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This study introduces a modified version of the incremental analysis updates (IAU), called the nonstationary IAU (NIAU) method,
to improve the assimilation accuracy of the IAU while keeping the continuity of the analysis. Similar to the IAU, the NIAU is
designed to add analysis increments at every model time step to improve the continuity in the intermittent data assimilation.
However, unlike the IAU, the NIAU procedure uses time-evolved forcing using the forward operator as corrections to the model.
The solution of the NIAU is superior to that of the forward IAU, of which analysis is performed at the beginning of the time window
for adding the IAU forcing, in terms of the accuracy of the analysis field. It is because, in the linear systems, the NIAU solution
equals that in an intermittent data assimilation method at the end of the assimilation interval. To have the filtering property in the
NIAU, a forward operator to propagate the increment is reconstructed with only dominant singular vectors. An illustration of those
advantages of the NIAU is given using the simple 40-variable Lorenz model.

1. Introduction

Data assimilation is a mathematically rigorous procedure of
combining forecast models with relatively sparse, discontin-
uous observations to obtain an optimal estimation of the
underlying system state. The theory and practice of data
assimilation are continuously evolvingwith several issues still
needing to be fully addressed. One of these issues is related to
the intermittence of certain assimilation schemes.The initial-
ization problem relates to the discontinuities introduced in
the model integration right after the model is restarted from
the assimilated fields, which can destroy the intrinsic balances
of the model and cause spurious high-frequency oscillations
[1, 2].

To prevent these problems, Bloomet al. [2] introduced the
incremental analysis updates (IAU). The IAU distributes the
analysis increments over a fixed assimilation time window. It
allows one to smoothly determine the influence of the obser-
vations without the use of an explicit initialization procedure,
such as the use of nonlinear normal modes [3]. The IAU

behaves like a low-pass filter and dampens high-frequency
oscillations [4].This property of filtering spurious oscillations
is important in significantly improving operational forecasts,
because the high-frequency waves dominate most of the
initial forecast errors [5].Therefore, the IAUmethod has been
widely used in many atmospheric and oceanic data assimi-
lation systems [6–8]. Even though most of the atmospheric
assimilation system adopted original Bloom’s algorithm that
the analysis is performed at the middle of the time windows
for adding the IAU forcing, this type of the IAU (i.e., centered
IAU) has a deficiency to be applied in the complex ocean-
atmospheric coupled GCM as the computational time is
increased 1.5 times than that in the intermittent method.That
is, first half of the time window for adding the IAU forcing
should be computed twice to calculate the observational
increment and to add the increment. To avoid this time
overlapping, several operational data assimilation products
implemented the IAU that the analysis is performed at the
beginning of the time window for the IAU (i.e., forward IAU)
[6, 9, 10].
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While there is an advantage in terms of this filtering
property, the IAU produces assimilated fields that are less
accurate than those of the intermittent assimilation proce-
dure. It represents a suboptimal solution to the assimilation
problem (as pointed out by [2]). For example,Ourmières et al.
[11] have shown the root-mean-square (RMS) error using the
assimilating fields updated by IAU isworse than that obtained
by using an intermittent assimilation scheme.

To overcome the deficiency of the IAU, a weighting
function, which is a function of time, is multiplied by the
constant IAU forcing. For example, Bergemann and Reich
[12] applied a hat function to decrease the IAU forcing as
the difference between the increment calculation time and
the increment-addition time increases. Similarly, an IAU
with a weighting function based on a sinusoidal function is
comparable to a digital filter that can filter out high-frequency
noise without excessive dampening of the slower waves [4].
Even though there is improvement in applying weighting
functions to IAU forcing, the selection of the weighting
function is arbitrary and problematic, and the inconsistency
between the timing for calculating the increment and that of
adding the increment still exists.

With this issue in mind, this study introduces a modified
version of the IAU, referred to as the nonstationary incremen-
tal analysis updates (NIAU) method as a potential alternative
to the forward IAU. In NIAU, the forcing term is evolved
over time using a forecastingmodel-derived formulation (see
Section 2 for the details). Section 2 introduces the properties
of the NIAU. Section 3 illustrates the experimental design,
and Section 4 shows the performance of the NIAU in a
Lorenz-96 model consisting of 40 variables [13]. Section 5
presents a brief summary.

2. Description and Characteristics of
the Nonstationary IAU (NIAU) Procedure

2.1.The IAU and the Nonstationary IAU (NIAU). The analysis
equation for the intermittent assimilation has the form x𝑎0 =
x𝑏0 + Δx0, where Δx0 = P𝑏0H

𝑇[HP𝑏0H
𝑇 + R]−1[y −H(x𝑏0)]. The

terms Δx0, x𝑎0 , and x𝑏0 are the analysis increment, the analysis,
and the background fields, respectively; y is the observation;
and P𝑏0,R, andH are the background error covariance at time
0, the observational error covariance, and the observation
operator, respectively.

The time differencing scheme to integrate the forecasting
model is applied 𝑁 times between two consecutive analysis
times. Using the observational increment at time 0, the IAU
is applied between two analysis times (i.e., between 0 and
𝜏 = 𝑁Δ𝑡, where Δ𝑡 is the model time step). Note that this
slightly differs from that introduced in Bloom et al. [2], which
performs the analysis at the middle of the time windows to
add the increment. This type of the IAU is utilized in several
operational data assimilation products [6, 9, 10] to avoid an
overlapping period before the analysis time as mentioned in
Introduction.

Then, the IAU is in the form,

x𝑏𝑛 = 𝑀𝑛−1 (x𝑏𝑛−1) + f , 𝑛 = 1, . . . , 𝑁, (1)

where f = Δx0/𝑁 is the state-independent forcing of the IAU.
The subscript 𝑛 is defined for times 0 to 𝜏. The operator𝑀𝑛−1
corresponds to the nonlinear dynamics integrating from time
(𝑛 − 1)Δ𝑡 to time 𝑛Δ𝑡, and x𝑏𝑛−1 is the background vector at
time (𝑛 − 1)Δ𝑡. Equation (1) implies that constant forcing f is
added at every time step.

Alternatively, the proposed NIAU procedure obtains the
state of time 𝑛Δ𝑡 as

x𝑏𝑛 = 𝑀𝑛−1 (x𝑏𝑛−1) +M𝑛−1 ⋅ ⋅ ⋅M1M0f , (2)

where the matrixM𝑛−1 is the linear operator of the nonlinear
model𝑀 linearized about the state vectors x𝑏𝑛−1 (i.e., Tangent
Linear Operator, TLM). The main difference between NIAU
and IAU is that the NIAU forcing evolves over time by using
the TLM per each time step.

The solution of the NIAU at the end of each assimilation
cycle is expected to be quite similar to that of the intermittent
method. In an intermittent method, the state at the end of the
assimilation cycle is

x𝑁 = 𝑀𝑁−1 ⋅ ⋅ ⋅ (𝑀1 (𝑀0 (x𝑏0 + Δx0))) . (3)

This can be approximated using a first-order approximation
as follows:

x𝑁 ≈ 𝑀𝑁−1 ⋅ ⋅ ⋅ (𝑀1 (𝑀0 (x𝑏0))) +
𝑁−1

∏
𝑛=0

M𝑛Δx0

= x𝑏𝑁 +
𝑁−1

∏
𝑛=0

M𝑛Δx0,
(4)

where M𝑛 = (𝜕𝑀/𝜕x)|x𝑛 is the TLM linearized around x𝑛
and x𝑏𝑛 = M𝑛−1 ⋅ ⋅ ⋅ (M1(M0(x𝑏0))). Under the perfect model
assumption, x𝑁 is the optimal solution with all observations
before the𝑁th time step taken into account.

In the NIAU case where the analysis state is denoted with
the hat function, the state at the end of the assimilation cycle
is obtained from the iterative procedure

x̂1 = 𝑀0 (x𝑏0) + M̂0f ,
x̂2 = 𝑀1 (𝑀0 (x𝑏0) + M̂0f) + M̂1M̂0f = x̂𝑏2 + 2M̂1M̂0f ,

(5)

where M̂𝑛 = (𝜕𝑀/𝜕x)|x̂𝑛 for 𝑛 = 1, . . . , 𝑁. Hence, the NIAU
value at the end of the assimilation cycle is nearly equal to

x̂𝑁 = x𝑏𝑁 +
𝑁−1

∏
𝑛=0

𝑁M̂𝑛f = x𝑏𝑁 +
𝑁−1

∏
𝑛=0

M̂𝑛Δx0. (6)

Comparing this equation with (4), the NIAU state propagates
in a similar way as the first-order approximation of the
propagation of the intermittent analysis.

Analogously, the first two iterations of IAU in which the
analysis state is denoted with a tilde give

x̃2 = 𝑀1 (𝑀0 (x𝑏0) + M̃0f) + M̃1f

= x𝑏2 + M̃1M̃0f + M̃1f ,
(7)
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Figure 1:The schematic diagram of the IAU (blue), the NIAU (red),
and the intermittent method (gray). It is assumed that the total time
step (𝑁) is 3, and the system is linear.

where M̃1 = (𝜕𝑀/𝜕x)|x̃1 . At the end of the assimilation cycle,
the analyzed state is of the form

x̃𝑁 = x𝑏𝑁 +
𝑁−1

∑
𝑛=0

M̃𝑁−1M̃𝑁−2 ⋅ ⋅ ⋅ M̃𝑛f , (8)

and therefore it is quite different from the solution of the
intermittent assimilation.

Figure 1 is a schematic diagram that shows that the
solution of the NIAU is equivalent to that of the intermittent
method at the end of the assimilation cycle. In the schematics,
a simple linear system is assumed that the values are doubled
at each time step. Because the IAU forcing is constant, the
analysis value of the IAU is far from that of the intermittent
method. Conversely, the NIAU forcing is evolved to the same
degree as the state vector; therefore, the solution of the NIAU
is equivalent to that of the intermittent method at the end of
the assimilation cycle.

2.2. Linear Analysis. In this subsection, we compare the
solution of theNIAUwith that of the IAU for linear dynamics.
Following Polavarapu et al. [4], we can give the linear system
as

𝑑x
𝑑𝑡 = Ax + f (𝑡) ,

x (0) = x𝑏0,
(9)

where x is the model state vector, A represents the linear
dynamics of the system, and f(𝑡) is state-dependent forcing.
The solution of this linear system is

x (𝑡) = 𝑒A𝑡x𝑏0 + ∫𝑡
0
𝑒A(𝑡−𝑠)f (𝑠) 𝑑𝑠. (10)

For simplicity, we assume the analysis is performed at time
𝑡 = 0, so that

x𝑎0 = x𝑏0 + Δx0. (11)

In an intermittent assimilation scheme, the analysis incre-
ment is added entirely at 𝑡 = 0; therefore, the solution at time
𝑡 is

xINT (𝑡) = 𝑒A𝑡x𝑏0 + 𝑒A𝑡Δx0, 𝑡 ≥ 0. (12)

The IAU and the NIAU procedures add the increment at each
time step. Therefore, their forcing term can be written as a
term added gradually from time 0 to time 𝜏,

f (𝑡) = 𝑔 (𝑡)
𝑔 Δx0,

𝑔 = ∫𝜏
0
𝑔 (𝑠) 𝑑𝑠,

(13)

where 𝑔(𝑡) is an adequate weighting factor applied between
time 0 and time 𝜏. The IAU and the NIAU solutions can be
written as

xNIAU (𝑡) = xIAU (𝑡)
= 𝑒A𝑡x𝑏0 + [ 1

𝑔 ∫𝑡
0
𝑒A(𝑡−𝑠)𝑔 (𝑠) 𝑑𝑠] Δx0.

(14)

To examine the filtering responses of the IAU and the NIAU,
we proceed as in Bloom et al. [2] and decompose the
model dynamics A into its eigenmodes; that is, we use the
decomposition

AE = ΛE, (15)

where each diagonal entry of Λ is the complex eigenvalue
𝜆𝑗 and each column of E is the corresponding eigenvector.
Under this decomposition, the intermittent solution in (12)
becomes

x̂INT (𝑡) = 𝑒𝜆𝑗𝑡b̂𝑗 + 𝑒𝜆𝑗𝑡d̂𝑗, (16)

where x̂INT(𝑡) = E−1xINT, b̂ = E−1x𝑏0, and d̂ = E−1Δx0. We can
derive the solution for the IAU or the NIAU inmode space as
follows:

x̂NIAU (𝑡) = x̂IAU (𝑡) = 𝑒𝜆𝑗𝑡b̂𝑗 + 𝑒𝜆𝑗𝑡𝛾 (𝜆𝑗, 𝑡) d̂𝑗, (17)

𝛾 (𝜆𝑗, 𝑡) = 1
𝑔 ∫𝑡
0
𝑒−𝜆𝑗𝑠𝑔 (𝑠) 𝑑𝑠, (18)

respectively. The only difference between the IAU and the
NIAU is the factor, 𝑔(𝑠). In typical IAU applications, this is
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constant, whereas, in the NIAU applications it is the forward
operator; that is,

𝑔IAU (𝑡) = 1, (19)

𝑔NIAU (𝑡) = 𝑒𝜆𝑗𝑡, (20)

respectively.Therefore, the response functions of the IAU and
the NIAU are

𝛾IAU (𝜆𝑗, 𝑡) = 1
𝑔IAU

∫𝑡
0
𝑒−𝜆𝑗𝑠𝑑𝑠, (21)

𝛾NIAU (𝜆𝑗, 𝑡) = 1
𝑔NIAU

∫𝑡
0
𝑑𝑠, (22)

respectively. This shows that the response function of the
NIAU is independent of the frequency or the growth rate of
each mode, implying that the NIAU does not have filtering
properties. To overcome this, we provide an alternative
method to include the filtering property in the NIAU by
modifying the TLM in calculating the increment of the NIAU
in Section 2.3.

Finally, the solution of the intermittent assimilation and
the NIAU is

x̂INT (𝑡) = 𝑒𝜆𝑗𝑡b̂𝑗 + 𝑒𝜆𝑗𝑡d̂𝑗,
x̂NIAU (𝑡) = 𝑒𝜆𝑗𝑡b̂𝑗 + 𝑡

𝜏𝑒
𝜆𝑗𝑡d̂𝑗.

(23)

Consistently, the NIAU solution at the end of each assim-
ilation period 𝜏 is equivalent to that of the intermittent
assimilation method, which shows at the same time that the
NIAU is improved in terms of continuity of the analysis field.

2.3. Filtering Property in the NIAU. In this subsection, we
will introduce a filtering property to the NIAU while keeping
the advantages of its accuracy. The main goal is to filter out
the unphysical components (e.g., inertia-gravity waves in the
numerical weather prediction) in theNIAU increment, which
might ruin the forecast [14]. For this purpose, the TLM to
propagate single time step (M𝑛) in (2) is decomposed using
the singular value decomposition (SVD) as follows [15–19]:

M𝑛 = U∑VT. (24)

Each column in the matrix U (V) denotes the initial (final)
singular vector (SV) and the diagonal components in ∑
denote the matrix with singular values. Only the dominant
SVs are used to reconstruct the TLM, and this reconstructed
TLM is utilized to propagate theNIAU increment.This idea is
similar to the Tikhonov filter in Hansen [20] or Johnson et al.
[21] to dampen the increments projected onto the SVs with
relatively small singular values to filter out the small spatial
scale features. Note thatM𝑛 is designed to propagate a single
time step in this study, and the SVD is performed at each time
step.

Adding increments only projected onto dominant SVs
possibly reduces the unwanted artificial noises while keeping
the quality of the analysis. Palmer et al. [19] showed that

the evolved dominant SVs (SVs with larger singular values)
are projected well onto the forecast errors, while the evolved
minor SVs (SVs with smaller singular values) are less pro-
jected on the forecast errors. They calculated the projection
amplitude of the 48-hour forecast error onto each singular
vector and showed that it is in proportion to the singular value
itself. This means that the increments projected minor SVs
would not be efficient to reduce the forecast errors; therefore,
it would not affect the analysis quality significantly.

In addition, SVs with relatively larger spatial scales can be
well constrained by the observation [19].This implies that the
increments projected onto the SVs with larger spatial scales
are less probable to contain the signal related to the artificial
high-frequency waves. On the other hand, SVs with relatively
smaller spatial scales are poorly constrained by the observa-
tion; it is determined more by the background field [22].This
means that the artificial waves that are not relevant to the
observed ones can be projected onto the SVs with smaller
spatial scales.Wewill show that the spatial scales of dominant
SVs tend to be larger than that of theminor SVs in Section 4.2,
implying increments projected onto dominant SVs are well
constrained by the observation to suppress the artificial
waves.

One can still argue that dominant singular vectors still
include high-frequency variations; therefore, the high-fre-
quency variability is not entirely removed by the SVD
method. As the dominant SVs have a physical meaning
[23], one may want to keep the high-frequency variability
that has physical meaning (e.g., diurnal cycle, severe storm
development, and high-frequency oceanic eddies).Therefore,
it should be noted that the SVDmethod in this study focuses
on filtering out the unphysical artificial waves, not all the
high-frequency variability.

3. Application of NIAU to the Lorenz-96 Model

We use the Lorenz-96 model [13, 24] to evaluate the perfor-
mance of NIAU, whose equation set is

𝑑𝑥𝑗
𝑑𝑡 = (𝑥𝑗+1 − 𝑥𝑗−2) 𝑥𝑗−1 − 𝑥𝑗 + 𝐹, (25)

where 𝑗 = 1, . . . , 40. The 40 grid points circulate over an
arbitrary longitudinal band, with a grid point representing
9∘ longitudinal line. The external forcing 𝐹 is set to 8 and
the time step Δ𝑡 is 0.003125 units. The coefficients of the first
(quadratic) and the second (diffusion) terms in (25) are set
to be unity for one unit to signify the dissipative decay time,
approximately 5 days [13]. Thus the selection of Δ𝑡 in this
study makes a physical time step 0.375 hours.

The true state is obtained from 5 years of model integra-
tion. It is sometimes called the Observation System Simu-
lation Experiments (OSSE) [25, 26]. Because the values are
obtained from the model integration after a sufficient spin-
up period (5 years), it is balanced and constrained by model
dynamics. Observations are collected at every grid point by
adding uncorrelated random noise from a Gaussian distribu-
tion (zero mean and unit variance) to the true state. The
main set of experiments discussed below uses observations
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taken every 12 hours, even though experiments with different
observation frequencies were performed. Using the 2.5-day
forecast of the 2000 ensembles, whose initial conditions use
a Gaussian distribution around the true value, an initial
background error covariance matrix P𝑎0 is constructed. To
minimize the impact of the sampling error, we repeated
this procedure for 50 times for both analysis and forecast
experiments; therefore, the total number of assimilation
experiments is 50 for each scheme.

To confirm the differences between the methods that are
significant, we performed a significant test using a bootstrap
method [27]. That is, among forecast experiments using the
IAU, we randomly select the 50 sets of forecast experiments
by allowing the overlapping.Then, the averaged RMSE in the
selected 50 sets of experiments is calculated. It is repeated
1000 times; then the upper and lower bounds of the two-
tailed 95% confidence level are defined as the upper and lower
25th RMSE, respectively. Based on the confidence level, it
is checked whether the RMSE in the NIAU is significantly
different from that in the IAU.

The sequential methods, such as the 3DVAR, the
extended Kalman filter (EKF), and the ensemble Kalman
filter (EnKF), all easily exhibit shocks due to the analysis
increment. Among the category of sophisticated sequential
methods, we select the EKF as a test for a comparison of
the IAU and the NIAU. For the NIAU with SVD method,
we performed sensitivity test with different numbers of SVs
from 31 to 40. That is, (4) is applied for the NIAU, andM𝑛 is
reconstructed with 31 dominant SVs (i.e., hereafter, NIAU31)
to all possible SVs (i.e., 40 SVs) which is equivalent to full
M𝑛. Most of the results in this study are from the IAU and
the NIAU applied forward in time. This type of approach
slightly differs from that introduced in Bloom et al. [2], which
performs the analysis at the middle of the time windows to
add the increment. The assimilation is performed at every 0
and 12 hr and the analysis increment for the NIAU and the
IAU at 0 hr is gradually added from 0 to 12 hr time window.

4. Experimental Results

4.1. The Assimilation Quality of the EKF, the IAU, and the
NIAU. In this subsection, we compare the analysis discon-
tinuity and the accuracy of the EKF (i.e., the intermittent
method), the IAU, and the NIAU with full TLM. First, to
measure the degree of shock (or jump) in state vectors due
to assimilation, we examine the time tendencies associated
with each assimilation procedure. Figure 2 shows the root-
mean-square (RMS) of the difference in the time tendencies
between the assimilated states and the true states for the IAU,
theNIAU, and the EKFmethods. Note that the time tendency
at a target time is defined as the difference between the state
at a target time step and the state at a previous time step.
Figure 2 shows the averaged time tendency difference in all
experiments.This tendency shows how the underlying assim-
ilation procedure induces an abrupt change in the integration
as compared to the true state evolution. In all methods, these
values are stabilized roughly after day 3, while the states are
not optimally adjusted to the observations during the early
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Figure 2: Variable-averaged RMS time tendency difference between
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EKF (black line), the IAU (blue line), and the NIAU methods (red
line). Note that a 12-hour assimilation interval is applied, and the
dotted line denotes the 95% confidence level of the IAU using a
bootstrap method.

stages of the assimilation. The EKF results have large discon-
tinuity at every analysis time. In particular, RMS of the time
tendency in the EKF is extremely large at the initial time step,
while that in the NIAU or the IAU does not show any sudden
jumps.This clearly shows the effectiveness of the NIAU or the
IAU as amethod inserting the analysis increment in the grad-
ual manner. This is expected, because the EKF is designed
to add a correction to the state instantaneously. However,
the time tendency differences of the IAU and the NIAU
methods are small and continuous over time. In particular,
the discontinuity in the NIAUmethod is smaller than that in
the IAU method, especially for the early part of the period.

To assess the accuracy of the analysis field in eachmethod,
Figure 3 shows the 40-variable-averaged RMS error (RMSE)
of the analysis for the three assimilation methods. During
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the early period of the assimilation, the RMSE is generally
higher in all methods because it starts from an arbitrary
initial condition. In the intermittent assimilation, the RMSE
is smaller than the others from the beginning, implying that
the adjustment to the observation in the intermittent method
is relatively fast. This is due to the fact that the increment is
added at the earlier time step in the EKF than other schemes.
This denotes that the integrated increments in the EKF work
to improve the analysis to some extent.That is, the increment
at time 𝑇 is added at the same time in the EKF; however, that
in the NIAU and IAU is slowly added from time 𝑇 to 𝑇 + 12
hours. The short spin-up time is a critical issue in some cases
like an assimilation of a severe stormwith radar observations,
when the analysis field should be quickly adjusted to the radar
observation within several analysis cycles, and no previous
observation is available [14]. The NIAU still has similar
problems; however, the RMSE is significantly smaller than
that in the IAU from the beginning with 95% confidence
level, which means that the spin-up time of the NIAU is
systematically faster than that of the IAU. This is because the
NIAU forcing is dynamically evolved, and the NIAU solution
adjusts more quickly to the true state than does the IAU
solution. The NIAU method has an advantage in reaching a
stable solution with less spin-up time than in the IAU.

Beyond the initial adjustment time for the observations,
the RMSE values are stabilized for all methods. The RMSE of
the EKF is smaller than that of both the NIAU and the IAU.
This is expected since the EKF is adding all the increment at
the right timing; the analysis value is closer to the true state
than that in the IAU or NIAU. It is worthwhile to note that
the RMS error in the EKF is better than that in the IAU or
NIAU even though adding all the increments in the EKF can
cause an initial shock that acts to degrade the quality of the
EKF.This implies that time consistency issue (i.e., adding the
increment at the right timing) is likely to be much important
than the balance issue to keep the accuracy of the analysis. On
the other hand, both the NIAU and the IAU are suboptimal
assimilation methods that the increment is added with delay
in time. Moreover, the RMSE of the NIAU is systematically
smaller than that of the IAU.This clearly shows that theNIAU
is better than the IAU in terms of the accuracy of the analysis.

The improvement in the accuracy in the NIAU is present
regardless of the assimilation interval. To investigate the
sensitivity of the accuracy with respect to the assimilation
interval, the 10-day average (from day 0 to day 10) RMSEs
of assimilated states for the three assimilation methods are
reviewed as shown in Figure 4. It is clear that the RMSE of
the NIAU is always smaller than that of the IAUmethod with
95% confidence level, even though it is slightly greater than
that of the EKF.The advantage in RMSE becomes larger as the
assimilation interval gets longer. Conversely, the superiority
of any of the assimilation methods seems to disappear as the
frequency of the analysis updates is increased.

4.2. The Use of Singular Vectors (SVs) for the NIAU Increment.
To examine a filtering property in the NIAU using SVs, it
is necessary to check the property of the SVs in the TLM.
Figure 5 shows the power spectrum analysis of the left
and right SVs obtained from the TLM, M𝑛, that evolves a
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EKF
IAU
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6 9 12 153

Assimilation interval (hour)

Figure 4: The time averaged (from day 0 to day 10) RMSE with
respect to the assimilation interval using the EKF (black bar), the
NIAU (red bar), and the IAU (blue bar) methods. Note that the
dotted line denotes the 95% confidence level of the IAU using a
bootstrap method.

perturbation at a time step 𝑡𝑛 to 𝑡𝑛+1. The time averaged
power of reconstructed TLMs to propagate single time step is
illustrated. Note that the power spectrum analysis is applied
in the spatial domain. It is clear that the SVs with larger
singular values tend to have higher power at a smaller
wavenumber in the spatial domain, while those with smaller
singular values have higher power at a larger wavenumber.
For example, the most dominant SV has the greatest power
around the 8-grid point wavelength (wavenumber 5), while
the SV with the smallest singular value (i.e., the 40th SV) has
the highest power at less than one 3-grid point wavelength.
This implies that the NIAU increments projected onto the
dominant SVs would have a relatively lower-wavenumber
power (i.e., larger spatial scale), while that projected onto
the minor SVs would mainly contribute to the growth of
the higher-wavenumber power (i.e., smaller spatial scale).
Therefore, the reconstruction of the TLMwith dominant SVs
(or without minor SVs) would suppress higher-wavenumber
features. Assuming that higher-wavenumber motion con-
tributes to the variability of higher frequency in time domain
([28]; refer to Figure 1.1 therein), the calculation of the NIAU
increment using the reconstructed TLM without minor SVs
would have filtering properties like the IAU. In addition,
SVs with relatively lower-wavenumber motions can be well
constrained by the observation [19], which implies that the
artificial waves that are not relevant to the observed one can
be projected onto the SVs with higher-wavenumber motions.

To examine whether the removal of the minor SVs in the
TLM contributes to suppressing the high-frequency powers
in the temporal domain, the probability distribution function
(PDF) of the deviation of the high-frequency (i.e., higher than
1.5 hours) power in the EKF, the IAU, theNIAU, and theNIAU
with the reconstructed TLM from that in the true state are
shown in Figure 6(a). For the comparison, we add the results
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Figure 5: The time averaged (from day 0 to day 10) power spectrum analysis in (a) the left and (b) the right singular vectors and (c) the
corresponding singular values in the TLM M𝑛 that evolves a perturbation at a time step 𝑡𝑛 to 𝑡𝑛+1. Note a singular value on the 𝑦-axis right
panel is a linear perturbation growth rate when the perturbation is grown linearly for 12 hours.

using the centered IAU, in which the analysis is performed
at the middle of the time window for adding the IAU forcing.
Note that theNIAU and IAU in previous figures (Figures 2–4)
are applied forward in time, so the computational burden in
the centered IAU is 1.5 times greater. The deviation has been
normalized by the high-frequency power of true state. The
lower and upper end of the bar denote 15% and 85% of the

cumulative distribution function, respectively, and a median
is denoted as a line crossing the bar. To assess the sensitivity of
the number of SVs for the reconstruction of the TLM, a series
of experiments using 31–39 dominant SVs are performed.The
time-averaged high-frequency power in the forward IAU is
systematically suppressed from that in the true state, support-
ing that the forward IAU has a filtering property. However,
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Figure 6: (a) Probability distribution function (PDF) of the deviation of the high-frequency (i.e., higher than 1.5 hours) power in eachmethod
(the EKF, the IAU, the NIAU, and the NIAUwith the reconstructed TLM) from that of the true state, normalized by the high-frequency power
of truth.The lower andupper end of the bar denote 15%and 85%of the cumulative distribution function, respectively, with themedian denoted
as a line crossing the bar. The numbers in the 𝑥-axis denote the number of SVs used to reconstruct the TLM for the calculation of the NIAU
increment. (b) denotes the time average (from day 0 to day 10) RMSE in the EKF, the IAU, the NIAU, and the NIAU with the reconstructed
TLM.

the error bar range is surprisingly wider than other methods.
Even though the time-averaged high-frequency power in the
centered IAU is further suppressed than the forward IAU,
the deviation is extremely large. This means that the IAU
generally has filtering properties; however, in an individual
case, the high-frequency power of the IAU can be too much
suppressed or insufficiently suppressed than that in the true
state. This clearly indicates that the filtering property in the
IAU is not optimal at least under the experimental setting of
this study.

The high-frequency power in the NIAU with full TLM
is greater than that in the IAU. However, the range of the
error bar is significantly reduced from that of both the
forward and the centered IAU, implying that the time-varying
high-frequency fluctuation in the true state is relatively well
simulated in the NIAU. In addition, the assimilation results
in some of the NIAU without minor SVs show that the time-
averaged high-frequency power is successfully decreased to
some extent. For example, the NIAU with 31 SVs exhibits
similar degrees of the time-averaged high-frequency power
to that in the IAU, showing that the removal of the minor SVs
in the TLM for calculating the NIAU increment successfully
suppresses the high-frequency variability. This implies that
the NIAU with some modification of the TLM to propagate
the NIAU increment can successfully suppress the high-
frequency variations. However, note that some of NIAU
experiments do not show the suppression of the high-
frequency variability. This might imply that the removal of
the few (e.g., two or three) lowest SVs may not be enough
to suppress the high-frequency variability (for NIAU with 38
SVs or 37 SVs). Or, it is probable that less than 31 SVs would
be sufficient to filter out the high-frequency waves. The main
point of this section is that the usage of the SVs can be one of
the possible ways, but not the detailed strategies for selecting
optimal SVs, to filter the high-frequency waves. We leave this
point as a future work.

The removal of the minor SVs is also beneficial in terms
of the accuracy. Figure 6(b) shows the averaged RMSE in the
EKF, the forward IAU, the centered IAU, the NIAU, and the
NIAU with the reconstructed TLM. The RMSE in the NIAU
is even similar to that in the centered IAU, even though the
computational time in the NIAU is significantly less than that
in the centered IAU, which shows the benefits of NIAU devel-
oped in this study. It is clear that the RMSE in theNIAU grad-
ually decreases as the number of SVs to reconstruct the TLM
in the NIAU increment calculation decreases, and the RMSE
in the NIAU with 31 SVs is best among all methods except
for the intermittent method.The reason for the improvement
in the NIAU using the reconstructed TLM can be as follows.
First, the suppression of the high-frequency variability would
be beneficial on the short-time forecast, giving a background
state for analysis that is more accurate. Second, the difference
in the state between the analysis and the true state may result
in the difference in the basic state for the TLM, and this
difference might be mostly projected onto the minor SVs.

4.3. The Forecasting Experiments. Next, we evaluate the
performance of each method by examining the quality of the
forecasts issued from their analysis. Figure 7 shows the 10-day
averaged forecast RMSE for each method. Note that a single
ensemble member is used to assess the forecast skill of the
analysis fields from each assimilation method. While there is
a small RMSE within the assimilation period shown in Fig-
ure 3, the forecast RMSE is also relatively small with the EKF
and the NIAU methods. The similar RMSE in the forecast
between the EKF and the NIAU implies that both the accu-
racy and the balanced state without initial shock are crucial
for the skillful forecast. That is, even though there is the rela-
tively huge initial shock in the EKF, the forecast RMSE is simi-
lar to theNIAU,which emphasizes the importance of the time
consistency in the EKF to guarantee the accuracy of the analy-
sis. On the other hand, even though the NIAU lacks accuracy
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Figure 7: The time averaged (from day 0 to day 10) forecast RMS
error (RMSE) initialized using the EKF, the IAU (forward), the
centered IAU, theNIAU, and theNIAUwith the reconstructed TLM.
Note that the initial condition is obtained after a 10-day assimilation
for each case, which is the same as in the assimilation experiment.
The dotted line denotes the 95% confidence level of the forecast
RMSE in the IAU (forward).

as the increment is not added in right timing, the analysis
with less initial shock acts to improve the forecast skill.

However, the RMSE for the forward IAUmethod is signif-
icantly large compared to theNIAUwith 95%confidence level
using a bootstrap method.This shows that the NIAUmethod
significantly improves forecasting skill in comparison to the
forward IAUmethod, when keeping the time-evolved forcing
method in the analysis. It is interesting that the forecast RMSE
tends to be reduced as the number of SVs for the NIAU
increment calculation is decreased. For example, the 10-day
averaged forecast RMSE in the NIAU is about 0.7, while
it is slightly smaller than 0.4 in the NIAU with the TLM
reconstructed by 31 SVs (NIAU31). Even the forecast RMSEof
NIAU 31 at day 10 is smaller than that of the EKF (not shown
here). This is consistent with the previous result that the
NIAU with the reconstructed TLM would be beneficial com-
pared to theNIAU in terms of the accuracy and the removal of
the high-frequency power.The forecast RMSE in the centered
IAU is similar to that in the NIAUwith 31 SVs, and RMSEs in
both experiments are even smaller than that in the intermit-
tent assimilation, which emphasizes the benefits of the NIAU
or the IAU. It is, therefore, supported that the NIAU with
the reconstructed SVs is able to successfully combine both
advantages of the high-frequency filtering of the IAU and the
analysis accuracy of the intermittent analysis approach.

5. Summary

This study introduces a modified version of the incremental
analysis updates (IAU), called the nonstationary IAU (NIAU)
method, to improve the assimilation accuracy of the forward
IAU. The advantages of NIAU come from the theory that
the forcing evolves in time by using a forward operator. It
is shown that the solution of the NIAU is equivalent to that

of the intermittent assimilation method at the end of each
assimilation cycle for a linear system, while the solution of the
forward IAU is different. Applying the NIAU to the Lorenz-
96 model, we show that its performance is superior to that
of the forward IAU in terms of accuracy and discontinuity.
For a filtering property in the NIAU, we reconstruct the
TLM for the calculation of the NIAU increment using the
singular vectors. The reconstructed TLM with dominant SVs
suppresses the high-frequency power. In addition, it is found
that the analysis quality in terms of the accuracy in the NIAU
with the reconstructed TLM is also superior to the NIAU.
This implies that the formulation of the forward operator to
propagate the analysis increment is important in determining
the analysis quality of the NIAU.

The development and maintenance of the TLM in
an operational data assimilation system except for four-
dimensional data assimilation system are hard to justify,
especially for use in only the NIAU. In addition, there is
additional computation cost by using the TLM in NIAU.
Therefore, we propose some options for obtaining the time-
evolving NIAU forcing using ensemble members, which will
significantly reduce the costs and difficulties of utilizing the
TLM in the NIAU.

One option is that the NIAU forcing is defined as the
difference between two realizations as follows:

M𝑛M𝑛−1 ⋅ ⋅ ⋅M2M1f
≈ 𝑀𝑛 (𝑀𝑛−1 ⋅ ⋅ ⋅ (𝑀2 (𝑀1 (x𝑎0 + f))))

− 𝑀𝑛 (𝑀𝑛−1 ⋅ ⋅ ⋅ (𝑀2 (𝑀1 (x𝑎0)))) .
(26)

The NIAU forcing is defined as the difference between the
integrations with the analysis values and those with the
analysis values plus the IAU forcing. By incorporating this
method into the ensemble-based data assimilation method,
there would be no additional cost of the NIAU beyond that of
the IAU or intermittent method.

Another option is to obtain the NIAU forcing using
ensemble covariance. The increment (Δx0) can be denoted
within the ensemble-based assimilation method as follows:

Δx0 = [x󸀠𝑏0 ] [x󸀠𝑏0 ]T HT [H [x󸀠𝑏0 ] [x󸀠𝑏0 ]T HT + R]−1

⋅ [y −H (x𝑏0)] ,
(27)

where x󸀠𝑏0 contains the column vectors of the background
ensemble perturbations. The NIAU forcing can be derived
using the ensemble covariance as follows:

M𝑛M𝑛−1 ⋅ ⋅ ⋅M2M1f

≈ [x󸀠𝑏𝑛 ] [x󸀠𝑏0 ]T HT [H [x󸀠𝑏0 ] [x󸀠𝑏0 ]T HT + R]−1 [y −H (x𝑏0)]
𝑁 .

(28)

The time-evolved NIAU forcing can be calculated using the
ensemble covariance without the TLM, enabling the applica-
tion of this method to the complex operational assimilation
system.
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The successful application of the NIAU method to a sim-
plemodel suggests that theNIAUmay systematically improve
the quality of the assimilation systems formore complex fore-
casting models like the general circulation models (GCMs)
using real observations. In particular, in a nonlinear system
like the GCMs, the NIAU is superior in terms of accuracy
and may be more robust, because the NIAU can generate the
forcing that considers nonlinear evolution. However, there is
also a limitation that the increment for the NIAU is added
forward in time in this study. To minimize the difference
between the timing for calculating the increment and that
of adding the increment, the analysis can be performed in
the middle of the time window that adds the increment in
original IAU from Bergemann and Reich [12]. This centered
IAU is not applicable for the current version of the NIAU as
it is hard to propagate the increment backward in time from
the center of the time window to the beginning of the time
window.Therefore, it should be noted that the current version
of the NIAU might be only one of the alternative ways to
replace the forward IAU (i.e., do analysis at the beginning of
the time window), which it is utilized in several operational
data assimilation products [6, 9, 10]. To propagation of the
increment backward in time, the NIAU is worthwhile to
be incorporated into the ensemble Kalman filter (EnKF) or
4DVAR, which can propagate the perturbation backward in
time while keeping the model constraint.
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