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Global atmospheric heat exchanges are highly dependent on the variation of cloud types and amounts. For a better understanding
of these exchanges, an appropriate cloud type classificationmethod is necessary.The present study proposes an alternative approach
to the often used cloud optical and thermodynamic properties based classifications.This approach relies on the application of edge
detection techniques on cloud top temperature (CTT) derived from global satellite maps.The gradient map obtained through these
techniques is then used to distinguish various types of clouds.The edge detection techniques used are based on the idea that a pixel’s
neighborhood contains information about its intensity.The variation of this intensity (gradient) offers the possibility to decompose
the image into different cloud morphological features. High gradient areas would correspond to cumulus-like clouds, while low
gradient areas would be associated with stratus-like clouds. Following the application of these principles, the results of the cloud
classification obtained are evaluated against a common cloud classification method based on cloud optical properties’ variations.
Relatively good matches between the two approaches are obtained.The best results are observed with high gradient clouds and the
worst with low gradient clouds.

1. Introduction

The present study is motivated by the future launch of a new
polar orbit satellite, the global change observation mission-
climate (GCOM-C) carrying a visible and thermal infrared
sensor, the second generation global imager (SGLI). The
objectives of this satellite include the reduction of the Earth’s
radiation budget uncertainty. One of the major factors affect-
ing this uncertainty is the change in cloud type amount [1]. To
quantify such a change, a cloud type classification is needed.
The existence of multiple satellite sensors’ channels provides
good opportunities for these cloud type classifications. In
cloud remote sensing, the most frequently used channels for
cloud classifications are in the visible and the infrared bands.
For the visible bands, one of the most common classifications
relies on the primary cloud property, that is, the cloud optical
depth ([2]; Rossow et al., 2003) to distinguish cloud types.
In the thermal infrared channels, the classifications often use

thermodynamic properties of clouds as derived from split-
window channels [3].

In the present study, a different approach from that often
used in common classifications is proposed. This approach is
based on the cloud top structure contrast. For its implementa-
tion, cloud top temperature (CTT) images derived from satel-
lite thermal infrared observations are used. The CTT images
are translated into visual features with enough contrast to
allow for the distinction of different cloud types. To facilitate
this distinction, edge detection techniques are applied on
the CTT images. To capture and portray the variability of
cloud shapes and appearance in satellite images, a cloud
classification technique is expected to be less computationally
demanding, show better differentiation of boundaries of
varying clouds, use reasonably small agglomeration of cloud
pixels, be robust to noise, maximize the signal-to-noise ratio,
have good localization capacities, and so forth. Segmentation
techniques among which are edge detection methods can be
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Table 1: Concept of cloud type classification using edge detection techniques.

Cloud level Type of cloud
High cloud Cirrus Cirrostratus Deep convection
Mid cloud Altocumulus Altostratus Nimbostratus
Low cloud Cumulus Stratocumulus Stratus

Degree of structuring Structured Nonstructured
(High gradient occurrence) (Low gradient occurrence)

appropriately used to satisfy these conditions. Edge methods
used in the present study could play a prominent role in shape
differentiations compared to region based or pixel based
methods such as the K-means clustering.

Advanced steps in the implementation of segmentation
techniques include some commonly used methods such
as general clustering, simple thresholding, region-growing,
distribution mask, or fixed histograms of gradients. For
instance, in Dalal and Triggs [4, 5], locally normalized
histogram of gradient orientations features is used to study
feature sets for human detection. Sen and Pal [6] use a
bilevel histogram thresholding methodology based on fuzzy
and rough set theories to perform segmentation and edge
extraction on grayscale and gradient magnitude images.
Smith and Brady [7] describe edge and corner detection
and structure preserving noise reduction for low level image
processing. Shashua et al. [8] use fixed subregions to extract
vector features in pedestrian detection. Suard et al. [9] use
histograms of oriented gradients for pedestrian detection
based on infrared images. In this study, fixed histograms of
gradients are mainly used.

In order to match the cloud vertical levels as determined
by a commonly applied cloud remote sensing classification
method (will be used to validate our method), the interna-
tional satellite cloud climatology project (ISCCP), the cloud
top pressure (CTP) data are associated with the CTT-base
images. The CTP helps to divide clouds according to the
atmospheric pressure level (i.e., the altitude at the top of the
cloud) where they occur.Three cloud levels are distinguished
here (high, middle, and low clouds). At each level, the
edge detection technique is used on the CTT images to
determine three cloud types (cirrus, cirrostratus, and deep
convection for the high clouds; altocumulus, altostratus, and
nimbostratus for themiddle clouds; cumulus, stratocumulus,
and stratus for the low clouds). Both, the CTT and CTP
images, are extracted from thermal infrared observations
of the national oceanic and atmospheric administration-
advanced very-high-resolution radiometer (NOAA-AVHRR)
satellite afternoon ascending orbit (2 P.M.) by the pathfinder
atmospheres extended (PATMOS-x) project. These images
are daytime global data with a horizontal spatial resolution
of 0.5 × 0.5 degree.

The choice of the CTT images to conduct this study is
based on the capacity of the CTT tomimic the external shape
of the cloud. A segmentation image technique expressed
through edge detection analyses applied on CTT images
(at each 3 × 3-pixel area) for cloud differentiation uses the

frequency of occurrence of a local gradient histogram to
finally distinguish cloud types. The histogram data size is
expanded to 5 × 5-pixel gradient, in order to minimize noise
contamination and increase higher separations between
clouds.

To conduct the present cloud type classification study, the
paper is organized as follows: subsequent to the introduction,
the image segmentation concept for cloud types’ differen-
tiation will be presented. Then, the classification procedure
will be described. In Section 4, the results and interpretation
of the new cloud classification and the comparisons with a
commonly used classificationwill be discussed.The studywill
end with a conclusion.

2. Image Segmentation Concept for
Cloud Types

Image segmentation techniques permit grouping pixels into
clusters representing prominent areas of the image and
consequently different features.The cluster pixels correspond
to separate individual and meaningful objects the human
can visualize. Commonly used edge detectors are linear
or nonlinear, first or second degree, or a combination of
some of these. In image segmentation applications, various
processing tools are used to detect edges or locate specific
objects based on the radiance gradient of the image. Among
these is the Canny edge detection [10]: it is one of the most
commonly used tools; its implementation includes several
steps among which is the integration of the Sobel edge
gradient, used for the computation of the gradientmagnitude
and direction. The Sobel gradient, obtained from the Sobel
[11] edge detection tool, uses the same number of pixels as
the Prewitt gradient [12] but is more sensitive to diagonal
edges compared to horizontal and vertical edges for the latter.
The Roberts edge detector [13] uses fewer pixels than the
previously cited tools but produces noisier features. All these
edge detectors basically allow for the segmentation of the
image in two major areas: edge and nonedge.

In this study nonlinear, first-degree, and second-degree
detectors are tested and applied onCTT images for cloud type
differentiation. The concept underlying the cloud types’ dif-
ferentiation proposed in this study is summarized in Table 1.
In this table, clouds are separated into three pressure levels
based on the CTP: high, middle, and low clouds. At each
cloud level, the cloud external morphology will vary from
structured to nonstructured clouds.The structured clouds are
areas of high gradient while nonstructured clouds are areas
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Figure 1: Edge distribution among the different cloud types. 1:
cirrus, 2: cirrostratus, 3: deep convection, 4: altocumulus, 5: alto-
stratus, 6: nimbostratus, 7: cumulus, 8: stratocumulus, and 9: stratus.
The graph shows that the cirrus, altocumulus, and cumulus clouds
are more likely to have edges than the other types of clouds. This
histogram is based on NOAA-AVHRR CTT satellite images of the
Globe at a spatial resolution of 0.5 degree.The gradients fromwhich
the cloud types are derived are associated with the corresponding
areas of cloud top pressure images and matched with the cloud type
classification map of a commonly used method in cloud remote
sensing, the ISCCP method (based on the cloud optical depth and
the cloud top pressure). The more edges exist in a specific area, the
more the cloud encountered is structured.

of low gradient. High gradient areas are made of cumulus-
like clouds (cirrus, altocumulus, and cumulus), low gradient
areas are made of stratus-like clouds (deep convection, nim-
bostratus, and stratus), and intermediate gradient areas are
made of intermediary clouds (cirrostratus, altostratus, and
stratocumulus). Though, strictly speaking, cirrus clouds may
be lacking structure, their limited spatial continuity (also
CTTdiscontinuities) gives them the appearance of structured
clouds on the CTT image. The more edges exist in a specific
area, the more the cloud encountered is structured. Based on
this concept, by using NOAA-AVHRR CTT derived satellite
images of the Globe at a spatial resolution of 0.5 × 0.5 degree,
the likelihood of edge occurrence for all cloud types based on
an edge detectionmethod (e.g., Sobel) for 3 × 3 array of pixels
can be calculated as the gradient by

𝐺
𝑥
=

1

8

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−1 0 +1

−2 0 +2

−1 0 +1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐺
𝑦
=

1

8

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+1 +2 +1

0 0 0

−1 −2 −1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐺 = √𝐺
𝑥
2 + 𝐺
𝑦
2 ,

(1)

where 𝐺
𝑦
and 𝐺

𝑥
are the cloud top temperature gradients,

respectively, in the 𝑦 and 𝑥 directions and 𝐺 is the final
gradient.

This gradient is associated with the corresponding area of
cloud top pressure andmatched with the results of cloud type
classification data commonly used in cloud remote sensing,
the ISCCP method (based on the cloud optical depth and
the cloud top pressure). As shown in Figure 1, the number
of edges within each cloud level (low, middle, and high)
drastically diminishes from the ISCCP identified, cumulus-
like clouds (cirrus, altocumulus, and cumulus) to the stratus-
like clouds (deep convection, nimbostratus, and stratus).

For example the most structured clouds in Figure 1 are 7:
cumulus, 4: altocumulus and 1: cirrus. These clouds have the
highest number of edges in their respective cloud levels. The
groups are represented on the figure by numbers: 9, 8, and 7
for low clouds, 6, 5, and 4 for middle clouds, and 3, 2, and 1
for high clouds. Because of their altitude in the atmosphere,
the total number of edges will decrease from high clouds
to low clouds (more edges in the former than in the latter).
Consequently, when using an edge method to distinguish
clouds, we will need different edge threshold for each cloud
level.

3. Classification Procedure

Morphologies of objects observed by remote sensing instru-
ments can be extracted by using properties of the edges of
the pixels of the imagery representing those objects. In this
study, our focus is the shape of objects describing clouds, as
obtained through the CTT images. The fundamental issue
to deal with in this study is how to translate visual changes
in CTT images to cloud features, significantly representative
of different cloud types (see Introduction). The gradient
concept presented in the previous section is implemented
here.The initial step of this implementation is the calculation
of the gradient magnitude representing the change in the
CTT function of neighboring pixels of the image (e.g., the
Sobel gradient calculation shown in the previous section).
The calculated gradient map will undergo thresholding, in
order to separate important features of the image at each
cloud atmospheric pressure level (high,middle, and low).The
thresholds applied are determined from the histogram distri-
bution of CTT gradients of the image. Different thresholds
will be applied to different cloud levels. Higher thresholds for
the high clouds, medium for the middle clouds, and low for
the low clouds.

A certain number of gradient operators using small
arrays of pixels were tested in this study, in order to check
their capacity to properly detect significant and meaningful
boundaries between different CTT and cloud types even-
tually. This capacity is visually tested against direct CTT
images. Among the detectors applied are the Canny, Roberts,
Sobel, and Kayyali SENW (will be named from now on
SENW) edge detectors, as well as the Harris corner and edge
detector. The Roberts edge detector employs mainly 2 pixels
in a 2 × 2 matrix for each computing direction (horizontal
and vertical). The test conducted shows a lesser sensitivity
to edges; that is, the variation range of gradients is limited
compared to the other methods. The Canny method uses
a 5 × 5-pixel matrix that undergoes preliminary filtering
before the use of a smaller-array gradient detector, making
the calculation procedure longer. The Sobel detector uses
a 3 × 3 matrix where 6 pixels practically contribute to the
gradient. The SENW edge detector is based on the Sobel
approach for edge detection but employs mainly the 4 corner
pixels (upper, lower, left, and right) in a 3 × 3-pixel matrix
the remaining 5 pixels between the corners are set to zero.
The Harris detector detects both edges and corners. It is
a second-order derivative obtained from the calculation of
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Figure 2: Detection of edges and corners by the Harris (a), SENW (b), and the Sobel (c) edge detectors; the colored CTT image (d) for
visual comparison with the edge detectors. On the edge detectors images, the purple background represents nonmaxima or nonedges and
the remaining colors represent maxima or edges and corners.

the Sobel gradients in the 𝑥 and 𝑦 directions then, the gra-
dient covariance matrix 𝐺 [14]:
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where 𝐼
𝑥
and 𝐼
𝑦
denote the image gradients in the 𝑥 and 𝑦

directions and 𝐼
𝑥
𝐼
𝑦
denotes the sum of gradients in the 𝑥 and

𝑦 directions.
The corner response 𝑅 is expressed as [15] the ratio of the

matrix determinant det(𝐺) over the trace tr(𝐺):

𝑅 =

det (𝐺)
tr (𝐺)
. (3)

Edges will have a negative 𝑅 value, while corners and
interior points will have a positive 𝑅 value. In the latter case
(positive 𝑅), interior points will have a very small 𝑅, while
corner points will have higher 𝑅.

Due to their superior sensitivity to cloud detection, three
methods (Sobel, Harris, and SENW detectors) among those
cited above were selected, and their performance for cloud
edges differentiation was tested on global images CTT maps
obtained from NOAA-AVHRR satellite. Figure 2 presents
the visual comparison between the results of these edge
detectors using the CTT data and the latter colored image.
This comparison shows that among the three detectors,

the Harris detector seems to better represent corners and
edges seen on the colored CTT cloud image than both the
Sobel and the SENW detectors, but the density of these
edges is lower than that of the latter detector. The Sobel
misses some edges especially at the southern pole and at the
boundary towards the northern pole (60N latitude). In the
following step of our analysis, the results from these three
detectors are compared to the results of the ISCCP cloud
classification. Before this, let us first describe the detection
steps for the cloud classification using these edge detectors.
The flowchart in Figure 3 illustrates this description. It shows
that the determination of the gradients is first made and
then the histogram of gradients is calculated on each 5 × 5-
pixel-gradient area. The midfrequency of the histogram will
determine the type of cloud encountered. To determine
this midfrequency, adaptive thresholding techniques are
employed, that is, specific thresholds at each CTP (<440mb
for high clouds, 440–680 for middle clouds, and >680mb for
low clouds) predetermined level. For each CTP level, there
are 2 thresholds permitting the separation of high gradients
from middle gradients (threshold 1) and then middle gra-
dients from low gradient areas (threshold 2). Plane surfaces
are likely to be stratus-like clouds while nonplane surfaces
would mostly be cumulus-like clouds. The 50th percentile
(midfrequency) of the histogram of gradients obtained at
each pressure level will determine the cloud type at that level.
If the 50th-percentile gradient of the 5 × 5-gradient matrix is
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Figure 3: Flow chart of the thermal image segmentation for cloud type morphology differentiation based on the histogram CTT gradient
method.

in the high gradient bracket, the central pixel is a cumulus-
like cloud type (cumulus, altocumulus, and cirrus). If it is
in the low gradient bracket, the central pixel is a stratus-like
cloud type (stratus, nimbostratus, and deep convection). If
it is in the intermediate gradient bracket, the central pixel
is in the intermediary cloud type (stratocumulus, altostratus,
and cirrostratus). We therefore distinguish three cloud types
at each pressure level, as in the cloud optical properties
based classification of the ISCCP [2, 16]: the high clouds
are cirrus (Ci), cirrostratus (Cs), and deep convection (Dc);
the middle clouds are altocumulus (Ac), altostratus (As),
and nimbostratus (Ns); the low clouds are cumulus (Cu),
stratocumulus (Sc), and stratus (St).

4. Results and Interpretation

The image segmentation technique applied on satellite CTT
global images, described in this study, is used to differentiate
cloud morphologies. The interpretation of these morpholo-
gies helps to obtain cloud types. As stated in the previous
section, three edge detection methods were selected (Sobel,
Harris, and SENW) and their capacity to detect important
changes (edges) in CTTwas assessed. Between the 3methods
used, the results of the cloud type spatial distribution are
nearly similar: cirrus clouds dominate around the equator
and most continental areas; cumulus and stratocumulus

clouds are mainly visible in the ocean areas; stratus clouds
mostly occur in the eastern part of the South Pole. All the
3 methods were tested in different weather conditions and
seasons. The closest cloud classification to that of the ISCCP
was obtained from the SENW based classification (2-3%
higher matching rate than the Harris, which is better by 1.5–
2% than the Sobel). Almost similar differences were obtained
for these tests on images at all seasons. Figure 4 shows the
comparison of the results obtained with the selected method
against the CTT global image of January 1, 2006. The cloud
type pattern exhibited by this method (named here CTT
gradient method) appears quite close to that of the ISCCP.
Many clouds in the southern hemisphere midlatitude tend to
have an NW-SE orientation, contrary to the northern hemi-
sphere midlatitude where the NE-SW orientation appears to
dominate and the southern pole showingmainly E-W clouds.
Cirrus/cirrostratus clouds are dominant near the equator,
while nimbostratus and stratus are the main clouds near
the South Pole, and cumulus/stratocumulus clouds are at
midlatitude areas.

A detailed evaluation of the performance of this method
(Figures 5 and 6) against the cloud optical depth based
method from the ISCCP is discussed below. Figure 5 presents
a qualitative evaluation of these results for a winter day
(January 1), a spring day (April 2), and a summer day
(September 3) of the year 2006. The figure shows that the
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Figure 4: Cloud type classification using the cloud top temperature (CTT) gradient image segmentation algorithm (left) compared to the
CTT colored image (in degree-K). 1: cirrus, 2: cirrostratus, 3: deep convection, 4: altocumulus, 5: altostratus, 6: nimbostratus, 7: cumulus, 8:
stratocumulus, and 9: stratus.
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Figure 5: Cloud type classification using the thermal image segmentation method based on cloud top temperature (CTT) gradient
classification (a) compared to the cloud type classification using the ISCCP classification method (b) for spring and end of summer (April
2 and September 3, 2006, resp.). 1: cirrus, 2: cirrostratus, 3: deep convection, 4: altocumulus, 5: altostratus, 6: nimbostratus, 7: cumulus, 8:
strato-cumulus, and 9: stratus.
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Figure 6: Comparative histograms for January 1, 2006, of the cloud type frequency obtained from the cloud top temperature (CTT) gradient
classification a, b and the ISCCP classification method (a) the matching rate for each cloud type (b) and each region (c). 1—Ci: cirrus, 2—Cs:
cirrostratus, 3—Dc: deep convection, 4—Ac: altocumulus, 5—As: altostratus, 6—Ns: nimbostratus, 7—Cu: cumulus, 8—Sc: stratocumulus,
and 9—St: stratus. All: all areas.

cloud distribution pattern between the two methods is quite
closewith the best apparentmatches atmid-structured clouds
while more differences appear with the stratus-like clouds
(blue, green, and red, respectively, corresponding to deep
convection, nimbostratus, and stratus). At the spatial level,
the southern pole shows apparent good matches. This is due
to the strong occurrence of mid-structured clouds in this
area. Land areas showed better matches than the ocean areas.
Substantial differences mostly occur with deep convection,
altocumulus and stratus clouds, where the edge detection
method underestimates the frequency of these clouds. These
clouds are mostly low gradient clouds and, because of the low
resolution of the CTT images used, the spatial contrast is not
good enough to efficiently separate these clouds from the rest
of the clouds. Some other differences are visible in the South
Pole with the detection of less stratus clouds (red on Figure 5)
in the CTT gradient method. There are more cumulus
(yellow) and fewer stratocumulus (orange) clouds between
30 and 60N latitudes (January 1, 2006). The frequency and
distribution of the cloud types obtained by the CTT gradient
method, from one of the representative CTT images, Jan 1,
2006 (Figure 5) show the following: high clouds: cirrus (7%),

cirrostratus (15%), and deep convection (1%); middle clouds:
altocumulus (3%), altostratus (19%), and nimbostratus (10%);
low clouds: cumulus (23%), stratocumulus (20%), and stratus
(2%). Figure 6 presents the comparative histogram of the
cloud types’ distribution between the CTT gradient method
and the ISCCPmethod and theirmatching rate for each cloud
type and for each major region. The CTT gradient method
tends to underestimate the number of stratus-like clouds in
favor of the other types of clouds.This is due (as stated before)
to the relatively poor radiometric resolution of the CTT
images and the presence of many gaps (black background) in
the initial CTT image.Thematching rate is the lowest among
these clouds, mostly less than 50%. The areal distribution
shows that land areas produce better matches than the ocean
areas.The regional distribution shows that except for the 60–
90N latitude area, where there are very few data, the lowest
matching rate is in the 0–30S latitude region. This is due
to the relatively large presence of deep convection clouds
(dark blue in Figure 5) in that area. The CTT gradient shows
considerable difficulties in the detection of these types of
clouds. Overall, monthly average global cloud distributions
gave relatively good agreements between the twomethods (60
to 70%) for the year 2006.
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5. Conclusion

An alternative cloud type classificationmethod to commonly
used cloud remote sensing methods is proposed in this
study. This classification is based on the application of
edge detection techniques on CTT global images. Areas
of high gradient correspond to cumulus-like clouds, while
low gradient areas are mostly associated with stratus-like
clouds. Various gradient operators using small arrays of
pixels are tested, in order to check the detection capacity of
important boundaries between differentCTT and cloud types
eventually. This capacity is visually tested against direct CTT
images. The detectors applied include the Canny, Roberts,
Sobel, and SENW edge detectors, as well as the Harris corner
and edge detector. This detector list is narrowed to three
after preliminary tests. The method that detected the most
edges gave the best results in the final cloud classification.The
validation of these methods is made through a comparison
with a commonly used cloud remote sensing method, the
ISCCP method (based on the cloud optical properties). The
closest cloud classification to that of the ISCCP is obtained
from the SENW based classification with around 3% and
5% higher matching rate than the Harris and the Sobel
methods, respectively. The success rate of the best method is
not seasonally dependent as the differences with the ISCCP
method are almost similar at any time of the year. And, in
general, there are relatively goodmatching rates of about 60 to
70%. Among the cloud types, the best matches were obtained
with the mid-structured clouds, while the lowest were with
the stratus-like clouds. At the spatial level, the southern pole
showed the best matches as in this area there is a strong
occurrence of mid-structured clouds (more easily detectable
by the edge gradient method). Land areas showed better
matches than the ocean areas.TheCTTgradientmethodused
may be refined and additional edge detectors tests could lead
to the improvement of the results obtained.
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