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The common approach to quantifying the precipitation forecast uncertainty is ensemble simulations where a numerical weather
prediction (NWP) model is run for a number of cases with slightly different initial conditions. In practice, the spread of ensemble
members in terms of flood discharge is used as a measure of forecast uncertainty due to uncertain precipitation forecasts. This
study presents the uncertainty propagation of rainfall forecast into hydrological response with catchment scale through distributed
rainfall-runoffmodeling based on the forecasted ensemble rainfall of NWPmodel. At first, forecast rainfall error based on the BIAS
is compared with flood forecast error to assess the error propagation. Second, the variability of flood forecast uncertainty according
to catchment scale is discussed using ensemble spread. Then we also assess the flood forecast uncertainty with catchment scale
using an estimation regression equation between ensemble rainfall BIAS and discharge BIAS. Finally, the flood forecast uncertainty
with RMSE using specific discharge in catchment scale is discussed. Our study is carried out and verified using the largest flood
event by typhoon “Talas” of 2011 over the 33 subcatchments of Shingu river basin (2,360 km2), which is located in the Kii Peninsula,
Japan.

1. Introduction

Recent advances in weather measurement and forecasting
have created opportunities to improve streamflow forecasts.
It is possible to combine high-resolution numerical weather
prediction (NWP) data directly into streamflow forecast sys-
tems in order to obtain an extended lead time. The accuracy
of weather forecasts has steadily improved over the years,
but recent researches represented that direct application of
outputs from the NWP model into the hydrological domain
can result in considerable bias and uncertainty that are
propagated into hydrological domains [1, 2].

One of the biggest sources of uncertainty in the applica-
tion of streamflow forecasting comes from forecasted rainfall.
The grid size in NWP models is often larger than the sub-
catchment size in hydrological models, which results in the
forecast rainfall data not being at the appropriate resolution
required for flood forecasting. In addition, even small errors
in the location of weather systems by NWP models may
result in forecast rainfall for the catchment concerned being

significantly wrong [3, 4]. These biases and uncertainties of
rainfall forecast may be amplified when cascaded through
the hydrological system, and small uncertainties in rainfall
forecast may translate into larger errors in flood forecasting.
As an example, Komma et al. [5] showed that an uncertainty
range of 70% in terms of NWP rainfall translated into an
uncertainty range of 200% in terms of runoff for a lead
time of 48 hours. They presented this to the nonlinearity of
the catchment responses, but uncertainties such as forecast
rainfall, parameter, and structure of a hydrologic model may
contribute to the amplification of the uncertainty in terms
of flood forecasting. Xuan et al. [6] also highlighted that
although the QPF from NWP model could generally catch
the rainfall pattern, the uncertainties of rainfall at the scale of
model grid to the catchment were always significant.

It is difficult to understand the full range and interaction
of uncertainties in flood forecasting. And the different types
of uncertainty will vary with lead time of the forecasts,
and with the magnitude of the event and catchment char-
acteristics. Vivoni et al. [7] addressed the propagation of
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radar rainfall nowcasting errors to flood forecasts in the
context of distributed hydrological simulations. However,
they used the radar rainfall measurements to quantify how
increases in nowcasting errors to flood forecast with lead
time, whereas our approach applies the ensemble NWP
rainfall into the flood forecasts to assess the error and
uncertainty propagation with the catchment scale. And the
variability of runoff predictions by rainfall uncertainty differs
for different case studies and thus no general trend is apparent
[8–10]. This study is carried out under the assumption that
model parameters and structure errors do not contribute to
uncertainty of flood forecasting to remove the focus from
forecast rainfall error. As a result, a distributed hydrologic
model is considered to be the appropriate tool to assess
rainfall forecast quality and to understand how uncertainty
in the rainfall forecasts field may propagate throughout the
watershed. Further, the integration of the rainfall forecast
into runoff simulation at multiple locations in a catchment
allows the investigation of the effects of catchment scale
on the propagation of rainfall forecast uncertainties in the
streamflow forecasting.

The main objective of this study is to assess the error
and uncertainty propagation due toNWP rainfall uncertainty
on hydrological response through a distributed hydrologic
model depending on catchment scale. In the context of
flood forecasts, it is important to assess the forecast rainfall
uncertainty in terms of the effect on runoff.And uncertainties
based on spatial scale are also important by means of the
information for real-time flood forecast and the possible
amount of flow to the reservoir and exceeding its capacity
to optimize the water volume to be released. Therefore, the
coupled use of NWP rainfall output and hydrologic flood
forecasting requires an assessment of uncertainty through
hydrological response.

The research question is as follows: How does ensemble
NWP rainfall error translate into flood forecasting, and how
does flood forecast uncertainty propagate as a function of
catchment scale dependency? To our knowledge, there exists
research about rainfall uncertainty’s direct propagation into
the hydrological domain, but the spatial scale dependency
of uncertainty propagation of ensemble NWP rainfall into
hydrological predictions has not been addressed. First, we
compared forecast rainfall error based on the BIAS, which
is used to measure error amplification, to flood forecast
error driven by ensemble NWP forecast outputs to assess
error propagation. Second, we discussed the variability of
flood forecast uncertainty according to catchment scale using
ensemble spread, which is driven by ensemble NWP rainfall
through a distributed hydrologic model. We also assessed
flood forecast uncertainty, which is under the condition
that ensemble NWP rainfall has not BIAS compared with
observed radar rainfall and catchment scale using an esti-
mation regression equation between ensemble NWP rainfall
and discharge based on the BIAS. Finally, we assessed flood
forecast uncertainty with RMSE using specific discharge in
catchment scale. Note that we focused not only on the
quantitative error propagation of rainfall forecast into flood
forecast but also the variability of flood forecast uncertainty
with catchment scale.

This paper has been organized in the following way.
After the Introduction, Section 2 introduces the design of
meteorological experiment for the Typhoon Talas event
and describes the target area and a hydrologic model, and
Section 3 addresses the results of uncertainty propagation
of NWP Rainfall Forecast to Flood Forecast with catch-
ment scale. Finally, we summarize our major conclusions in
Section 4.

2. Data and Methodology

2.1. Meteorological Data. In Japan, an operational one-week
ensemble prediction model from JMA was developed to pro-
vide probabilistic information of 51 ensemble members with
a horizontal resolution of 60 km, and it used to be applied for
hydrological applications (e.g., prior and optimized release
discharge for dam operation) [11]. However, operational
short-term (1-2 days) ensemble prediction with much finer
resolution has not yet been developed. For that reason,
studies on ensemble forecast systems that are composed of
11 members (1 unperturbed and 10 perturbed member) with
a horizontal resolution of 10 km and 2 km, the latter nested
inside the former with a 6-hour lag, have been conducted by
the Meteorological Research Institute (MRI) of JMA for the
2011 Typhoon Talas event.

Both 10 km and 2 km resolution systems used the JMA
Nonhydrostatic Model (NHM) as the forecast model [12, 13].
Whereas the 10 km resolution forecast adopted the cloud
microphysical process and Kain-Fritsch convective scheme,
the 2 km resolution forecast did not use a convective scheme
because of its cloud resolving resolutions. The coarse res-
olution system of 10 km had a domain of 361 × 289 grid
points with 50 vertical levels and forecasted up to 36 hours in
advance. For initial and lateral boundary conditions, 10 km
used the analysis from the JMA nonhydrostatic 4DVAR
(JNoVA) data assimilation system [14] and the forecasts
of JMA’s high-resolution (TL959L60) global spectral model
(GSM). The control run (cntl) is the forecast with a nonper-
turbed analysis, and the 10 perturbed forecastswere generated
from JMA’s 1-week global EPS (WEP) for the initial and
boundary perturbations.Thefine-resolution 2 km systemwas
conducted from the downscale forecast of 10 km resolution
systems. This system had a domain of 350 × 350 grid points
with 60 vertical levels and forecasted up to 30 hours in
advance.The domain of the two ensemble systemswith 10 km
and 2 km horizontal resolution are illustrated in Figure 1(a).
The initial and boundary conditions for eachmember at 2 km
were interpolated from the forecasts on the corresponding
member at 10 km resolution with a 6-hour lag. 10 km started
running at 21 JST every day, and 2 km began 6 hours later.
Figure 1(b) shows a schematic of forecast runs with 10 km and
2 km resolution.

In this study, we introduced the results of ensemble
prediction with a 2 km horizontal resolution due to the
viewpoints of high resolution and better predictability of
weather phenomena and used 4 sets of ensemble prediction
outputs with 30 hours forecast time to assess rainfall forecast
uncertainty and to understand howuncertainty in the rainfall
forecast may propagate throughout the watershed (Table 1).
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Figure 1: (a) Forecast domains of 10 km and 2 km horizontal resolution. (b) Schematic of forecast runs with 10 km and 2 km horizontal
resolution. The rectangle inside 2 km domain denotes the spatial verification area for Kinki region.

Table 1: Four forecast sets with 30 hours’ forecast time and 2 km
horizontal resolution used in the study. Each forecast is overlapped
with 6 hours.

Forecast
period

First forecast 2011/09/01 03:00–09/02 09:00 JST
Second forecast 2011/09/02 03:00–09/03 09:00 JST
Third forecast 2011/09/03 03:00–09/04 09:00 JST
Fourth forecast 2011/09/04 03:00–09/05 09:00 JST

And the ensemble NWP rainfall forecast in this study is
verified spatially against theMinistry of Land, Infrastructure,
Transport and Tourism (MLIT) C-band composite radar data
(radius of quantitative observation range: 120 km, 1 km mesh
and 5min resolution). Since the first installation of C-band
radar in Japan in 1976, the radars have installed all parts of
Japan gradually. Now 26 C-band radars cover and monitor
rainfall of all Japan. It is important to provide information
of river and basin rapidly to relevant authorities and people
in order to protect human life and property from disaster.
MLIT C-band radar provides wide observation range and is
useful for large river flood-management tool in observing the
seasonal rain front or typhoons.

2.2. Target Area and a Hydrologic Model. The Shingu river
basin was selected as the target area to assess rainfall forecast
uncertainty into streamflow forecast with spatial scale. The
Shingu river basin is located in the Kii Peninsula of the Kinki
area, Japan, and covers an area of 2,360 km2. The average
elevation of the study site is 644.6m, and the slope is steep;
this basin is a mountainous area. The five dams, Futatsuno,
Kazeya, Komori, Nanairo, and Ikehara, are located upstream.
The left and right sides of the Shing river basin exhibit
different characteristics. The left side is the Totsukawa basin,
and the right side is the Kitayamakawa basin. Their charac-
teristics are completely different. The elevation of Totsukawa
is higher than that of Kitayamakawa. And Kitayamakawa

Table 2: Subcatchment area at gauged and ungauged points.

Catchment Area (km2) Catchment Area (km2)
1 92.2 18 141.56
2 165.99 19 347.35
3 279.78 20 429.07
4 150.56 21 94.23
5 444.04 22 (Nanairo dam) 529.49
6 54.24 23 (Komori dam) 633.22
7 533.73 24 700.49
8 105.72 25 1090.92
9 (Kazeya dam) 656.08 26 56.68
10 65.97 27 65.20
11 766.19 28 1268.03
12 65.04 29 783.85
13 130.74 30 2091.38
14 (Futatsuno dam) 1012.15 31 110.92
15 112.13 32 2212.24
16 72.65 33 (Ouga station) 2245.56
17 (Ikehara dam) 203.27

has a lower level in the channel. We divided the Shingu
river basin into 33 subcatchments from 54.24 to 2245 km2
(Figure 2, Table 2), including 6 gauged (5 dams and 1 gauge
station) and 27 ungauged locations, for the assessment of
uncertainty of ensemble NWP rainfall into flood forecast
with catchment scale. At first, we divided the Shingu river
basin into 6 subcatchments including the 5 dams and 1 gauge
station, which have the observed discharge data. Then we
also divided the Shingu river basin into 33 subcatchments
from 54.24 to 2245 km2 by considering the channel junction
of tributaries using the drainage networks of digital elevation
model (DEM). Segond [9] specified the catchment into small
(<100 km2), medium (100–2000 km2), and large (>2000 km2)
catchments. However, the standard of catchment scale differs
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Figure 2: (a) 33 subcatchments including 6 gauged (5 dams and 1 gauge station) and 27 ungauged locations and (b) connections with flow
directions.

for different case studies, and the Shingu river basin covers
an area of 2,360 km2; thus, we specified 33 subcatchments
into 3 types, small catchment (<200 km2), medium catch-
ment (200∼1000 km2), and large catchment (>1000 km2)
to evaluate the variability with catchment scale. We also
divided catchment characteristics into 2 types, mountainous
area (>800m) and flat area (<800m) considering average
elevation (800m) of the 33 subcatchments.

We used a spatially distributed hydrologic model, based
on one-dimensional kinematic wave method for subsurface
and surface flow (hereafter, KWMSS) with a conceptual
stage-discharge relationship [15]. Figure 3 is a conceptu-
alization of spatial flow movement and flow process in
hillslope elements of KWMSS. The rainfall-runoff transfor-
mation conducted by KWMSS is based on the assump-
tion that each hillslope element is covered with a per-
meable soil layer. This soil layer consists of a capillary
layer and a noncapillary layer. In these conceptual soil
layers, slow and quick flow are simulated as unsaturated
Darcy flow and saturated Darcy flow, respectively, and over-
land flow occurs if water depth, ℎ [m], exceeds soil water
capacity:
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/𝑛 [m1/3s−1], 𝑚 = 5/3, 𝑖 is the slope gradient, 𝑘
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the hydraulic conductivity of the capillary soil layer, 𝑘
𝑎
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is the hydraulic conductivity of the noncapillary soil layer,
𝑛 [m−1/3s] is the roughness coefficient, 𝑑

𝑠
[m] is the water

depth corresponding to the water content, and 𝑑
𝑐
[m] is the

water depth corresponding to maximum water content in
the capillary pore. The flow rate of each hillslope element
𝑞 [m2/s] is calculated by (1) and combinedwith the continuity
equation for channel routing by (2). Many studies have
applied this hydrologic model in a variety of hydrologic
applications and have shown that this rainfall-runoff model
was effective, robust, and flexible [16–18].
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Table 3: Optimized parameter values from multicalibration using SCE-UA optimization method.

Parameter Description Optimal values
𝑛 Roughness coefficient [m−1/3s] 0.1284
𝑑
𝑐

Depth of the unsaturated soil layer [m] 0.2369
𝑑
𝑠

Depth of the saturated soil layer [m] 0.1442
𝑘
𝑎

Hydraulic conductivity of the saturated soil layer [m/s] 0.0150
𝛽 Nonlinear exponent constant for the unsaturated soil layer [−] 3.7898

D

ds

ds

dc

dc

Noncapillary pore
Saturated flow
Capillary pore

Unsaturated flow

Soil

q

h

q = �cdc + �a(h − dc) + 𝛼(h − ds)
m

q = �cdc + �a(h − dc)

q = �cdc(h/dc)
𝛽

Figure 3: Conceptualization of spatial flow movement and flow
process in hillslope elements; the arrows indicate element models
for calculating hydrological variables, such as water flux.

There was no observed discharge data in subcatchments,
except in 5 dams and 1 gauge station. For that reason, the
parameter optimization of the hydrologic model was con-
ducted using the Ministry of Land, Infrastructure, Transport
and Tourism (MLIT) C-band composite radar data, which
has high spatial-temporal resolution to capture the spatial
variability of rainfall. However, in spite of the high-resolution
accuracy of radar data, parameterization associated with soil
parameters of hydrological model remains uncertain due
to impossibility of direct observation and use of the soil
parameters (i.e., discordance between soil properties and
model parameters). Therefore, we assumed that parameters
of hydrologic model in Table 3 are spatially homogenous
over the 33 subcatchments. The Shuffled Complex Evolution
(SCE) global optimization method [19] was used for the
parameter optimization of the hydrologic model using MLIT
composite radar rainfall to acquire the reference data of the
33 subcatchments. The SCE-UA, one of the computer-based
automatic optimization algorithms, is a single-objective
optimization method designed to handle high parameter
dimensionality encountered in calibration of a nonlinear
hydrologic simulation model. Basically, this scheme is based

on the following three concepts: (1) combination of sim-
plex procedure using the concepts of a controlled random
search approach; (2) competitive evolution; and (3) complex
shuffling. The integration of these steps makes the SCE-
UA effective, robust, and flexible. In this study, the SCE-
UA optimization method was modified to minimize the
objective function between observed inflows and simulated
results for all 5 dams and 1 gauge station at the same time
(Equation (3)). The hydrologic model used here provides
output variable of the discharge at the outlet of interest that
our target is to find the near-optimal parameter values. We
selected objective function using the root mean square error
(RMSE). Table 3 summarizes the optimized parameter values
from multicalibration using SCE-UA optimization method,
and Figure 4 shows the results of multicalibration using the
SCE-UA optimization method and minimizing the objective
function of 6 observation points:

Minimize OF =
6

∑

Basin=1
RMSEBasin. (3)

Observed radar data and its simulated discharge were used
as reference data to compare the ensemble NWP rainfall
forecast and flood forecast for the assessment of uncertainty
propagation in 33 subcatchments. Although the simulated
discharge from observed radar rainfall does not specifically
represent the true discharge, the simulated discharge from
the observed radar data is nevertheless set as reference data
for comparison with the discharge from ensemble prediction
data.

2.3. Skill Score Descriptions. To evaluate the accuracy of the
ensemble forecast in terms of areal rainfall intensity, we
calculated two error indexes. The first is the normalized root
mean square error (RMSE), which is normalized by themean
value of the observations during the each forecast period
(30 hours). The second is the log ratio bias, which a relative
error and provides information about the total amount of
rainfall. A log ratio bias value of zero indicates a perfect
forecast; positive and negative values indicate underestimated
and overestimated forecasts, respectively:

Nor. RMSE =

√(1/𝑁)∑
𝑁

𝑡=1
(𝑂
𝑡
− 𝐹
𝑡
)
2

𝑂

,

log ratio BIAS = log
∑
𝑁

𝑡=1
𝑂
𝑡

∑
𝑁

𝑡=1
𝐹
𝑡

,

(4)
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Figure 4: Multicalibration using SCE optimization method and minimizing the objective function of 6 observation points.

where𝑁 is forecast time (30 hours) in each period and𝑂
𝑡
and

𝐹
𝑡
are the observed and forecasted rainfall at time 𝑡.
For the spatial verification of ensemble NWP rainfall,

the rainfall forecasts have been verified spatially against the
MLIT C-band composite radar data. The ensemble forecast

was expressed as probabilities of exceeding selected rainfall
thresholds (1.0 and 5.0mm/h). A contingency table can be
constructed with a spatial comparison, in which each area
with more than selected rainfall threshold is defined as “yes,”
and other areas are defined as “no” for both forecasted



Advances in Meteorology 7

and observed rainfall fields. In this study, two indexes are
considered for spatial verification of ensemble forecast in the
Kinki region (Figure 1). First index is critical success index
(CSI), which is also called the “threat score” and its range is 0
to 1, with a value of 1 indicating a perfect forecast. It takes into
account both false alarms andmissed events. And second one
is BIAS, which has range with 0 to∞. CSI and BIAS are given
by

CSI = hits
hits +misses + false alarms

,

BIAS = hits + false alarms
hits +misses

,

(5)

where hits are the number of correct forecasts over the
threshold (i.e., rainfall is forecast and also observed), and
misses are the number of times rainfall is not forecast but
is observed. False alarms are the number of times rainfall is
forecast but is not observed.

Rainfall forecast error of ensemble outputs from theNWP
model is compared with the flood forecast error driven by
those rainfall forecasts to assess the uncertainty propagation.
It is important, however, to quantify uncertainty propagation
from rainfall forecast to flood forecast using statistical mea-
sures that appropriately capture forecast deviations. For this
reason, the BIAS was used to compare the mean conditions
in the forecast and observation in terms of rainfall and flood
forecast and to measure error amplification. Note that the
BIAS of the basin-mean rainfall is directly compared with the
discharge BIAS, and the BIAS is used for an average value
of 30 hours of forecast time of rainfall and flood forecast
results. Furthermore, the results are classified according to
the forecast period of ensemble rainfall from theNWPmodel:

BIAS
𝑖
=
∑
𝑁

𝑡=1
𝐹
𝑖,𝑡

∑
𝑁

𝑡=1
𝑂
𝑡

, (6)

where 𝑁 is the forecast time of each forecast period (30
hours); 𝑂

𝑡
and 𝐹

𝑡
are the observed and forecasted rainfall

and discharge at time 𝑡, respectively; and 𝑖 is each ensemble
forecast (11 ensemble members).

For the evaluation of the variability of flood forecast
uncertainty according to catchment scale, the mean value of
the coefficient of variation (CV), which is a normalized mea-
sure of dispersion of a probability distribution or frequency
distribution, was used (Equation (7)). It is defined as the ratio
of the standard deviation to the mean. The absolute value of
the CV is sometimes known as relative standard deviation
(RSD), which is expressed as a percentage. The coefficient of
variation determines the risk:

Ave. CV
𝑖
=
∑
𝑁

𝑡=1
(𝜎
𝑖,𝑡
/𝜇
𝑖,𝑡
)

𝑁
, (7)

where 𝑁 is the forecast time of each forecast period (30
hours), and 𝜎

𝑖,𝑡
and 𝜇
𝑖,𝑡
are the standard deviation to themean

value of the flood forecast at each ensemble 𝑖 and time 𝑡,
respectively.

3. Results and Discussion

3.1. Rainfall Verification. For the purpose of temporal verifi-
cation of QPF with ensemble NWP rainfall during the Talas
event, the areal rainfall intensity of ensemble forecasts is
compared with the Automated Meteorological Data Acqui-
sition System (AMeDAS) over the Shingu river basin. For
comparison, the observed rainfall of AMeDAS (18 stations,
10min step) is interpolated using theThiessen polygon spatial
distribution method.

Figure 5 shows areal rainfall of ensemble forecast over
the Shingu river basin in the form of box plots plotted from
0 to 24 hours forecast time of ensemble forecast excluding
overlapped forecast time (from 25 to 30 hours) compared
with the areal rainfall of AMeDAS. In the 1st and 2nd
forecast periods, the control run (unperturbed member) and
ensemble (perturbedmembers) forecasts produced a suitable
areal rainfall compared with the AMeDAS rainfall, but as
shown in the 3rd forecast result, the control run forecast
was not well matched and did not produce the rainfall
intensity because the spatial pattern of rain cells moved
to the north-eastern part of Kii peninsula quickly by that
the MSM failed to correctly forecast, as mentioned in the
Introduction. On the other hand, the upper range of the
ensemble forecast was able to produce considerable rainfall
intensity, and the amounts of maximum rainfall intensity
are also similar to AMeDAS rainfall. In 4th forecast period,
the reason why rainfall intensities are overestimated can be
explained by the fact that the last spatial rainfall pattern of
the 3rd forecast moved to the north-eastern part of the Kii
peninsula; however, it started the forecast again from the Kii
peninsula in the 4th forecast. For this reason, rainfall intensi-
ties were very high in the 4th forecast period compared with
AMeDAS.

In the index of normalized RMSE, the control run and
ensemble mean have similar values from 1st to 3rd forecast
period, but the best index of the ensemble spread could
provide good value as compared with the deterministic
control run. In the 4th forecast period, as mentioned above,
the index of the control run and ensemble spread is relatively
large, but the best index of the ensemble is estimated at
0.89 (the control run is 3.85). In the index of the log ratio
bias, the best index of ensemble spread could cover zero
value (perfect forecast), whereas the control run forecast
was underestimated for the 1st, 2nd, and 3rd forecasts and
overestimated for the 4th forecast period.

Figure 6 shows the results of Critical Success Index (CSI)
and BIAS in a comparison of radar data and ensemble
forecasts with selected rainfall thresholds (1.0 and 5.0mm/h)
during the 1st, 2nd, 3rd, and 4th forecast periods. In the 1st
forecast period of CSI with 1.0mm/h threshold value, ensem-
ble spread could provide better results than deterministic
control run after 17 hours’ forecast time, whereas the CSI of
control run is close to the ensemble mean value. In the 2nd
forecast period, although the CSI of control run are better
than ensemble mean, the best index of the ensemble spread
outperformed the control run. In the 3rd forecast period,
as stated above, the spatial pattern of rain cells moved to
the north-eastern part of Kii peninsula quickly, so the CSI
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Figure 5: (a) Ensemble areal rainfall forecast over the Shingu river basin in the form of box plots plotted from 0 to 24 hr forecast time,
excluding overlapped forecast time (from 25 to 30 hr) for the overall comparison for the Typhoon Talas. (b) Verification results of areal
rainfall with normalized RMSE and log ratio bias for Typhoon Talas. Red circles and black squares mean the indexes of the control run and
the mean value of ensemble forecast, respectively. The lower and upper bounds of the black lines correspond to the minimum and maximum
values, respectively.

of control run decreased as lead time increased, whereas
the best value of ensemble spread could provide the better
result than the control run. In the 4th forecast period, the
control run was close to the ensemble mean, and ensemble
spread could cover the control run. In the 3rd forecast period
with 1.0 and 5.0mm/h threshold value, the BIAS decreased
quickly as lead time increased. However, the best values of
the ensemble spread could maintain higher forecast accuracy
compared to the control run forecast. It showed that ensemble
forecasts have an advantage in terms of spatial accuracy,
although lower value of ensemble forecasts exists in each
forecast period as lead time increases.

3.2. Uncertainty Propagation of NWP Rainfall Forecast to
Flood Forecast. We conducted the ensemble flood forecasts
of 33 subcatchments in the Shingu river basin for an assess-
ment of the ensemble flood forecast driven by ensemble
NWP rainfall. Simulated discharges from the observed radar
rainfall were used as the initial condition for the ensemble
flood forecast in each forecast period. Figure 7 shows the
results of the 30 hours’ ensemble flood forecast from first
to fourth forecast periods over the 33 subcatchments for
Typhoon Talas event. Figure 5 illustrates a complete set of the
forecasted discharge for the ensemble range (grey curve), the
ensemble mean (red curve), and observed radar discharge
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data of 33 subcatchment outlet points (bold black curve).
Through Figure 5, the ensemble rainfall from NWP model
from the first to the fourth forecasts produced a suitable
discharge, but average ensemble values were lower than the
observed radar discharge of the 2nd forecast period over
the 33 subcatchments, caused by the underestimation of the
rainfall forecast. In the 3rd forecast period of peak discharge,
the average ensemble rainfall was typically lower than the
observed discharge, caused by the spatial shift of ensemble
NWP rainfall from the correct spatial position. The majority
of ensemble members were also lower than the observed dis-
charge, but a few ensemble members exceeded the observed
radar discharge and were close to the observed discharge.
In the 4th forecast period, the ensemble forecasts were well
matched to observed radar discharge and were overestimated
because the overestimation in rainfall forecast triggered a
runoff overestimation. From the results of ensemble flood
forecast over the 33 subcatchments, flood forecasts driven
by ensemble outputs produced suitable results but showed
that in general it has a large proportion of under- and
overpredictions at low lead times and exhibit a negative bias
at longer lead times.

Figure 8 presents a comparison of rainfall and flood fore-
cast errors from the first to the fourth forecast periods with
linear regression equations based on a statistical measure,
the BIAS, for 33 subcatchments of the Shingu river basin
represented in Figure 2. Through Figure 8, rainfall forecast
errors lead to proportional flood forecast errors with linear
regression equations. The discharge BIAS varies based on
the same rainfall BIAS, so the discharge BIAS is different
based on catchment scale. For small catchments, rainfall
errors from forecast location error occur sensitively due to
rainfall pixels of NWP model, which does not cover the
small catchment exactly. For larger catchments, many rainfall
pixels contribute to the rainfall forecast error propagation
in the flood forecast. Therefore, the variability of flood
forecast uncertainty according to catchment scale should be
investigated.

3.3. Flood Forecast Uncertainty with Catchment Scale. As
mentioned above, the Shingu river basin is divided into 33
subcatchments from 54.24 to 2245 km2, including 6 gauged
and 27 ungauged locations, for the assessment of uncertainty
of ensemble NWP rainfall into flood forecast with catchment
scale.The Shingu river basin has 3 types (small, medium, and
large catchments) and 2 characteristics (mountainous and flat
area) for evaluation of the variability with catchment scale.

Figure 9 shows the flood forecast variability expressed
by coefficient of variation using ensemble spread of the
flood forecasting with catchment scale and characteristic.
Each CV value refers to the average value from the first
to the fourth forecast periods and shows CV values for
3 types of the small (red point), medium (blue point),
and large (grey point) catchments and 2 characteristics of
mountainous (large point) and flat (small point) area for
evaluation of the variability with catchment scale. It is evident
from Figure 9 that the coefficient of variation in medium
and large catchments is close to 0.25, and this is maintained
as the catchment increases. For small catchments, however,

there is a larger variability than for medium and large
catchments, and small catchments have a high coefficient
of variation (>0.3). This result suggests that uncertainty
variability occurs sensitively and diversely at the same time in
different catchments, and small catchments have more sensi-
tive variability in uncertainty. Therefore, flood forecasting in
small catchment requires care due to the large variability of
uncertainty. On the other hand, in medium and large catch-
ments, there is less uncertainty than with small catchments,
and the coefficient of variation converges into a uniform
value.

Flood forecast uncertainty focuses on the discharge
uncertainty with catchment scale and was assessed when
rainfall BIAS was 1, using an estimated linear regression
equation between each ensemble rainfall BIAS and discharge
BIAS of 33 subcatchments. Figure 10 compares the rainfall
BIAS of ensemble members and discharge BIAS driven by
those rainfall forecasts in each subcatchment and linear
regression equation. From Figure 8, the relationship between
rainfall forecast errors and flood forecast errors is propor-
tional in ensemble members to the linear regression equation
and is different with catchment scale. And as a result of
separation of the forecast BIAS by each subcatchment, we
obtain 132 linear regression equations for 33 subcatchments
and 4 forecast periods. Then we calculate the discharge BIAS
when rainfall BIAS is 1 using a linear regression equation
for each subcatchment to focus on the discharge BIAS with
catchment scale.

Figure 11 represents the discharge BIAS. It is assumed
that rainfall forecast has no error compared to observed
radar rainfall (rainfall BIAS is 1 using the linear regression
equation) with catchment scale and characteristic. Figure 11
shows that there is a discharge BIAS in all of small, medium,
and large catchments even though rainfall forecast has no
errors compared to observed radar rainfall. This is due to
the spatial variability of rainfall, even though basin-mean
rainfall is similar to the observed radar rainfall. As an
example, Lee et al. [20] showed that input uncertainty is
due to spatial variability of rainfall on catchment responses
in rainfall-runoff modeling. As stated above, however, we
focused not only on the quantitative error propagation of
rainfall forecast into flood forecast but also on the variability
of flood forecast uncertainty with catchment scale. The dis-
charge BIAS in medium and large catchments has properties
similar to those of the coefficient of variation in Figure 9.
The small catchments indicate large variability of discharge
BIAS.

Figure 12 represents the flood forecast uncertainty with
root mean square error (RMSE) using specific discharge
(discharge/catchment scale) of outlets with catchment scale.
Figure 12 demonstrates properties similar to those resulting
from the coefficient of variation and BIAS in Figures 9 and 11,
respectively. In medium catchments, however, there are two
types of characteristics in forecast uncertainty variability. In
mountainous areas, discharge RMSE is less than that in flat
areas, and this characteristic is also seen in Totsukawa and
Kitayamaka, the left and right sides of the Shingu river basin,
respectively.
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Figure 7: Continued.



12 Advances in Meteorology

Number 19 Number 20 Number 21

Number 22 Number 23 Number 24

Number 25 Number 26 Number 27

Number 28 Number 29 Number 30

Number 31 Number 32 Number 33

8000
6000
4000
2000

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

8000
10000
12000

6000
4000
2000

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

8000
10000
12000

6000
4000
2000

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

9000
12000
15000

6000
3000

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

1500
2000
2500

1000
500

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

10000
8000
6000
4000
2000

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)
12000
10000

8000
6000
4000
2000

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)
1000

800
600
400
200

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

25000
20000
15000
10000

5000
0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

Ensembles
Average

Observed radar Ensembles
Average

Observed radar Ensembles
Average

Observed radar

D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

9000
12000
15000

6000
3000

0

2000
1500
1000

500
0D

isc
ha

rg
e (

m
3 /s

)

12000
10000

8000
6000
4000
2000

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)
1500
1200

900
600
300

0D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

25000
20000
15000
10000

5000
0D

isc
ha

rg
e (

m
3 /s

)

Time (hour)

D
isc

ha
rg

e (
m

3 /s
)

Time (hour)

15000
20000
25000

10000
5000

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

9/
1/

03
:0

0

9/
2/

03
:0

0

9/
3/

03
:0

0

9/
4/

03
:0

0

9/
5/

03
:0

0

Figure 7: Flood forecast results in over 33 subcatchments. Grey line represents the each forecasted discharge driven by 11 ensemble NWP
rainfall. Red curve illustrates the ensemble average results. Black line represents the observed radar discharge of 33 subcatchments.

4. Concluding Remarks

Forecast uncertainty of NWP models is usually assumed to
represent the largest source of uncertainty on flood forecasts.
However, there are in fact many sources of uncertainties

in the flood forecasts which could also be significant, for
example, the corrections and downscaling mentioned above
and spatial and temporal uncertainties as input into the
hydrological simulations including data assimilation. And
the different types of uncertainty will vary with lead time
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Figure 10: Continued.
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Figure 10: Continued.
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Figure 10: Comparison of rainfall and discharge BIAS of ensemble members in each subcatchment and linear regression equation.
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Figure 11: Flood forecast variability expressed by BIAS with catch-
ment scale and characteristic. Red, blue, and gray points repre-
sent the small catchment (<200 km2), medium catchment (200∼
1000 km2), and large catchment (>1000 km2), respectively. And we
also divided catchment characteristics into 2 types, mountainous
area (>800m, big point) and flat area (<800m, small point)
considering average elevation (800m) of the 33 subcatchments.

0
0.5

1
1.5

2
2.5

3
3.5

0 400 800 1200 1600 2000 2400

RM
SE

Catchment scale (km2)

<200 km2

<1000 km2

>1000 km2
>800m
<800m

Figure 12: Flood forecast variability expressed by RMSE with
catchment scale and characteristic. Red, blue, and gray points
represent the small catchment (<200 km2), medium catchment
(200∼1000 km2), and large catchment (>1000 km2), respectively.
And we also divided catchment characteristics into 2 types, moun-
tainous area (>800m, big point) and flat area (<800m, small point)
considering average elevation (800m) of the 33 subcatchments.

of the forecasts and with the magnitude of the event and
catchment characteristics. Ensemble flood forecasting by
ensemble NWP rainfall is specifically designed to capture the
uncertainty, by representing a set of possible future states
of the atmosphere. This uncertainty can then be cascaded
through flood forecasting systems to produce an uncertain
or probabilistic prediction of flooding. In many cases, the
potential of flood forecasting is described alongside cautious
notes regarding variability, uncertainty, communication of
ensemble information, need for decision support, and prob-
lems of using short time series [9]. Therefore, it is important
to assess the forecast rainfall uncertainty in terms of the effect
on runoff, and uncertainties based on spatial scale are also
important for the information of real-time flood forecast.

The main objective of this study is to investigate the error
and uncertainty propagation due toNWP rainfall uncertainty
on hydrological response through a distributed hydrologic
model depending on catchment scale. First, we conducted the
ensemble flood forecasts of 33 subcatchments in the Shingu
river basin for an assessment of the ensemble flood forecast
driven by ensemble NWP rainfall and compared forecast
rainfall error based on the BIAS, which is used to measure
error amplification, to flood forecast error driven by ensemble
NWP forecast outputs to assess error propagation. Second,
we discussed the variability of flood forecast uncertainty
according to catchment scale using ensemble spread by
ensemble NWP rainfall through a distributed hydrologic
model. Finally, we assessed the flood forecast uncertainty
using an estimation regression equation between ensemble
NWP rainfall and discharge based on the BIAS and also
assessed the flood forecast uncertainty with RMSE using
specific discharge in catchment scale.

From the results, the ensemble flood forecast over the
33 subcatchments and flood forecasts driven by ensemble
outputs produced suitable results but showed that in general
it has a large proportion of under- and overpredictions
at low lead times and exhibit a negative bias at longer
lead times. And this study demonstrates that uncertainty
variability occurs sensitively and diversely at the same time
in different catchments, and small catchments have sensitive
variability of uncertainty. General findings from this study
are the fact that smaller catchments demonstrate a larger
uncertainty in the flood forecast. Therefore, flood forecasting
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in small catchment should be careful due to the large
variability of uncertainty. On the other hand, in medium
and large catchments, there is less uncertainty than in small
catchments as would be expected due to the smoothing
effects of modeling a larger catchment. The ensemble fore-
casts are specifically designed to capture the uncertainty
in NWPs, by representing a set of possible future states
of the atmosphere. This uncertainty can then be cascaded
through flood forecasting systems to produce an uncertain or
probabilistic prediction of flooding. In order to use ensemble
forecasts of NWP model for flood forecasts effectively, it is
important to establish methodologies to analyze ensemble
flood forecasts. To reduce the uncertainty of rainfall and flood
forecasts, the bias correction and/or hybrid products with
radar-based prediction are required to achieve more reliable
hydrologic predictions; bias correction and blending method
for accuracy improvement was addressed in Yu et al. [21]. In
further research, we need to verify the applicability through
a number of case studies, and we expect it to be used in
hydrological applications such as real-time flood forecasting
for warning system and optimized release discharge for dam
operation.
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[5] J. Komma, C. Reszler, G. Blöschl, and T. Haiden, “Ensemble
prediction of floods—catchment non-linearity and forecast
probabilities,” Natural Hazards and Earth System Science, vol.
7, pp. 431–444, 2007.

[6] Y. Xuan, I. D. Cluckie, and Y. Wang, “Uncertainty analysis of
hydrological ensemble forecasts in a distributed model utilising
short-range rainfall prediction,” Hydrology and Earth System
Sciences, vol. 13, no. 3, pp. 293–303, 2009.

[7] E. R. Vivoni, D. Entekhabi, and R. N. Hoffman, “Error prop-
agation of radar rainfall nowcasting fields through a fully
distributed flood forecasting model,” Journal of Applied Mete-
orology and Climatology, vol. 46, no. 6, pp. 932–940, 2007.

[8] J. D. Michaud and S. Sorooshian, “Effect of rainfall-sampling
errors on simulations of desert flash floods,” Water Resources
Research, vol. 30, no. 10, pp. 2765–2775, 1994.

[9] M. L. Segond, Stochastic modelling of space-time rainfall and
the significance of Spatial data for flood runoff generation
[Ph.D. dissertation], Department of Civil and Environmental
Engineering, Imperial College London, London, UK, 2006.

[10] H. L. Cloke and F. Pappenberger, “Ensemble flood forecasting:
a review,” Journal of Hydrology, vol. 375, no. 3-4, pp. 613–626,
2009.

[11] T. Matsubara, S. Kasahara, Y. Shimada, E. Nakakita, K.
Tsuchida, andN. Takada, “Study on applicability of information
of typhoons and GSM for dam operation,” Annual Journal of
Hydraulic Engineering, vol. 69, no. 4, pp. 367–372, 2013.

[12] K. Saito, T. Fujita, Y. Yamada et al., “The operational JMA
nonhydrostatic mesoscale model,” Monthly Weather Review,
vol. 134, no. 4, pp. 1266–1298, 2006.

[13] K. Saito, “The JMA nonhydrostatic model and its applications
to operation and research,” in Atmospheric Model Applications,
I. Yucel, Ed., chapter 5, pp. 85–110, InTech, Rijeka, Croatia, 2012.

[14] Y. Honda and K. Sawada, “A new 4D-Var for mesoscale analysis
at the Japan meteorological agency,” CAS/JSC WGNE Research
Activities in Atmospheric and Oceanic Modelling, vol. 38, pp.
01.7–01.8, 2008.

[15] Y. Tachikawa, G. Nagatani, and K. Takara, “Development of
stage-discharge relationship equation incorporating saturated-
unsaturated flow mechanism,” Annual Journal of Hydraulic
Engineering, vol. 48, pp. 7–12, 2004.

[16] T. Sayama, Y. Tachikawa, K. Takara, and Y. Ichikawa, “Devel-
opment of a real-time distributed flood prediction system in
a flow regulated river basin,” in Proceedings of the 3rd Asia
Pacific Association of Hydrology andWater Resources Conference
(APHW ’06), Bangkok, Thailand, October 2006.

[17] S. Kim, Y. Tachikawa, T. Sayama, and K. Takara, “Ensemble
flood forecasting with stochastic radar image extrapolation and
a distributed hydrologic model,” Hydrological Processes, vol. 23,
no. 4, pp. 597–611, 2009.

[18] W. Yu, E. Nakakita, and K. Yamaguchi, “Assessment of prob-
abilistic flood Forecasting using ensemble NWP rainfall with
30hr forecast time during typhoon events,” Advances in River
Engineering, vol. 19, pp. 235–240, 2013.

[19] Q. Duan, S. Sorooshian, and V. K. Gupta, “Optimal use of the
SCE-UA global optimization method for calibrating watershed
models,” Journal of Hydrology, vol. 158, no. 3-4, pp. 265–284,
1994.

[20] G. Lee, Y. Tachikawa, and K. Takara, “Assessment of prediction
uncertainty under scale-dependant condition of rainfall runoff
modeling,” Annuals of Disaster Prevention Research Institute,
Kyoto University, vol. 51, pp. 29–50, 2008.

[21] W. Yu, E. Nakakita, S. Kim, andK. Yamaguchi, “Improvement of
rainfall and flood forecasts by blending ensemble NWP rainfall
with radar prediction considering orographic rainfall,” Journal
of Hydrology, 2015.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Climatology
Journal of

Ecology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Earthquakes
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2014

Mining

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal of

Geophysics

Oceanography
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

  Journal of 
 Computational 
Environmental Sciences
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of
Petroleum Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geochemistry
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Atmospheric Sciences
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oceanography
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mineralogy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Meteorology
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Paleontology Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geological Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geology  
Advances in


