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Missing data is an inevitable problem when measuring CO
2
, water, and energy fluxes between biosphere and atmosphere by eddy

covariance systems. To find the optimumgap-fillingmethod for short vegetations, we review three-methodsmean diurnal variation
(MDV), look-up tables (LUT), and nonlinear regression (NLR) for estimatingmissing values of net ecosystemCO

2
exchange (NEE)

in eddy covariance time series and evaluate their performance for different artificial gap scenarios based on benchmark datasets
from marsh and cropland sites in China. The cumulative errors for three methods have no consistent bias trends, which ranged
between −30 and +30mgCO

2
m−2 from May to October at three sites. To reduce sum bias in maximum, combined gap-filling

methods were selected for short vegetation. The NLR or LUT method was selected after plant rapidly increasing in spring and
before the end of plant growing, and MDV method was used to the other stage. The sum relative error (SRE) of optimum method
ranged between −2 and +4% for four-gap level at three sites, except for 55% gaps at soybean site, which also obviously reduced
standard deviation of error.

1. Introduction

Eddy covariance technique to measure CO
2
, water, and

energy fluxes between biosphere and atmosphere is widely
spread and used in various regional networks [1]. At present,
over 600 tower sites are operating on a long-term and
continuous basis around the world, covering different cli-
mate conditions and land use and land cover changes,
some of them running continuously for more than 10 years
(http://fluxnet.ornl.gov/). However, missing or rejected data
in these measurements is a unavoidable problem due to
equipment failures (system/sensor breakdown), maintenance
and calibration, spikes in the raw data, and physical and
biological constraints (e.g., storms, hurricanes, and nonop-
timal wind directions) [2]. In general, about 17–50% of the
observations in net ecosystem CO

2
exchange (NEE) are

reported as missing or rejected at FluxNet sites [3]. The gaps
in observed data cause at least three problems: (1) difficulty in

annual estimation of NEE, (2) biased relationships between
NEE with climatic variables, and (3) low quality data for
modeling validation [2].

To accurately calculate annual values of NEE at sites,
gap-filling to account for the missing data is imperative. The
commonly used methods for filling missing data include
mean diurnal variation (MDV) [3], look-up table (LUT)
[3], nonlinear regression (NLR) [3–5], marginal distribution
sampling [6], multiple imputation model [7], artificial neural
network [8–11], and terrestrial biosphere model [12]. This
diversity hinders synthesis activities because the biases and
uncertainties associated with each technique are unknown
[13, 14].

In a comprehensive study, Falge et al. [3] compared three
methods including MDV, LUT, and NLR on the annual sum
of NEE for 28 datasets from 18 FluxNet sites and found that
the differences in annual NEE estimation by different gap-
filling methods ranged from −45 to 200 gCm−2 per year.
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Their study also emphasized the importance of the method
of standardization during the data postprocessing phase, so
comparable data can be obtained to address intercompar-
isons across different ecosystems, climatic conditions, and
multiple years. Richardson and Hollinger [15] quantified the
uncertainties in annual NEE with a simple model using
data assimilation techniques that are due both to random
measurement error and to gap filling, including the addi-
tional uncertainty that can be attributed to long gaps and
the relationship between gap length and uncertainty in NEE.
The CO

2
flux data come from a coniferous, two deciduous,

two mixed species, and two mediterranean sites. Moffat et
al. [9] reviewed 15 techniques for estimating missing values
of NEE in eddy covariance time series and evaluate their
performance for different artificial gap scenarios based on a
set of 10 benchmark datasets from six forested sites in Europe
which is the same with Richardson andHollinger [15]. Papale
et al. [2] introduced a new standardized set of corrections and
assessed the uncertainties associated with these corrections
for eight different forest sites in Europewith a total of 12 yearly
datasets.

However, most comparison works about gap-filling
methods were objected to tall vegetation, that is, forests. Less
research focused on short vegetation, that is, croplands or
marshlands. The vegetation structure for short vegetation
changes more rapidly in the growing season, which may
affect ability of gap-filling methods. So, it is important to
evaluate the performance of gap-filling methods and search
the optimummethods for short vegetation.

In this study, we reviewed three methods (MDV, LUT,
and NLR) and applied the techniques to a set of benchmark
datasets from marshland and croplands (rice and soybean)
in China. Artificial gaps were added to observed NEE time
series based on Falge et al. [3], and the ability of different gap-
filling techniques to replicate the missing data was evaluated
using statistical analysis. The objective of this paper is to find
the optimummethod for short vegetation.

2. Methods

2.1. Data Basis. For this analysis, we used half-hourly eddy
flux measurements of the net ecosystem exchange of CO

2

from three different ecosystem types. As case studies, we
chose CO

2
flux data from May to October in 2005 from

marshland and agriculture (rice and soybean cropland) sites
in the Sanjiang Plain. The marshland site locates at (47∘35󸀠N,
133∘31󸀠E), the field areas are approximately 105 ha. The rice
and soybean site locate approximately 1.5 km west and 500m
north to the marshland, respectively. The field areas are
approximately thousands of hectares for rice site and 25 ha for
soybean site. The altitude is 55.4–57.9m. The more detailed
information is available in Zhao et al. [16].

The EC system consisted of a triaxial sonic anemometer
(CAST3, Campbell Scientific, USA) and a fast response
open-path CO

2
/H
2
O infrared gas analyzer (Li-7500, LiCor

Inc., USA). The meteorological parameters including air
humidity and air temperature, wind speed, precipitation, soil
temperature, andwater content weremeasured [16]. Raw data
acquired at 10Hz were processed using the postprocessing,

Table 1: Percentages of original gaps in NEE measurements.

Flux site Daytime Nighttime All time
𝑁 Gap (𝑃%) 𝑁 Gap (𝑃%) 𝑁 Gap (𝑃%)

Marsh site 4583 18.4% 2953 36.2% 7536 25.4%
Rice site 4804 12.4% 3212 26.7% 8016 18.2%
Soybean site 4804 15.0% 3212 28.7% 8016 20.5%
The 𝑁 is the total number of data for daytime, nighttime, and all the time.
The 𝑃% is the percentage of gaps for daytime, nighttime, or all the time.

Table 2:Thenumber and percentage of friction velocity (𝑢∗) filtered
data in artificial datasets.

Flux site 𝑢

∗ correction
35% gap 45% gap 55% gap 65% gap

Marsh site — 3.3% 6.6% 10.7%
Rice site 2.9% 7.0% 10.8% 13.5%
Soybean site 2.1% 5.6% 8.6% 13.5%

including spike removal, frequency response correction [17],
sonic virtual temperature correction [18], the performance
of the planar fit coordinate rotation [19], and corrections for
density fluctuation (WPL correction) [20].

The quality control of the half-hourly flux data was
carried out as follows: (i) data from periods of sensor
malfunction were rejected (e.g., when there was a faulty
diagnostic signal), (ii) data within 1 h before or after pre-
cipitation were rejected, (iii) incomplete 30min data were
rejected when the missing data constituted more than 3%
of the 30min raw record, and (iv) data were rejected when
the value was larger than mean ± 3 standard deviation. The
information of original gaps inNEEmeasurements is showed
in Table 1. The gap percentages in all time were 25.4%, 18.2%,
and 20.5% at the marsh, rice, and soybean site, respectively.
Gap percentages at nighttime (ranging from 26.7% to 36.2%)
were slightly higher than at daytime (ranging from 12.4% to
18.4%) (Table 1).

For this comparison, four artificial datasets were created,
containing 35%, 45%, 55%, and 65% of gaps [3]. Based on
random function RAND, sets of data with random distribu-
tion were generated. The random dataset corresponded to
the dataset of NEE measurements except for original gaps.
According to the difference from the number of artificial gaps
to original gap, a range of certain numbers were selected
from a set of random data, then a new gap was generated
by deleting corresponding the NEE dataset. Starting from the
original gap percentage, artificial gaps were created separately
for daytime and nighttime, until the dataset contained a given
percentage of gaps at both daytime and nighttime [3]. To
avoid underestimation of CO

2
flux during calm conditions

at night, the friction velocity (𝑢∗) was applied at nighttime
[21, 22]. The data were rejected at night when the 𝑢∗ was
below 0.10ms−1. Due to the percentage of 𝑢∗ filtered data
was about 10% at three sites, which caused high percentage
of original gaps at nighttime. Therefore, the 𝑢∗ correction
was applied to artificial data instead of original data. The
percentage of 𝑢∗ filtered data ranged from 2.1% to 13.5% in
different percentages of artificial datasets (Table 2).
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Figure 1: Seasonal variation of the parameters inMichaelis–Menten functions at (a) marsh, (b) rice, and (c) soybean sites.

After introducing artificial gaps for each of the four
datasets, the respective gap-filling methods were param-
eterized with the remaining data and applied to fill the
artificial datasets. The gap-filling error was calculated using
the observed fluxes in these artificial gaps to validate the
predictions of each filling technique.

2.2. Filling Methods. Three gap-filling methods were applied
here, including mean diurnal variation (MDV), look-up
tables (LUT), and nonlinear regression (NLR) methods.

2.2.1. Mean Diurnal Variation. MDV is an interpolation
technique where the missing NEE value for a certain time
period (half-hour) is replaced with the averaged value of the
adjacent days at exactly that time of day. Data windows of
7 days during daytime and 14 days during nighttime were
chosen for averaging in the application.

2.2.2. Look-Up Tables. In a look-up table, the NEE data are
binned by variables such as light and temperature presenting
similar meteorological conditions, so that a missing NEE
value with similar meteorological conditions can be “looked
up” [3]. Tables were created to represent changing environ-
mental conditions based on monthly period, using the pho-
tosynthetic photon flux density- (PPFD-) air temperature-
(Ta-) sort during day, and the relative humidity- (RH-) Ta-
sort during night. For look-up tables the average NEE was
compiled for six monthly periods ∗ 11 PPFD-class ∗ 36

Ta-classes. The PPFD-classes consisted of 200 𝜇molm−2 s−1
intervals from 0 to 2000𝜇molm−2 s−1. Similarly, Ta-classes
were defined through 1∘C intervals ranging from −5∘C to
31∘C. For night day, average NEE was compiled for six
monthly periods ∗ 8 RH-classes ∗ 19 Ta-classes. RH-classes
range from 20% to 100% with 10% intervals, and Ta-classes
were the same as the daytime.

2.2.3. Nonlinear Regression Methods. The nonlinear regres-
sions are based on parameterized nonlinear equations which
express (semi-)empirical relationships between the CO

2
flux

and environmental variables such as temperature and light.
For filling daytime gaps, the light response function of

Michaelis–Menten [3, 23] was selected as follows:

NEE = Re−
𝛼 ⋅ PPFD ⋅ 𝐹GPP,sat
𝐹GPP,sat + 𝛼 ⋅ PPFD

, (1)

where NEE is the net ecosystem exchange (mgCO
2
m−2 s−1)

and Re is the ecosystem respiration rate (mgCO
2
m−2 s−1)

during the day. PPFD is the photosynthetic photon flux
density (𝜇molm−2 s−1), and 𝛼 is the ecosystem quantum
yield (mgCO

2
𝜇mol−1 quantum). 𝐹GPP,sat is the gross primary

productivity at “saturating” light (mgCO
2
m−2 s−1). The light

response function was fitted with window sizes of 15 days
from June to middle September, and the seasonal variation
of parameters was showed in Figure 1. The parameters in
Figure 1 were calculated according to original NEE datasets
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before artificial gap introduction. The 𝐹GPP,sat at the rice
and soybean sites ranged from 0.17 to 2.0mgCO

2
m−2 s−1,

which were larger than that at the marsh site (from
0.04 to 0.7mgCO

2
m−2 s−1). The Re ranged from 0.05 to

0.37mgCO
2
m−2 s−1 at all three sites, which were lower than

the 𝐹GPP,sat. The correlation coefficients (𝑅2) of observed
and simulation value during this period were 0.69, 0.83,
and 0.81 (𝑃 < 0.01) at the marsh, rice, and soybean sites,
respectively. For each artificial dataset, the parameters in
Michaelis–Menten function were recalculated and applied to
artificial gaps.

The net ecosystem CO
2
exchange (NEE) at nighttime

represents the ecosystem respiration (𝑅eco) because of no
photosynthesis. The ecosystem respiration (𝑅eco) is con-
ceptualized to consist of soil respiration, 𝑅

𝑠
, and above-

ground component attributed to the respiration by various
plant components, 𝑅

𝑝
. For nighttime NEE, the temperature

response function was selected based on Wohlfahrt et al.
[24]:

𝑅eco = 𝑅𝑠 +𝑅𝑝

= 𝑅

𝑠,𝑇ref
⋅ exp [

𝐸

𝑠

𝑅 ⋅ 𝑇ref
(1−
𝑇ref
𝑇

𝑎

)]+𝐿 ⋅ 𝑅

𝑝,𝑇ref

⋅ exp [
𝐸

𝑝

𝑅 ⋅ 𝑇ref
(1−
𝑇ref
𝑇

𝑎

)] ,

(2)

where 𝑅eco is ecosystem respiration at nighttime
(mgCO

2
m−2 s−1), which includes soil respiration (𝑅

𝑠
)

and plant respiration (𝑅
𝑝
). 𝑅
𝑥,𝑇ref

is the respiration rate
(mgCO

2
m−2 s−1) at a reference temperature (𝑇ref ), the

reference temperature is 10∘C, and 𝐸
𝑥
denotes an activation

energy (Jmol−1), the subscript of 𝑥 as 𝑠 represent to the
soil components, and the subscript of 𝑥 as 𝑝 represent
to the plant components. 𝑅 is the universal gas constant,
8.314 Jmol−1 K−1. 𝑇

𝑎
is air temperature (∘C), and 𝐿 denotes

leaf area index. The respiration function was fitted for the
whole growing season, whose parameters were showed in
Table 3. The parameters in Table 3 were calculated according
to original NEE datasets before artificial gap introduction.
For each artificial dataset, the parameters in temperature
response function were recalculated and applied to artificial
gaps.

2.3. Error Assessment. To assess the applicability of a standard
data filling method at three sites, we examined the potential
bias error associated with each method. The bias errors for
different methods were calculated as the observed value
minus the predicted value for each gap level. For daytime
carbon uptake, a positive error therefore indicates an over-
estimation and a negative error in underestimation by the
respective method.

The statistical sums were calculated using the individual
observed NEE data 𝑜

𝑖
and the predicted value 𝑝

𝑖
, mean bias

error (MBE), mean absolute error (MAE), and sum relative
error (SRE) were as follows:

MBE = 1
𝑁

∑(𝑜

𝑖
−𝑝

𝑖
) ,

MAE = 1
𝑁

∑

󵄨

󵄨

󵄨

󵄨

𝑜

𝑖
−𝑝

𝑖

󵄨

󵄨

󵄨

󵄨

,

SRE =
∑𝑜

𝑖
− ∑𝑝

𝑖

∑𝑜

𝑖

.

(3)

3. Results

3.1. Frequency of Gaps. The gap distribution for benchmark
sets showed the number of gaps decreased with gap length
(Figure 2). However, the majority of 35% artificial gaps
consisted of short gaps (less than 10 half-hours), and very
short gaps (less than 2 half-hours) were more than other 3
benchmark sets. Though gap numbers of long gaps (more
than 20 half-hours) for 65% gaps of artificial data sets were
similar to benchmark sets, gap numbers of short andmedium
gaps were higher than benchmark sets.

3.2. Error Analysis in Half-Hourly Scale. The most frequent
distribution of error for gap-filling methods in half-hourly
scale was nearly normal distribution (Figure 3), which indi-
cated an unbiased estimate for gap-filling error.Themean and
standard deviation of bias error for gap-filling methods were
showed in three sites (Table 4). The count for nighttime data
was less than daytime data because of 𝑢∗-correction. They
were not consistent with negative or positive error for three
methods or four gap percentage levels. No trends were found
that MBE was larger than gap percent levels during day and
nighttime at three sites; moreover, the error for high gap level
was small inversely, that is, error of 65% gaps with MDV and
LUT methods at marsh site at daytime and error of 65% gaps
with threemethods at rice site at nighttime. For daytime data,
standard deviation for LUT method was the largest and for
NLR method was the lowest among three methods for each
gap level. For nighttime data, standard deviation for MDV
method was the largest, especially at soybean site.

3.3. Seasonal Variation of Error. The seasonal patterns of
daily MBE, taking 65% gaps level as an example, showed
the difference in each site (Figure 4). These patterns were
affected by different methods and stage of growth. In general,
all methods have good performance before germination or
sawing stage and after entirely wilting or harvesting; in these
stages, dailyMBE for eachmethodwas around zero andMDV
method with less fluctuation. The daily MBE was large in
the peak of growing season because of strong assimilated
CO
2
ability, and spikes often occurred for MDV and LUT

methods in this stage at three sites. This result was agreed
with large standard deviation for MDV and LUT in Table 4.
The significant difference among the methods in fast growth
stage of spring (LAI was rapid increase), that is, late May
at marshland site, early June at rice site, and middle June at
soybean site (Figure 4). However, MDV method has good
performance in this stage.
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Figure 2: Frequency of gap lengths at (a) marsh, (b) rice, and (c) soybean sites. To show clearly, only frequencies of 35% and 65% gaps were
plotted. The frequencies of 45% and 55% gaps were distributed between them.

Table 3: The parameters in temperature response function for nighttime data.

Sites 𝑅

𝑠,𝑇ref
(a)

𝐸

𝑠
𝑅

𝑝,𝑇ref
(b)

𝐸

𝑝
𝑅

2
𝑃

mgCO2 m
−2 s−1 KJmol−1 mgCO2 m

−2 s−1 KJmol−1

Marsh site 0.035 55.3 0.022 2.8 0.54 <0.01
Rice site 0.033 85.2 0.0013 79.8 0.62 <0.01
Soybean site 0.068 52.8 0.0026 148.4 0.47 <0.01
(a)
𝑅𝑠,𝑇ref : soil respiration at reference temperature of 10∘C.

(b)
𝑅𝑝,𝑇ref : plant respiration at reference temperature of 10∘C and unit leaf area.
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Figure 3: Frequency distribution of bias error with different methods for 65% artificial gaps at three sites, separated into daytime (a) and
nighttime (b) data.

The variation of cumulative error was shown in Figure 5,
taking 65% gaps level as an example. The cumulative error
at daytime has stronger fluctuation than at nighttime at three
sites, as the results of a little data and small error at nighttime.
The cumulative error for three methods has no consistent
bias at marsh site (Figure 5). However, positive bias errors
were observed for three methods during the day at rice site,
and negative bias errors were observed at soybean site. This
suggests different methods may cause complicated effects at
three sites.The huge bias error for LUTmethod was observed
at each site, especially, in spring of rapid growth stage. The
large bias error for NLR method was also observed after
August at soybean site, whereas this phenomenon has not

occurred in 35% and 45% gaps. Based on cumulative error
fromMay toOctober, it indicates thatMDVmethod has good
performance, especially smooth trend in the end of growing
season at three sites. Overall, the cumulative error at three
sites ranged between −30 and +30mgCO

2
m−2.

The SRE was showed in Table 5, and it is convenient to
evaluate the performance of gap-fillingmethods and compare
it with other sites. In general, the SRE for 35% and 45%
artificial gaps filled by three methods was smaller than 55%
and 65% gaps at daytime, while these patterns were not
marked at nighttime. The gap-filling methods have distinct
different performances at three sites; for example, MDV
method showed small SRE at daytime over the rice site, while
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Figure 4: Seasonal variations of daily mean bias error (MBE) with different methods at (a) marsh, (b) rice, and (c) soybean sites.

Table 4: Mean bias error of half-hourly 𝐹NEE and standard deviation from the mean(a).

Flux site Gap %
Day time Night time (𝑢∗ corrected)

𝑛

(b) MDV LUT NLR
𝑛

(b) MDV LUT NLR
mgCO2 m

−2 s−1 mgCO2 m
−2 s−1

Marsh site

35 763 −2.51 (79.04) −0.75 (88.05) −4.36 (73.46) na(c) na na na
45 1220 3.42 (73.26) −0.14 (78.84) 0.66 (69.65) 161 2.21 (47.18) 1.19 (34.85) 0.73 (35.65)
55 1677 4.27 (78.65) 3.09 (90.18) 2.00 (78.88) 359 −1.26 (47.56) 2.19 (35.97) 2.16 (36.46)
65 2136 1.66 (84.39) −0.78 (90.66) −3.32 (74.42) 532 4.14 (51.87) 4.95 (41.49) 5.49 (41.24)

Rice site

35 1084 −0.10 (144.58) −4.59 (154.58) −7.17 (123.62) 175 3.89 (53.96) 2.52 (47.19) 2.16 (46.24)
45 1565 −0.17 (152.18) 1.79 (165.22) 3.5 (124.08) 366 3.56 (54.27) −2.04 (48.94) 1.60 (42.13)
55 2045 −1.14 (145.34) −2.69 (168.33) −5.33 (126.43) 564 −5.22 (58.38) −1.27 (48.69) 0.55 (40.58)
65 2525 2.76 (149.03) 9.68 (160.66) 11.25 (123.96) 797 −0.59 (57.99) 1.11 (48.94) 0.06 (41.25)

Soybean site

35 964 −2.17 (115.52) 1.64 (134.87) −6.9 (114.04) 136 −21.8 (93.51) −9.42 (44.1) −8.8 (33.09)
45 1445 −1.88 (114.98) 1.81 (136.21) −2.27 (113.32) 345 1.91 (74.24) 4.96 (46.71) 3.57 (44.11)
55 1929 −5.21 (112.73) −3.2 (132.46) −9.41 (110.09) 569 1.72 (69.91) 0.19 (45.55) 1.19 (41.73)
65 2411 −1.7 (112.09) −2.05 (134.55) −10.97 (109.28) 732 −3.26 (74.96) 0.30 (47.45) −2.59 (41.61)

(a)Values in parentheses are standard deviation.
(b)Number of the artificial gaps.
(c)No measurements were available due to large gaps.
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Figure 5: Cumulative error in gap-filled NEE from May to October, separated in daytime, nighttime, and all time contribution, at marsh,
rice, and soybean sites.

LUT and NLR methods represented well at daytime over the
marsh site. The majority of SRE ranged from −10 to 10%
during whole day, except for 55% and 65% artificial gaps filled
by NLRmethod at soybean site, this caused by huge bias after
August (showed in Figure 5).

3.4. Error Analysis in Gap Size Class. Gap size and dis-
tribution were produced in random, whereas those greatly
impacted performance of gap filling methods. The colored
surface plots are depicted in Figure 6, 65% gaps were taken
as an example, which provide a visual means of qualitatively
assessing the impact of gap length on NEE uncertainty.
For short vegetation, small MAE was expressed in dormant
season (early spring and late autumn), regardless of methods
and gap length. This was related to the fact that measured

fluxes at this stage tended to be smaller. Large errors for three
methods were concentrated to the zone of gaps of less than
5 in growing season, especially in stage of growth rapidly
of plants. Among the methods, LUT method resulted in the
largest error ranging from short to long gaps and then MDV
and NLR methods. Though the patterns did not find that
MAE for all methods increased with gap length increasing,
long gaps added appreciably to the uncertainty of gap-filling
(results were not shown).

3.5. OptimumGap FillingMethod for Short Vegetation. Selec-
tion of methods was based on the most stable performance
and smallest errors; however, according to the above analysis,
no one method was perfect during the measuring stage. To
reduce sum bias in maximum, combined gap-filling method
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Figure 6: Two-dimensional plots illustrating mean absolute error (MAE) in gap-filled NEE, expressed as MAE, varied as a function of day of
year (𝑥 axis) and gap length (𝑦 axis). Plots in row were shown for marsh, rice, and soybean sites, and plots in column were shown for MDV,
LUT, and NLR methods. The different size and color of the circle refer to magnitude of MAE, and unit is mgCO

2
m−2 s−1.

Table 5: The sum relative error (SRE) for NEE in different gap levels, at marsh, rice, and soybean site.

Gap % Daytime Nighttime (𝑢∗ corrected) All time
MDV % LUT % NLR % MDV % LUT % NLR % MDV % LUT % NLR %

Marsh site

35 2.83 0.85 4.92 na(a) na na 2.83 0.85 4.92
45 −3.61 0.15 −0.70 2.51 1.36 0.83 −4.46 −0.02 −0.92
55 −4.98 −3.60 −2.33 −1.46 2.54 2.49 −5.93 −5.23 −3.67
65 −1.74 0.82 3.48 4.60 5.50 6.11 −3.67 −0.61 2.66

Rice site

35 0.05 3.37 2.28 4.38 2.84 2.43 −0.28 3.41 2.27
45 0.08 −0.81 −1.59 3.97 −2.27 1.79 −0.33 −0.66 −1.94
55 0.58 1.38 2.73 −5.67 −1.38 0.60 1.52 1.79 3.05
65 −1.40 −4.89 −5.68 −0.69 1.29 0.08 −1.51 −5.86 −6.59

Soybean site

35 2.21 −1.67 7.01 −22.99 −9.94 −9.28 5.16 −0.37 9.58
45 1.82 −1.75 2.20 1.57 4.09 2.94 1.92 −4.04 1.91
55 5.80 3.56 10.48 1.47 0.16 1.02 8.49 5.67 16.36
65 1.74 1.97 10.11 −2.88 0.27 −2.29 4.93 3.6 20.28

(a)No measurements were available due to large gaps.
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Table 6: Gap filling strategies at short vegetation ecosystems.

Ecosystem Method of gap filling
NLR LUT MDV

Marshland Early Jun to mid Sept Other time fromMay to Oct
Rice paddy Mid Jun to mid Aug Other time fromMay to Oct
Soybean Early Jul to early Sept Other time fromMay to Oct

Marsh site Rice site Soybean site
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Figure 7: The sum relative error (SRE) of optimum gap-filling
method for four-gap level at three sites.

was selected for short vegetation. NLR or LUT method was
used after plant rapidly growing in spring and after end of
plant growth, and MDVmethod was used to the other stage.
In this case, based on the growth stage of different vegetation,
the gap filling strategies at three ecosystems were showed in
Table 6. The SRE of optimum method reduced to the range
of −2 and +4% for four-gap level at three sites (Figure 7),
except for 55% gaps at soybean site. The optimum method
also reduced standard deviation of error that was around 0.07,
0.11, and 0.12mgCO

2
m−2 s−1 at marsh, rice, and soybean site,

respectively; there were no significant different within four-
gap level.

4. Discussion

4.1. The Response of Error on Environmental and Biological
Factors. The performance of gap-filling methods impacted
on climatic and biological variables such as PPFD and LAI
[6, 23]. The LUT and NLR methods have considered the
effect of PPFD, a residual error with NLRmethod distributed
evenly around zero response of PPFD with small magnitude
(Figure 8), while residual error with LUT method scattered
strongly around zero. This was the reason of high standard
deviation at daytime (Table 4). The residual error with MDV
method caused positive bias when PPFD was less than
500𝜇molm−2 s−1.

The residual errors response of LAI with NLR method
has even distribution around zero, and MDV and LUT
method have more scatter; moreover, significant negative

error occurred around LAI = 1 (Figure 8). The large scatters
were showed for MDV method that did not consider LAI
when filling gaps. Though the LUT method filled gaps per
half month, there was weak relationship between LAI and
NEE, especially when LAI = 1 (Figure 8). This result must be
expected from potential changes in the ecosystem properties,
particularly as related to canopy development and senescence
[6, 25].

4.2.The Selection of Gap-FillingMethods for Short Vegetations.
In this study for short vegetations, error introduced by
gap-filling differed between methods at different gap levels
(Table 4). The choice of a technique should be based on
the application, Moffat et al. [9] considered NLR method
can serve well for an annual sum estimate, but an artificial
neural network will best reproduce the half-hourly profile of
the flux. Falge et al. [3] also commented on semiempirical
methods because they preserve the response of NEE to
main meteorological conditions. However, the NLR method
in our study has good performance in variation of daily
NEE (Figure 4) and caused huge bias in cumulative NEE,
especially for high gap level (Figure 5), which can explain
that great uncertainty was introduced, because little data was
available to simulating nonlinear function.

The MDV method had large error in half-hourly NEE
(Figure 4) but consistent performance and reliability in sum
NEE (Figure 5). For MDV, the method does not make use
of the ancillary meteorological data and can be expected to
have additional problems filling gaps of more than 3–7 days
in length, as synoptic changes in weather are strongly linked
to changes in diurnal cycles of photosynthesis and respiration
[1, 9]. So, to reduce error in half-hourly and annual NEE,
the combined method of MDV and NLR was selected in our
study (Figure 7) and performed well for short vegetation.

The methods caused large bias during periods of active
change in ecosystem properties (Figure 4), because when the
flux data are missing, it is impossible to know the timing of
magnitude of the change [3, 15]. The magnitudes of NEE for
short vegetation, that is, marsh or cropland, and so forth,
were smaller than forests; especially for soybean cropland,
high GPP and high Re caused low NEE during the growing
season. So little errormay cause large bias of cumulativeNEE,
and underestimating NEE or overestimating Re may change
carbon sink to carbon source. In this study, the optimumgap-
filling method can resolve partly this problem.

5. Conclusion

The threemajor gap-fillingmethods (mean diurnal variation,
look-up table and nonlinear regression) for estimating net
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Figure 8: The relationship between bias error and PPFD and LAI in day time, taking 65% gaps at rice site as an example.

carbon fluxes (NEE) were reviewed and their gap-filling
performance was evaluated based on a set of datasets from
three short vegetations (marsh, rice, and soybean sites). The
performance of the filling techniques depended on the time
scale, gap length, and time of day (day or night). In half-
hourly scale, standard deviation for NLR method was the
smallest among three methods for each gap level. The MDV
method has good performance in seasonal scale, especially
before germination or sawing and after entirely wilting or
harvesting. Though LUT and NLR methods showed small
error for daily mean error during the peak of growing season,
the huge bias was observed in cumulative NEE for two
methods. The combined gap-filling methods were used for
short vegetation, which showed NLR or LUT method was
selected after plant rapidly increasing in spring and before
end of plant growth and MDVmethod was used to the other
stage.This combinedmethod distinctly reduced sumbias and
deviation for gap-filled NEE.
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