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Predicting surface runoff from catchment to large region is a fundamental and challenging task in hydrology. This paper presents
a comprehensive review for various studies conducted for improving runoff predictions from catchment to large region in the
last several decades. This review summarizes the well-established methods and discusses some promising approaches from the
following four research fields: (1) modeling catchment, regional and global runoff using lumped conceptual rainfall-runoffmodels,
distributed hydrological models, and land surface models, (2) parameterizing hydrological models in ungauged catchments, (3)
improving hydrological model structure, and (4) using new remote sensing precipitation data.

1. Introduction

Runoff from land surface is the flow of water that comes
from excess water from rain, meltwater, or other sources that
flow over the Earth’s surface. It is a major component in
regional and global hydrological cycle. It has direct impacts
on human lives since it is a key water resource for agriculture,
industry, urban water use, and so forth. It is crucial to under-
stand complex relationships between rainfall and runoff
processes and then to accurately estimate surface runoff for
efficient design, planning, and management of catchments.
This can be achieved using hydrological modeling that not
only estimates continuous surface runoff, but also helps in
understanding catchment behaviors and modeling impacts
of climate and land use changes on surface water balance
[1, 2].

Model calibration is a necessary step for achieving good
simulations and predictions of surface runoff. Hydrological
models are usually calibrated against observed streamflow
to tune their model parameters to account for the inputs
and water fluxes in a catchment [3, 4]. With the develop-
ment of remote sensing technology, more information is
now available for hydrological modeling, for example, using

remote sensing precipitation and leaf area index as model
inputs [5, 6], and incorporating more data (such as remote
sensing soil moisture, evapotranspiration, groundwater, and
snow cover area) for multiple objective model calibration
[4, 7–9].

Local hydrological models have been largely used to
predict runoff time series using a small number of catchments
that covers a small region where climate conditions are
similar [10, 11]. Recently, they were used to predict surface
runoff in ungauged catchments in a large region, such as in
southeastern Australia [12], the Tibetan Plateau [13], UK [14],
and France [15].This is important since lots of rivers and their
reaches and tributaries in the world are ungauged or poorly
gauged [14, 16, 17].

It is a hard task to have a credible prediction of surface
runoff in ungauged catchments or regions where no runoff
data are available or runoff data are available sparsely. Hydrol-
ogists have been attempting to develop strategies to estimate
runoff on ungauged catchments since the 1970s, especially
after the International Association of Hydrological Sciences
(IAHS) launched an initiative Predictions in Ungauged
Basins (PUB) in 2003, which aims at predicting or forecasting
the hydrological responses in ungauged or poorly gauged
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basins and their associated uncertainty [17]. Since then,many
approaches have beendeveloped for estimating surface runoff
in ungauged basins [18], such as regionalization [15, 19, 20],
and regional calibration against observations from multiple
catchments [21, 22].

Predicting surface runoff using catchment, regional and
global runoff models has achieved numerous outcomes,
but there are still lots of issues that lead to unsatisfactory
performances.This paper presents a comprehensive review of
predicting surface runoff from catchments to large regions,
which is a fundamental and challenging task in hydrology.
This includes review and discussions in (1) hydrologicalmod-
els, (2) parameterization, (3) improvement of hydrological
model structure, and (4) use of new forcing data.

2. Catchment, Regional and Global
Runoff Models

There exist various models to simulate surface runoff in an
empirical, semimechanistic or fully mechanistic way. Gener-
ally, surface runoff models are classified from deterministic
to stochastic models, from physically based (white-box) to
black-box or empirical and to conceptual models, from
lumped to distributed models, and from global hydrological
to land surface models (LSMs) [39, 73–75]. This paper sepa-
rates the hydrological models into three categories according
to complexity and application, including (1) lumped concep-
tual rainfall-runoff (RR) models, (2) distributed hydrological
models, and (3) global hydrological/LSMs [73, 76]. The
first two categories of the hydrological models are normally
applied from catchments to regions and the third category
of the hydrological models is generally applied from a large
region to the global land surface. Table 1 summarizes the
three categories of major hydrological models for runoff
estimations/predictions across a wide range of climate and
physiographic conditions.

2.1. Lumped Conceptual Rainfall-Runoff Models. Lumped
conceptual RR models treat a catchment as a single homo-
geneous unit, and they are widely used since such models
tend to be parametrically parsimonious while yielding good
model performance after calibration using historical water-
shed input-output data [77].

Numerous RR models have been developed and docu-
mented [78, 79]. Crawford and Linsley’s Stanford Watershed
Model was one of the notably successful efforts in introduc-
ing a complex RR model accounting for the dynamics of
hydrologic processes governing in a watershed [32]. Other
examples of conceptual RRmodels include Xinanjiangmodel
developed in China in the 1980s [34] and Sacramento Soil
Moisture Accounting Model (SAC-SMA) [30], widely used
operational model in the US National Weather Service
(NWS) for flood forecasting.

RR models have been used very successfully to estimate
runoff at small and large catchments under different cli-
mate regimes. Usually, RR models use rainfall and other
climate data (e.g., temperature and/or potential evaporation)
to estimate runoff. Although the main emphasis of RR

Table 1: Major catchment, regional and global runoff models.

Model type Model Country Reference

Lumped model

AWBM Australia [23]
GR4J Australia [24]
HBV Sweden [25]
HEC USA [26]
HSPF USA [27]

HYDROLOG Australia [28]
IHACRES Australia [29]
Sacramento USA [30]
SIMHYD Australia [31]
SWM USA [32]
Tank Japan [33]

Xinanjiang China [34]
SRM Nordic [35]

Physical model

CEQUEAU Canada [36]
HYDROTEL USA [37]

IHDM USA [38]
MIKE-SHE Denmark [39]

SHE Denmark [40]
SLURP UK [41]
SWAT USA [42]
SWMM USA [43]

TOPMODEL UK [44]
WATELOOD Canada [45]

Global
hydrological/land
surface model

BUCKET Japan [46]
CABLE Australia [47]
BATS USA [48]
CLM USA [49]

CLMTOP USA [50]
COLASSiB USA [51]
GWAVA USA [52]
H08 USA [53]

HTESSEL USA [54]
HYSSiB USA [55]
ISBA France [56]
JULES UK [57]
LaD USA [58]

LPJmL USA [59]
MacPDM USA [60]
MATSIRO USA [61]
Mosaic USA [62]
MOSES2 UK [57]
MPI-HM USA [63]
Noah USA [64]
NSIPP USA [65]

Orchidee USA [66]
SiBUC Japan [67]
SWAP Russia [68]
SiB USA [69]
VIC USA [70]
VISA USA [71]

WaterGAP USA [72]

models is to estimate runoff, they are normally designed
to simulate actual evapotranspiration to account for soil
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water balance. However, they have no direct interest in
quantifying surface energy fluxes [76]. The parameters in
the RR models are usually optimized such that the runoff
simulated matches as closely as possible the recorded runoff.
A variety of model calibration techniques (including manual
calibration and automatic calibration techniques) have been
developed and implemented to ensure conformity between
the model simulations of system behavior and observations
[3, 80].

Compared to the distributed hydrological models, the
RR models are simpler and need less input data, and the
calibration cost is cheap, so they are quite easy to be
used and are important tools for hydrologic analysis. More
importantly, the RRmodels are comparable to the distributed
hydrological models, in terms of model accuracy for pre-
dicting daily, monthly, and annual runoff time series. For
instance, Vansteenkiste et al. [81] compared three RR models
(NAM, PDM, and VHM) to two distributed models (WetSpa
andMIKE-SHE) in a medium sized catchment in Belgium to
assess the model accuracy. They found that all tested models
perform well for estimating total runoff and their compo-
nents, peak and low flow extremes. However, calibrating
the RR models is much less time consuming and produced
higher overall model performance in comparison to the two
distributed models. Reed et al. [82] compared 12 distributed
models with a lumped model, and the results show that the
lumped model outperformed distributed models in more
cases, while some calibrated distributed models can perform
at a level comparable to or better than a calibrated lumped
model. The limit of the RR models is that they cannot
simulate the spatial pattern change in land cover and land use
influencing surface water availability.

The RR models are normally applied at catchment scales.
Hydrologic prediction of the RR models is highly influenced
by the uncertainties in the forcing data (generally taken
as deterministic), observed system response (due to errors
in measuring the physical quantities), imperfection of the
model structure, and the parameter values resulting from the
model calibrationwhich is profoundly affected by uncertainty
sources [3].

In summary, the RR models are still very important
tools in hydrological modeling, particularly for predicting
runoff in ungauged catchments because of their simplicity
and usability.

2.2. Distributed Hydrological Models. Distributed hydrolog-
ical models make a series of hydrological processes inter-
connected, such as runoff generation, recharge to ground-
water, snow accumulation and melt, soil moisture dynamics,
evapotranspiration, and routing in lakes and rivers [10]. In
addition, distributed hydrological models take account of
the spatial variability of climate, terrain, soil, and vegetation.
These elements are divided in smaller units that are more
homogenous than the whole watershed. Therefore, this fea-
ture offers the potential to improve hydrologic predictions
[83].The distributed hydrological model can be directly used
for estimating land use and land cover change impact on
surface runoff and water availability [1, 2].This is particularly

important for catchments with a wide range of climatic and
land surface conditions.

The distributed hydrological models have been well
developed since the 1970s because of the robust development
of 3S (RS/GPS/GIS) technology. A representative semidis-
tributed hydrological model is the topography-based hydro-
logical model named as TOPMODEL that was developed in
1979. It describes runoff generation process including both
saturation excess and infiltration excess runoff according
to topographic index derived from digital elevation model
(DEM) [44]. The spatial variability of precipitation, however,
is not considered by TOPMODEL. After TOPMODEL, dis-
tributed hydrological models such as SHE (System Hydro-
logic European) [40] and SWAT (Soil and Water Assessment
Tool) [42] are fully distributed and contain more complex
hydrological processes.

Although the distributed hydrological models have more
solid physical base compared to the lumped models, several
model comparison studies [74, 75, 82, 84, 85] have shown
that no single model performs consistently best but rather
that individual model performances vary with the setting.
So selecting models depends on objectives, application, and
availability of data.

Despite their complexity, the distributed hydrological
models are very useful for investigating changes in hydro-
logical processes caused by anthropogenic activities, such as
forestation, deforestation, and urbanization.

2.3. Global Hydrological and Land Surface Models. The
hydrological models presented in Sections 2.1 and 2.2 are
normally applied to a catchment to regional scale. At a
larger scale from a large region to globe, global hydrological
and LSMs (Table 1) are developed for simulating/predicting
surface runoff. It is noted that global hydrological models
are traditionally focused on water resources and lateral water
fluxes while LSMs can be coupled to global climate models,
to describe the vertical exchange of heat, water, carbon, or
other elements. Based on the spatial application, this review
paper does not separate the two kinds of models, naming
them “global LSMs” on a whole.

Compared to the lumpedRR anddistributed hydrological
models, the global LSMs are far more complicated since they
can simulate not only hydrological processes, but also various
material and energy transfer processes on land surface [86].
These processes include precipitation interception, snow
accumulation and melt, runoff generation, water transfer
amongst soil layers, shortwave radiation’s reflection and
transmission, longwave radiation’s absorption and emission,
separation of sensible heat and latent heat, plant growth and
respiration, photosynthesis and gross primary production,
microbe activities, and nutrient cycle.

The first-generation LSMs such as Bucket model [87]
do not consider vegetation and include only one soil layer.
The second-generation LSMs such as BATS [48] and SiB
[69] contain “big-leaf” vegetation and 2-3 soil layers. The
third-generation LSMs such as CLM [49] contain “two-
leaf” vegetation and multilayer soil layer for hydrological
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processes. Some widely used land surface models are listed
in Table 1.

Surface runoff process is considered quite differently
between distributed hydrological models and global land
surface models. Surface runoff is a key output in lumped
RR and distributed hydrological models, while it is taken as
residue of water balance equation in global LSMs. Because
of the accumulated errors built in land surface models, they
perform generally more poorly than distributed hydrological
models [88–90]. Gosling et al. [91] compared the projected
impacts of climate change on river runoff from two types of
distributed hydrological models, a global hydrological model
(GHM) and catchment-scale hydrological models (CHMs).
Results show that there are differences between GHMs and
CHMs in mean annual runoff due to differences in potential
evapotranspiration estimation methods, and the differences
in projected changes of mean annual runoff between the
two types of hydrological model can be substantial for a
given GCM. Haddeland et al. [74] compared six land surface
models and five global hydrological models and results
show that significant simulation differences between models
are found to be caused by the snow scheme employed,
and differences between models are a major source of
uncertainty.

Themain strength of global hydrological and land surface
models is that they can be used for answering the regional and
global questions for water availability and changes in global
hydrological cycles [74].

3. Parameterization of Hydrological Models in
Ungauged Catchments

3.1. Regionalization. There are no observations or lack of
observations in ungauged catchments. Therefore to predict
surface runoff in the ungauged catchments depends on
alternative prediction methods [17]. Regionalization is a
commonly used method for runoff predictions [15, 92],
in which model parameters calibrated from gauged catch-
ments are transferred to ungauged catchments using various
approaches. It is a challenge to get satisfactory regionalization
results [15, 17, 93, 94] because of limit of dataset, a wide
range of catchment attributes, poor quality of model inputs,
unsatisfactory model calibrations, and so on [15, 17].

The regionalization is mainly conducted with hydro-
logical models, although it can be achieved using model-
independent methods (e.g., Artificial Neural Network) [20,
95]. The popular regionalization approaches that extrapo-
late hydrologic model parameters to estimate streamflow
at ungauged catchments can be grouped into (a) arith-
metic mean method (AM) [15, 19]; (b) spatial proximity
approach (SP) (spatial distance) [96, 97]; (c) physical similar-
ity approach (PS) [93, 98, 99]; (d) regression method (Reg)
[14]; and (e) hydrological similarity approach (HS) [100].

All these regionalization methods have been applied in
many catchments, and many attempts have been made to
determine which regionalization approach was the most
appropriate (Table 2). Merz and Blöschl [19] tried to region-
alize an 11-parameter semidistributed conceptual RR model

based on more than 300 Austrian catchments. It shows that
spatial proximity performs best, and using nested catchments
as donors may significantly improve performance of spatial
proximity. Young [14] tried to regionalize a six-parameter
version of the PDM model on 260 UK catchments and
found that regression approach yielded the best results,
compared to other approaches. Oudin et al. [15] compared
three regionalization schemes (SP, PS, and Reg) based on 913
French catchments using two lumped models and found that
spatial proximity provides the best regionalization solution.
Li et al. [101] proposed a new regionalization method (the
indexmodel), which establishes a nonparametric relationship
between each parameter of predictive tools and a linear
combination of predicators. The prediction results of 227
catchments in southeast Australia show that the index model
produces the most accurate prediction compared to regional
models based on the linear regression, nearest neighbor, and
hydrological similarity. Shu and Ouarda [102] introduced a
regression-based logarithmic interpolation method to esti-
mate regional FDCs at ungauged sites, and the estimated
FDC is combined with a spatial interpolation algorithm
to obtain daily streamflow estimates. McIntyre et al. [103]
and Oudin et al. [15] showed that output averaging (the
target catchment is modeled using parameter values from
many donor catchments) can reduce uncertainty in runoff
predictions in ungauged catchments. Similarly, Reichl et al.
[98] showed that flow prediction using an optimized model
averaging method (based on physical similarities) is superior
to regression and spatial proximity approaches.

In summary, the studies carried out in most countries,
such as Austria, France, and Australia, found that SP is better
than PS andReg is the least satisfactory.This is also confirmed
in the highest plateau, the Tibetan Plateau [105]. Only in
UK did the studies find that Reg performs better than SP or
PS.

There are various reasons explaining the different model
performance between the abovementioned studies, including
using different catchment sets, different catchment descrip-
tors, and different hydrological models [14, 15]. This suggests
that each regionalization approach does not always perform
consistently. Razavi and Coulibaly [20] found that the perfor-
mance of regionalization approaches is climate related, and
overall spatial proximity and physical similarity have shown
satisfactory performance in arid to warm temperate climates
(e.g., Australia) and regression-based methods have been
preferred in warm temperate regions (e.g., most European
countries). To fully understand the performance of the
various regionalization approaches, it is critical to have global
comparison studies. However, such studies have not been
reported yet.

3.2. Multiple Objective Model Calibration. It was recognized
early [80, 107] that models calibrated only to observed
hydrographs can be considered overparameterized if they
consist of more than five parameters [29], because the
predictive capability of hydrological models would be limited
by high model complexity relative to the typically low
number of model constraints used to calibrate the models
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Table 2: Summary of regionalization approaches conducted using large datasets.

Method Comparing Model Region/country References
AM
Reg

Average of nested neighbors is better than Reg (global
or regional) HBV 308 catchments in Austria [19]

PS
Reg Output averaging based on PS is better than Reg PDM 127 catchments in UK [103]

AM
SP
PS
Reg

SP (Kriging) and PS perform best; all regionalization
methods perform similarly in simulating snow cover HBV 320 catchments in Austria [96]

PS
Reg

For PDM, PS performs slightly better than the Reg,
whereas for TATE Reg performs best

PDM
TATE 119 catchments in the UK [104]

Reg
PS

The regression-based approach is better than the
nearest neighbor based approach PDM 260 catchments in UK [14]

SP
PS
Reg

SP is the best, Reg is the least satisfactory, and PS is
intermediary

GR4J,
TOPMO 913 catchments in France [15]

SP
PS SP is better than PS Xinanjiang 210 catchments in southeast

Australia [97]

SP
PS
Reg

An optimized averaging method (based on PS) is
superior to Reg and SP approaches SIMHYD 184 catchments in Australia [98]

SP
PS

SP performs slightly better than PS and the integrated
similarity approach performs only very marginally
better than SP

Xinanjiang
SIMHYD

210 catchments in southeast
Australia [12]

SP
PS
Reg
HS

The index model that establishes relationships between
hydrological signatures and catchment attributes is the
best, followed by Reg, HS, and SP

Three-
parameter

FDC

227 catchments in southeast
Australia [101]

HS
HS based on FDC produces better runoff simulation
compared to the others (drainage area and spatial
proximity)

HBV Karkheh river basin, western part
of Iran [100]

SP
PS
Reg

An approach coupling the SP (IDW) and the PS is
better than SP, PS, and Reg MAC-HBV The main watersheds across the

province of Ontario [93]

SP
PS SP is better than PS SIMHYD and

GR4J
8 catchments in the southeastern

Tibetan Plateau [105]

SP
Reg

An index model that establishes relationships between
hydrological signatures and catchment attributes is
better than SP for getting salient flow characteristics

An index model
and GR4J

228 catchments in southeast
Australia [106]

AM: arithmetic mean method; SP: spatial proximity method; PS: physical similarity method; Reg: regression methods; HS: hydrological similarity method.

[108]. An important strategy to overcome this problem was
the incorporation of more information (such as different
aspects of the hydrograph, soil moisture, evapotranspiration,
groundwater, and snow depth) for multiple objective model
calibration.

Madsen [7] used a calibration scheme including opti-
mization of multiple objectives that measure different aspects
of the hydrograph (overall water balance, overall shape of
the hydrograph, peak flows, and low flows). Seibert and
McDonnell [109] reported that the inclusion of groundwater
dynamics results in significantly improved and more consis-
tent overall model performances. Nester et al. [110] demon-
strated the value of remotely sensed snow cover patterns
to constrain parameter uncertainty of catchment models.

Others used remotely sensed soil moisture and evaporation,
respectively, to improve model parameterizations [111–113].
Zhang et al. [114] showed that the incorporation of remotely
sensed leaf area index and surface soil moisture measure-
ments into the calibration objective function marginally
improves the daily runoff estimates but noticeably improves
the leaf area index and soil moisture estimates in the valida-
tion catchments. Zhang et al. [4] used remotely sensed evap-
otranspiration estimates together with recorded streamflow
to constrain rainfall-runoff model calibration and then used
optimized parameter sets for runoff predictions. They found
that the use of remotely sensed evapotranspiration data in
calibration leads to improved daily or monthly runoff predic-
tions in ungauged catchments. However, Willem Vervoort et
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al. [9] show that satellite evapotranspiration did not improve
the calibration results of the lumped conceptual model and
confirm that the calibration of models using multiple envi-
ronmental time series (such as MODIS evapotranspiration
and streamflow) can be used to identify structural model
issues.

3.3. Regional Calibration against Observations from Mul-
tiple Catchments. Regional model calibration is defined
here as model calibration simultaneously against observa-
tions in multiple catchments (from dozens to hundreds)
across a wide region to obtain a single parameter set
for all catchments. In contrast, local model calibration is
referred to as the calibration against observations in a single
catchment.

The major advantage of the local model calibration is
that an optimum parameter set can be obtained for each
individual catchment and will match the local data most
accurately. However, the locally optimized parameter values
are not always suitable for runoff predictions because gauging
stations can be few and far apart, resulting in that the
underlying assumption that nearby catchments have similar
responses can be problematic. Furthermore, observational
errors (e.g., in streamflow gauging and rainfall inputs) can
cause the local calibration to be biased, with biased model
parameters being regionalized.

The main benefit of regional model calibration is that (1)
use of one set of optimized parameter values (or perhaps
several sets if different objective functions are considered
or if a research region is divided into different subregions)
can improve hydrological and vegetation estimates at the
regional scale and (2) there is no noticeable degradation from
model calibration to model validation. The disadvantage of
regional calibration is that it requires lots of computation
resources and it is normally conducted using super computer
clusters.

Previous studies showed that regional calibration could
improve the accuracy of simulated runoff in ungauged
regions and has been used in runoff simulation and predic-
tion [21, 115]. Regional calibration would be an important
research field of large-scale hydrological simulation and
predictions and will be strengthened with the computational
development.

4. Improving Hydrological Model Structure

The model structure represents a formalized perception of
how the catchment system is organized and how the various
parts are interconnected [138]. Selection of a suitable model
structure ideally depends on anumber of factors as one strives
to represent the runoff processes in a realistic way, so that
the model can be safely used in a predictive mode. How-
ever, there is still some room for further improving model
structures.

4.1. Modifying RR Model Structure. Usually, RR models use
simply conceptual equations to simulate evapotranspira-
tion based on soil wetness and potential evapotranspiration

(calculated from basic climate data) and seldom consider
vegetation dynamics, which can play an important role
in midlatitude catchments [11, 139, 140]. Because of lack
of surface vegetation information in RR modeling inputs,
calibrated RR models may not estimate water balance
components, evapotranspiration, and water storage change
accurately, which possibly limits their ability to estimate
runoff.

Remotely sensed data can provide temporally dynamic
and spatially explicit information on land surface charac-
teristics such as vegetation cover types and leaf area index.
Vegetation processes play an important role in evapotranspi-
ration and runoff in midlatitude catchments [140, 141]. Yildiz
and Barros [140] showed that vegetation properties such as
fractional vegetation coverage and leaf area index (LAI) had
significant effects on hydrological model results via control
of evapotranspiration rates, and this control was especially
critical during the spring-summer transitionwhich coincided
with the greening season in midlatitudes.

A suitable way to integrate vegetation process data into
hydrological models is to use remote sensing vegetation
data, such as LAI and fractional vegetation cover [142–
144]. Recent studies have tried to include remote sensing
vegetation information as inputs into RR models. Reference
[97] used MODIS LAI data combined with the Penman-
Monteith equation in the lumped Xinanjiang model, and
results showed that it can improve the prediction of runoff
in ungauged basin. Oudin et al. [145] modified the water
balance models to introduce the fractional coverage of land
cover types and results showed that land cover information
improves the overall model efficiency.

4.2. Improving Distributed Hydrological, Land Surface Model
Structure. Appropriate land surface parameterization is
based on comprehensive understanding to land surface
processes and thus could improve performance of physi-
cally based models. For instance, Liang and Xie [146] used
a new surface runoff parameterization which takes into
account effects of soil heterogeneity on Horton and Dunne
runoff to replace the old parameterization in VIC model.
Results showed that the new parameterization plays a very
important role in partitioning the water budget between
surface runoff and soil moisture. Pitman et al. [147] com-
pared the accuracy of estimated runoff in the region that
ranged from 30N to 90N by BASE model with and without
frozen soil parameterization. Results proved that frozen soil
parameterization greatly influenced runoff generation with
less runoff variability. Haverd and Cuntz [148] found that
soil litter is important for simulation of soil moisture and
evapotranspiration in forest region. When coupled with a
soil litter model, the accuracy of CABLE has been greatly
improved for estimating soilmoisture and evapotranspiration
in a forest flux site in Australia. Choi and Liang [149]
detected several deficiencies in the existing formulations for
terrestrial hydrologic processes in CLM and improvedmodel
performance for predicting runoff by five modifications of
its parameterization. In summary, there is plenty of room
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Table 3: Summary of precipitation datasets.

Name Source Domain Period of record Available
timestep(s) Available resolution References

APHRODITE U. of Tsukuba and
JMA Asia 1951–2007 Daily

0.25 × 0.25, 0.5 × 0.5;
0.05 × 0.05 (Japan

only)
[116]

CHOMPS CICS Global 1998–2007 Daily 0.25 × 0.25 [117]
GSWP-2 GEWEX Global 1986–1995 Subdaily 1 × 1 [118]
WFD EU-FP6 Global 1901–2001 Subdaily 0.5 × 0.5 [119]
WFDEI EU-FP6 Global 1979–2012 Subdaily, daily 0.5 × 0.5 [120]
CMAP NOAA CPC Global 1979–2011 Monthly, pentad 2.5 × 2.5 [121]
CMORPH CPC Global 2002–2013 Subdaily, daily 0.25 × 0.25 [122]
CRU CRU Global 1901–2013 Monthly 0.5 × 0.5 [123]
Daymet U. of Montana North America 1980–2013 Daily 1 km × 1 km [124]
Global (land)
precipitation and
temperature

U. of Delaware Global 1900–2010 Monthly 0.5 × 0.5 [125]

GPCC DWD Global 1900–2010 Monthly 0.5 × 0.5, 1 × 1,
2.5 × 2.5

[126]

Princeton Princeton University Global 1948–2008 Subdaily 1 × 1 [127]
GPCP GSFC (NASA) Global 1979–2014 Monthly 2.5 × 2.5 [128]

HOAPS CM SAF and Uni. of
Hamburg Global 1987–2008 Subdaily,

monthly 0.5 × 0.5 [129]

COREV2 NCAR Global 1949–2006 Subdaily, daily,
monthly 1 × 1 [130]

NLDAS
NASA, NOAA,
Princeton, U. of
Washington

North America 1979–2014 Hourly 0.125 × 0.125 [131]

GLDAS NASA, NOAA Global 1948–2014 Subdaily,
monthly 0.25 × 0.25, 1 × 1 [132]

PERSIANN CHRS Global 1979–2014 Subdaily,
monthly 0.25 × 0.25 [133]

PREC/L NOAA Global 1948–2014 Monthly 2.5 × 2.5, 1 × 1,
0.5 × 0.5

[134]

PRISM Oregon State
University North America 1895–2014 Daily, monthly 4 km, 800m [135]

SSM/I, SSMIS NASA Global 1987–2012 Daily, monthly,
weekly 0.25 × 0.25 [136]

TRMM NASA and JAXA Tropics 1998–2014 Subdaily, daily,
monthly 0.25 × 0.25 [137]

APHRODITE: Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources; JMA: Japan Meteorological
Agency; CHOMPS: CICS High-Resolution Optimally Interpolated Microwave Precipitation from Satellites; CICS: Cooperative Institute for Climate Studies;
GSWP: Global Soil Wetness Project; GEWEX: Global Energy and Water Cycle Experiment; NASA: National Aeronautics and Space Administration; NOAA:
National Oceanic and Atmospheric Administration;WFD:WATCH Forcing Data; EU-FP6: European Union Sixth Framework Programme;WFDEI:WATCH
ForcingDatamethodology applied to ERA-Interim reanalysis data; CMAP:CPCMergedAnalysis of Precipitation; CPC: Climate PredictionCenter; CMORPH:
CPC MORPHing technique high resolution precipitation (60S-60N); CRU: Climatic Research Unit; Daymet: Daily Surface Weather and Climatological
Summaries; GPCC: Global Precipitation Climatology Centre; DWD: German Weather Service; GPCP: Global Precipitation Climatology Project; HOAPS:
Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data; CM SAF: Satellite Application Facility on Climate Monitoring; COREV2: Common
Ocean Reference Experiment Version 2: Large-Yeager Air-Sea Surface Flux; NCAR: National Center for Atmospheric Research; NLDAS: North American
Land Data Assimilation System; GLDAS: Global Land Data Assimilation System; PERSIANN: Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks; CHRS: Center for Hydrometeorology and Remote Sensing; PRISM: Parameter-Elevation Relationships on Independent
Slopes Model; PREC/L: NOAA’s Precipitation Reconstruction Land; SSM/I, SSMIS: Special Sensor Microwave/Imager and Sounder; TRMM: Tropical Rainfall
Measuring Mission; JAXA: Japan Aerospace Exploration Agency.
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to improve global land surface model structure for better
estimation of runoff from large region to global land surface.

5. Improving Precipitation Inputs

High quality daily precipitation estimates are required for
accurate hydrological modeling.There are two major sources
to estimate precipitation fields: rain gauge stations and
remote sensing devices (such as satellites and radar). The
observations obtained from rain gauges are considered to
be more accurate and reliable, but the spatial coverage
is unsatisfactory. Hence, the areal precipitation estimates
constructed solely by rain gauges exhibit a great deal of
uncertainty especially in the areas of low rain gauge density.
Remote sensing gridded precipitation estimates are presented
in a good coverage in space/time and with less uncertainty
[150, 151]. However, the coverage of weather radar network
is currently limited to some areas in the world. So, with the
advent of meteorological satellites in the 1970s, great efforts
have been directed to estimating precipitation from satellite
images (e.g., TRMM, TMPA, CMORPH, and GSMAP),
which cover most of the globe (Table 3).

However, the accuracy of remote sensing satellites precip-
itation may not be desirable and the estimation of precipi-
tation can be improved by blending rain gauge and satellite
data [151]. Several statistical merging schemes have been
developed for experimental or/and operational use, such as
conditional merging [152], Bayesian merging [153], statistical
objective analysis [154], data assimilation [137, 155], and
double/single optimal estimation [156].

Gottschalck et al. [157] showed that the Climate Predic-
tion Center (CPC)Merged Analysis of Precipitation (CMAP)
has the closest agreement with a CPC rain gauge dataset
for all seasons except winter, while TRMM overestimated
summertime precipitation in the central United States (200–
400mm). Chappell et al. [158] evaluated geostatistical meth-
ods of blending satellite and gauge data to estimate near
real-time daily rainfall for Australia and results showed that
the blending considerably reduced the estimation variance.
Mitra et al. [159] showed that TRMM merged with gauged
station data can significantly improve the estimation of spatial
distribution of precipitation of the Indian monsoon region.
Ryo et al. [160] showed that the blended precipitation data
can improve the hydrological modeling especially the flood
modeling in Vietnam.

6. Summary

This paper provides a comprehensive review of catchment,
regional and global runoff modeling. Continuous surface
runoff modeling can be carried out through conceptual
rainfall-runoff models, distributed models, and land sur-
face models. Parameterization of hydrological models in
ungauged catchments can be done by regionalization, mul-
tiple objective model calibration, and regional calibration
against observations from multiple catchments. The models
can be further improved by incorporating remote sensing
vegetation data and remote sensing precipitation data.

There is still considerable room to improve surface runoff
prediction from catchments to large regions. In a large region,
improving regionalization performance can be attributed to
improved catchment characteristics, ensemble of different
regionalization approaches, multiple-donor output averag-
ing, or model ensemble, and so forth. Special attention
should be paid to use of remote sensing data for multiple
objective model calibration and to improving hydrological
model structure using remote sensing data since they have
great advantages in ungauged catchments or data sparse
regions. How to smartly parameterize global land surface
models or smartly modify their structure for improving
runoff predictions from large regions to globe will be a great
challenge for hydrologists and meteorologists in the next
couple of decades.
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