possible decision trees.The specific principles
of this classifier are as follows. First, the initial sample data
were recursively partitioned into subgroups. Then the gain

values of all the attributes of the sample data were calculated,
according to the numerical value of which the attributes used
in the classification were selected. Next, the attribute with
the largest gain value was used in the logical test, and each
test forms a branch, and the subsets of samples (training
data) satisfying the outcomes at the child nodes were moved
to the corresponding child nodes. Thereafter, this process
runs recursively on each child node until the needed leaf
nodes were obtained. Finally, the decision tree was modified
according to the relevant empirical knowledge. The C4.5
classifier is one of the decision tree families that can produce
both decision tree and rule sets; the C4.5 classifier uses
two heuristic criteria to rank the possible tests, that is, the
information gain that uses the attribute selection measure,
which minimizes the total entropy of the subset 𝑆

𝑖
and the

default gain ratio that divides the information gain by the
information provided by the test outcomes. The algorithm of
gain ration is described as the function Gain (𝐴), which was
shown as follows.

(1) The attribute with the highest information gain is
selected.

(2) 𝑆 contains 𝑆
𝑖
tuples of the class 𝐶

𝑖
(𝑖 = 1, . . . , 𝑚). 𝑚

means the number of classification.
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Figure 4: The agreement grids of classification among GLC, UMD, IGBPDIS, and WESTDC.

(3) The information measure or expected information is
required to classify any arbitrary tuple:

𝐼 (𝑆
1
, . . . , 𝑆

𝑚
) = −

𝑚

∑

𝑖=1

𝑆
𝑖

𝑆
log
2

𝑆
𝑖

𝑆
. (1)

(4) Entropy of attribute 𝐴 with values {𝑎
1
, 𝑎
2
, . . . , 𝑎V} was

calculated.

𝐸 (𝐴) =

V

∑

𝑗=1

𝑆
1𝑗
+ ⋅ ⋅ ⋅ + 𝑆

𝑚𝑗

𝑆
𝐼 (𝑆
1𝑗
, . . . , 𝑆

𝑚𝑗
) . (2)

(5) The information gainmeans howmuch can be gained
by branching on the attribute 𝐴:

Gain (𝐴) = 𝐼 (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑚
) − 𝐸 (𝐴) . (3)

The attribute 𝐴 contains the DEM, longitude, latitude,
annual temperature, annual precipitation, NPP, NDVI, and
other ancillary spatial data. We calculated the gain ratio to
select the attributes that can be used to generate the ancillary
information of classification (Table 3). There are about 35396
sample cells of the closed forest and other forest. The gain
ratio for the training dataset was calculated, the biggest
value of which is 0.27, indicating that NDVI-12 is the most
suitable to be the attribute for the forest categories.The forest

was further divided into two subcategories according to the
NDVI-12 and NDVI-3; that is, the forest with the NDVI-
12 reaching 0.53 and NDVI-3 reaching 0.39 was categorized
into the evergreen forest, while the forest with the NDVI-
12 below 0.53 and NDVI-3 below 0.39 was categorized into
the deciduous forest. Although the gain ratio of DEM and
temperature is higher than that of the NPP, it is difficult to
distinguish the forest type according to them. Therefore, we
distinguished the broadleaved, the needleleaved, and mixed
forest according to the NPP. The NPP of the broadleaved
forest was more than 445, and that of the needle-leaved forest
was less than 297, and the forests with the middle NPP value
was categorized into the mixed forest.

The accuracy of different classifiers was compared with
the WEKA toolkit. We reset the decision tree rule using the
NPP and NDVI according to the aforementioned informa-
tion. The WEKA toolkit is a collection of machine learning
algorithms for data mining tasks. It contains tools for data
preprocessing, classification, regression, clustering, associ-
ation rules, and visualization. It is also very suitable for
developing new machine learning schemes.

4. Result and Discussion

4.1. Evaluating the Accuracy of the Land Cover Classification.
Using the method mentioned previously, a Serving Climate
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Figure 5: The transformed land cover map over farming-pastoral ecotone in 2000.

Simulation Land Cover (SCSLC) map was generated with
a decision rule based on multisource spatial data mining
in the farming-pastoral ecotone of North China (Figure 5).
To analyze the characteristics of this map, we compared the
area of each land cover class in this map with other three
popular land cover maps, that is, the WESTDC map, UMD
map, and GLC map. The overall areas of each land cover
class in the four maps were shown according to the same
classification (Table 4). It is notable that the SCSLCmapusing
the C4.5 classifier is similar to the WESTDC map, but there
is remarkable increase in the cropland/natural vegetation
mosaics and the corresponding decrease in grassland.We also
found that the accuracy of the GLC map and UMD map is
lower than that of the SCSLC and WESTDC. The GLC map
ignores the urban and built-up land, and the UMD ignores
the water bodies in the farming-pastoral ecotone of North
China, but the two kinds of land cover types are vital to the
climate simulation.

Throughout the classification process, the accuracy of the
classification maps was assessed by a set of 35396 sample

points selected with the stratified random sampling method;
these sampling points were randomly selected for each of
the classes in the first generated classification map in this
research. For each map, a confusion matrix was created, and
the accuracy was measured. The use of measurements such
as the overall accuracy, Kappa statistics, producer’s accuracy
and user’s accuracy have been quite common and have been
explained in detail in numerous publications. The confusion
matrix is constructed with the land cover data using the
decision rule and the large scale land cover mapping with the
integration of multisource information, which is recognized
as the real data. The result indicated that an overall accuracy
of 88.62% was achieved, which suggested that it gained about
a 17.62% increase in accuracy in comparison to theWESTDC
map (Table 5).

In addition, we drew the Receiver Operating Character-
istic (ROC) curve of each forest classification decision rule
using theWEKA.The true positive rate (sensitivity) is plotted
in the false positive rate (1-Specificity) function for different
cut-off points in the ROC curve. Each point in the ROC
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Figure 6: The ROC curve value of different vegetation class rule.

Table 3:The attribute gain ratio value for constructing decision tree.

Name Gain ratio Rank Description

X 0.03 8 Rectangular coordination of
longitude

Y 0.22 2 Rectangular coordination of
latitude

PA 0.12 6 0.1mm annual precipitation

TA 0.20 3 0.1∘C annual accumulated
temperature

DEM 0.15 4 Elevation
LFM 0.11 7 Landform type

NDVI-3 0.22 2 Normalized differential
vegetation index in March

NDVI-12 0.27 1 Normalized differential
vegetation index in December

NPP 0.14 5 (g C/m2/year) net primary
productivity

curve represents a sensitivity/specificity pair corresponding
to a particular decision threshold. A test with the perfect
discrimination (no overlap in the two distributions) was
carried out on the ROC curve that passes through the upper
left corner (100% sensitivity, 100% specificity). The closer to
the upper left corner the ROC curve is, the higher the overall
accuracy of the test is. The area under ROC curve (AUC) for
evergreen needleleaved forest, deciduous needleleaved forest,
deciduous broadleaved forest, mixed forest, open shrub land,

0
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0.8
0.9

1 2 3 4 5 6 7 8 9 10 11 12

Evergreen needle-leaf forest 
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Closed shrublands
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Figure 7: The NDVI characteristics of different vegetation types.

and closed shrub land were 0.82, 0.91, 0.93, 0.91, 0.85, and
0.85, respectively (Figure 6). The biggest value of AUC was
assigned to the evergreen broadleaved forest, indicating that
the result gained by the evergreen broadleaved forest should
be better than the other four models.

4.2. Validation with the Ground Reference Data. It is difficult
to carry out the validation of the large-scale map for all land
cover types in all regions due to the lack of reference data
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Table 4: Comparison of different classification among the IGBPDIS, SCSLC, WESTDC, and UMD products (unit km2).

Class name WESTDC SCSLC GLC UMD
Evergreen needle leaved forest 13174 11532 19250 9075
Deciduous needle leaved forest 312 4309 25702 10819
Deciduous broad leaved forest 36330 32120 33971 67687
Mixed forests 6680 3434 123 3529
Closed shrublands 7219 4878 16212 24049
Open shrublands 4198 4945 184674
Grasslands 267639 234562 325539 265344
Permanent wetlands 18731 18284 10055
Croplands 195069 161682 163214 7038
Urban and built up 10274 9059 5182
Cropland/natural vegetation mosaic 7419 84276
Barren or sparsely vegetated 47482 46324 29255 48860
Water bodies 11739 10861 2945 9

Table 5: The confusion matrix for the vegetation classification from land use type to land covers scheme.

Class EN DN DB MF CS OS Classified total Number correct Accuracy
Producer’s User’s

EN 87920 452 121 389 9754 8792 90.14 90.86
DN 990 5346 327 213 5985 5346 89.32 84.62
DB 720 72 4783 412 5339 4783 89.59 87.70
MF 7130 448 223 4956 6340 4956 78.17 83.02
CS 3268 123 3391 3268 96.37 89.95
OS 365 4222 4587 4222 92.04 97.17
Ref. total 96760 6318 5454 5970 3633 4345 35396 31367

Overall classification accuracy = 88.62% Overall Kappa statistics = 0.86
EN: evergreen needle leaved forest; DN: deciduous needle leaved forest; DB: deciduous broad leaved forest; MF: mixed forests; CS: closed shrublands; OS: open
shrublands).

that can represent the “true” land cover. Gong performed the
validation of a global land cover map using the ground-truth
sample land cover data from the global flux site [38]. In this
study, the accuracy of the input land use data was high and
had been validated in 2000. So we only needed to validate the
accuracy of the forest type and grassland type. The ground
reference data, which came frommultiple sources such as the
field investigations, Terrestrial Ecosystem Monitoring Sites
(TEMS), and 2 samples from the high-resolution images
obtained via Google Earth, were used to validate the land
cover products (Table 6). The results showed that the overall
accuracy of the SCSLC map was 83.14%, which was much
higher than that of the GLC land cover map (68%) and the
UMD land cover map (52%).

In addition, the temporal characteristics are also very
important to the validation of the information of the vege-
tation type. We compared the temporal NDVI value of the
transformed land cover data to analyze the characteristics
of different forest types. We evaluated the dataset according
to phenological traits of vegetation which are closely related
to the temperature as well as the elevation. The vegetation
dynamics represents some important short-term and long-
term ecological processes. The continuous temporal obser-
vations of the land surface parameters with the satellite can

reveal their seasonal and annual development. In this study,
we used vegetation indices of classified forests to characterize
the state and dynamics of vegetation. In most cases, different
types of vegetation have different phenological patterns. The
NDVI value of the deciduous broadleaved forest is the highest
in the four types of vegetation, and that of open shrublands
is the lowest. The statistical curve from the classified land
cover maps showed that the evergreen land cover had no
remarkable change during the study period. However, the
deciduous forest had a single peak in the sliding curve of
NDVI in a year (Figure 7).Thismay be because the deciduous
broadleaved forests were mainly located in the temperate
zone, while the needleleaved forests were mainly in a cold-
temperate zone or on mountains in a temperate zone.

5. Conclusions and Discussions

The information of the land cover is of great importance to
the research of the global change science. The impacts of
human activities such as the land cover change on regional
and the global climate can be studied with climate modeling
techniques. The land cover datasets, which are often derived
from the remote sensing images, have been widely used to
describe the physical surface conditions in the land surface
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Table 6: The ground sample sites for validation over the farming-pastoral ecotone of North China.

Longitude Latitude Station Land cover types
123.01∘E 51.78∘N Huzhong Temperate coniferous forests
121.56∘E 50.83∘N DaXinAnLing Cold coniferous forests
127.53∘E 45.38∘N MaoErShan Temperate deciduous forest
127.09∘E 42.40∘N ChangBaiShan Temperate mixed forest
119.94∘E 49.33∘N HuLunBeiEr Temperate meadow steppe
116.32∘E 44.13∘N XiLinGeLe Temperate grassland
117.45∘E 43.50∘N XiLinHaoTe Leymus chinensis steppe
115.99∘E 41.27∘N Google earth Evergreen needle leaved forest
115.61∘E 40.60∘N Google earth Temperate mixed forest
111.72∘E 40.61∘N ShaErQin Grassland
124.91∘E 41.82∘N QinYuan Deciduous broad leaved forest

schemes of climate models. But the accuracy of these datasets
is still not high enough tomeet the requirement of the climate
simulation.

This paper has described the significance of the research
on the use of data mining classification techniques for the
land cover classification. The study significantly improved
the vegetation classification accuracy of the land cover in
North China by employing the data mining technique to the
different satellite-derived land cover data of China, higher-
precision land use data, and other ancillary spatial data. By
computing the gain value of attributes for the vegetation
classification, the results showed that the special monthly
NDVI information is the most important, and temperature
was more sensitive to the local land cover changes than
precipitation. The method is used to classify the vegetation
classes such as the closed forest, shrubland, and grassland
with the exclusive spectral feature parameters.

The accuracy of the land cover classification is assessed
by comparing the classification result with some reference
data that is believed to have accurately reflected the true
land cover. In this study, we found that the accuracy of
the C4.5 classifier was 88.96%, which was higher than
others, including NBTree, SimpleCart, REPTree, and BFTree.
Besides, we calculated the confusion matrix and ROC value
of the vegetation classification. The Kappa factor was 0.87,
and the ROC value almost reached 0.90 on the whole, but
the ROC value of the deciduous broadleaved forest was only
0.74. The validation all over China showed that the overall
accuracy of the land cover map was 83.14%, which was higher
than that of other land covermaps andmet the requirement of
the climate simulation for the accuracy over 80%. Therefore,
the results have the potential to improve modeling accuracy
for the land surface processes over China and can be used
as the parameters of dynamical downscaling in the regional
climate simulation.

In summary, the classifier developed in this study can
be used to rapidly convert the high resolution CAS land use
types into the land cover types for the climate simulationwith
the regional climate model. Besides, the time-series NDVI
and NPP data retrieved from the remote sensing data can be
used to rapidly produce the high resolution time-series veg-
etation data and realize the dynamic input of the parameters

of the regional climate model, which can greatly improve the
accuracy of the regional climate simulation. In addition, the
results may provide support to other researches of the land
surface science.
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