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Many downscaling techniques have been developed in the past few years for projection of station-scale hydrological variables
from large-scale atmospheric variables to assess the hydrological impacts of climate change. To improve the simulation accuracy of
downscalingmethods, the BayesianModel Averaging (BMA)method combined with three statistical downscaling methods, which
are support vector machine (SVM), BCC/RCG-Weather Generators (BCC/RCG-WG), and Statistics Downscaling Model (SDSM),
is proposed in this study, based on the statistical relationship between the larger scale climate predictors and observed precipitation
in upper Hanjiang River Basin (HRB). The statistical analysis of three performance criteria (the Nash-Sutcliffe coefficient of
efficiency, the coefficient of correlation, and the relative error) shows that the performance of ensemble downscaling method
based on BMA for rainfall is better than that of each single statistical downscaling method. Moreover, the performance for the
runoff modelled by the SWAT rainfall-runoff model using the downscaled daily rainfall by four methods is also compared, and the
ensemble downscaling method has better simulation accuracy. The ensemble downscaling technology based on BMA can provide
scientific basis for the study of runoff response to climate change.

1. Introduction

Global climatic changes could lead to changes in regional
water availability. Such hydrologic changes will affect nearly
every aspect of human well-being, from agricultural produc-
tivity, energy use, flood control, to municipal and industrial
water supply, fish and wildlife management. The tremendous
importance of water in both society and nature underscores
the necessity of understanding how a change in global climate
could affect regional water supplies [1]. General circulation
models (GCMs), which are numerical coupled models and
describe the atmospheric processes through mathematical
equations, have been one of the most important tools for
studying climate change. GCMs represent various earth
systems including the atmosphere, oceans, land surface, and
sea ice and offer considerable potential for studying climate
change. At large scales, GCMs which have been steadily

evolving over several decades are able to simulate the most
important features of the global climate, and simulations are
most reliable over the tropical regions [2]. However, these
same models perform poorly at smaller spatial and temporal
scales relevant to regional impact analyses [3, 4]. Because the
spatial resolution of GCMs grids is too coarse to resolvemany
important subgrid scale processes, GCMs outputs are often
unreliable at individual grid and subgrid box scales [1, 5].

One possible solution to overcome this problem is to
downscale the output from GCMs to a higher resolution
in space/time and then to use scenario output in local
water management. The basic idea of downscaling is to
transfer large-scale changes in atmospheric variables (pre-
dictors), reliably simulated from GCMs, to local weather
series (predictands) [6]. To deal with this issue several
downscaling methodologies, such as dynamic downscaling
and statistical downscaling, have been developed. Dynamic
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Figure 1: The technical route of this study.

downscaling refers to the use of regional climate models
(RCMs), or limited-areamodels (LAMs)which employ large-
scale and lateral boundary conditions fromGCMs to produce
higher resolution outputs [7]. The statistical downscaling
methodology hasmany obvious drawbacks like the uncertain
assumption of applicability in a future climate, but it is a
computationally cheap and statistically sound complement
to dynamical downscaling. It is notable that predictor and
predictand can be the same parameter on different scales, but
statistical methods can freely select any variable as predictor
as long as it can be motivated. Several existing statistical
downscaling methods have been applied in different climate
regions [1, 4]. More sophisticated statistical downscaling
methods are generally classified into three groups [7]: regres-
sion models (e.g., CCA, SVM), weather typing schemes,
and weather generators (e.g., LARS-WG, BCC/RCG-WG).
Studies comparing different statistical downscaling methods
are now relatively common [4, 8–10]. The results of these
studies have shown that different methods have different
performance in a certain area, and a certain method has
different performance in different study areas. Since different
methods have strengths in capturing different aspects of the
downscaling, combining the results from diverse methods by
weighting procedures can present a better performance than
any individual method [11–13].

The early combination techniques employed such tools as
simple model average, linear regression, and artificial neural
network [14–17]. These methods use a set of deterministic
weights to combine multiple model outputs, and the weights
in such combination can take any arbitrary real (positive
or negative) values that lack physical interpretations [18].
Bayesian Model Averaging (BMA) came to prominence
in statistics in the mid-1990s, and Madigan and Raftery
[19] were the first to propose this method for combining

predictions. Subsequently, Raftery [20] and Draper [21] gave
more detailed discussion about BMA. It has been applied in
diverse fields such as economics [22], biology [23], ecology
[24], public health [25], toxicology [26], meteorology [27],
and management science [28]. In many case studies, BMA
produces accurate and reliable predictions and was shown
to be a better scheme than other model-combining methods
[29–31]. In recent years, hydrologists have also applied BMA
to hydrologic modelling, such as groundwater [32] and
rainfall-runoff modelling [18, 33, 34].

The BMAmethod has the ability to improve the accuracy
of the prediction; only a few studies have applied BMA to
downscaling methods. For example, Yang et al. [35] used
the BMA ensemble method to reduce the uncertainties in
lateral boundary forcing and improve model performance
in regional climate downscaling. Three statistical downscal-
ing models are combined together by using BMA method
in this study, which aims to investigate the potential use
of BMA in downscaling GCM simulations in the upper
Hanjiang River Basin (HRB), China. The three statistical
downscaling techniques used here are as follows: (i) support
vector machines (SVM) model [36, 37]; (ii) BCC/RCG-
Weather Generators (BCC/RCG-WG) [38, 39], and (iii)
StatisticsDownscalingModel (SDSM) [40].More specifically,
the following objectives have been set for this paper: (1)
to establish the statistical relationship between large-scale
circulation (using NCEP/NCAR reanalysis data) and precip-
itation in the upper HRB by using these three downscaling
methods; (2) to combine the three downscaling models by
using BMA method; and (3) to assess the performance of
ensemble downscaling method based on BMA for rainfall
and runoff modelled by SWATmodel in the upper HRB.The
technical route of the research in this paper is described in
Figure 1.
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Figure 2: Location of the meteorological and hydrological stations
in upper HRB.

This paper is organized as follows. First, the details of the
study area, station-observed data, NCEP/NCAR reanalysis
data, and digital watershed data used in the study are
described. This is followed by a description of the down-
scaling methods, BMAmethod, and hydrological model.The
results are then presented followed by a discussion and finally
the conclusions are presented.

2. Study Area and Data

2.1. Study Area. The selected area for this study is upper HRB
as shown in Figure 2. It is located in Shanxi Province and
Hubei Province of China and the total area is approximately
95200 km2. The length of main stream is 925 km which takes
up 59% of the total length of the Hanjiang River. The basin
has a subtropical climate and the area is humid with fairly
high precipitation. The mean annual rainfall is 904mm.
The precipitation distribution in this area changes greatly in
time and space, and the amount of precipitation is mainly
concentrated in summer.

2.2. Data Collection

2.2.1. Station-Observed Data. The meteorological data series
of nine stations from 1961 to 2009 is selected in the study area.
The observed data are provided by the Shared Services Net-
work of the China Meteorological Administration. The data
include daily average temperature, maximum temperature,
minimum temperature, precipitation, relative humidity, aver-
age wind speed, and sunshine hours.Themonthly streamflow
data of Danjiangkou (DJK) Reservoir which controls the
watershed, from 1961 to 2009, is also included. The locations
of these meteorological stations and hydrologic station are
shown in Figure 2.

2.2.2. NCEP/NCAR Reanalysis Data. The atmospheric pre-
dictor data for 1961–2009 used to calibrate and validate the
downscaling methods were obtained from the NCEP/NCAR
reanalysis data at 2.5∘ by 2.5∘ grids. The upper HRB covers
12 grids (seen in Figure 3). The NCEP grids are interpolated
spatially into the meteorological stations by using the inverse
distance weighting method.
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Figure 3: The NCEP grids of upper HRB.

When establishing the statistical downscaling models,
selection of predictors is one of the most critical steps and
three criteria should be followed [5]. The complexity of the
models can be effectively reduced while the predictors that
have significant impacts on the predictands are selected.
At the same time, the predictors that have no significant
impacts on the predictands should be excluded to eliminate
redundant information and avoid introducing additional
interference factors. According the previous studies [5, 41], 10
alternative predictors are chosen by stepwise regression and
correlation analysis combining the criteria and climate char-
acteristics of HRB based on NCEP reanalysis data including
26 atmospheric circulation factors for each grid point (seen
in Table 1).

2.2.3. Digital Watershed Data. This study uses the GTOPO30
digital elevation model (DEM) provided in downloadable
form by the US Geological Survey (USGS). Based on these
data, the watershed DEM and stream networks are extracted
and divided into subwatersheds (seen in Figure 1). The soil
spatial distribution data are obtained from the soil database
of the Institute of Soil Science of Nanjing, China Academy
of Sciences, and are classified according to the soil subclasses
under the class of land resources and environment in the
Chinese Resources and Environment Database. The spatial
distribution data of land use are obtained from the national
land cover framing TIF maps (30m spatial resolution) pro-
vided by the State Bureau of Surveying and Mapping and are
classified into 12 categories according to the Soil and Water
Assessment Tool (SWAT) parameter database of land use in
the United States.

3. Methods

3.1. Statistical Downscaling Methods

3.1.1. SVM. The foundations of SVM have been developed by
Vapnik [42, 43], initially for optical character recognition. In
recent times, SVM approach is recognized for its ability to
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Table 1: NCEP alternative predictors.

Predictors Physical meaning Units
Temp Near-surface air temperature K
p500 500 hPa geopotential height m
p850 850 hPa geopotential height m
r500 Relative humidity at 500 hPa height %
r850 Relative humidity at 850 hPa height %
mslp Mean sea level pressure Pa
p5 u Zonal velocity at 500 hPa height m/s
p8 u Zonal velocity at 850 hPa height m/s
p5 v Meridional velocity at 500 hPa height m/s
p8 v Meridional velocity at 850 hPa height m/s

capture nonlinear regression relationships between variables
[36, 37, 44]. The SVMmodel has been used as a downscaling
technique for predicting precipitation of different regions and
proven to be effective for downscaling precipitation [41, 45].
The least square support vector machine (LS-SVM) which
provides a computational advantage over standard SVM [46]
is a least squares version of SVM, where the solution to the
optimization problem is found by solving a set of linear equa-
tions instead of a convex quadratic programming for classical
SVMs. Because the final decision function of SVM is only
determined by support vector, its complex degree depends on
the number of support vectors, rather than the dimensions of
the sample space (factor), so more forecast factors reflecting
more space change in the atmosphere can be chosen. In this
study, the optimal model is established through parameter
(between predictors and predictands) optimization using 10
primary predictors as prediction factors of the SVM.

3.1.2. BCC/RCG-WG. BCC/RCG-WG is named for the
weather generator developed by Beijing Climate Center of
China Meteorological Administration (CMA) and Regional
Climate Group at the University of Gothenburg [39]. Due
to its stochastic framework for the daily climatic variables,
BCC/RCG-WG allows us to generate arbitrarily long series
to meet the needs of impact assessment and risk analysis of
climate change, and so forth. Liao et al. [38, 39] have shown
that BCC/RCG-WG can successfully simulate daily precip-
itation and nonprecipitation variables including maximum
temperature, minimum temperature, and sunshine hours in
China. The input data is temperature decreasing degree and
precipitation increasing/decreasing percentage. In this study,
the input data are calculated from the monthly temperature
and precipitation from 1991 to 2009 and the monthly mean
across the years during this period.

3.1.3. SDSM. The SDSM is a decision-support tool for assess-
ing local climate-change impacts using a robust statistical
downscaling technique. It was developed by Wilby et al.
[40]. SDSM uses a hybrid stochastic weather generator and
a multilinear regression method to simulate local variables
of regional circulation and atmospheric moisture predictors
[47]. The model has been applied in many catchments in
North America [48] and Europe [40, 49]. Previous studies

have shown that SDSM has superior capability to capture
local-scale climate variability [9, 10, 40]. In this study,
SDSM is established using NCEP/NCAR reanalysis data and
observed data. The first 30 years (1961–1990) is used for
calibrating the model, and the remaining 19 years (1991–
2009) is used to validate the model. The corresponding
predictors for precipitation and average temperature of each
meteorological station are filtered out, respectively, from the
10 primary predictors by screening of variables in SDSM
application program and partial correlation analysis. Dur-
ing downscaling precipitation, the process of the model
is conditional because the amount of precipitation is the
first condition to determine the probability of wet days
and the probability of wet days is related to the large-scale
predictors.

3.2. Ensemble Downscaling Method Based on BMA

3.2.1. Bayesian Model Averaging. The BMA probability den-
sity function (PDF) is a weighted average of the conditional
PDFs given each of the individual models, weighted by
their posterior model probabilities. BMA possesses a range
of theoretical optimality properties and has shown good
performance in a variety of simulated and real data situations
[31]. Consider a quantity 𝑃 to be predicted on the basis of
training data𝐷 = [𝑋, 𝑌] (𝑋 denotes input forcing data and 𝑌
stands for the observational rainfall data).𝑓 = [𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑘
]

is the ensemble of the 𝐾-member predictions. The posterior
distribution of the BMA prediction is thus given as
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𝐾

∑
𝑘=1

𝑝 (𝑓
𝑘
| 𝐷) ⋅ 𝑝

𝑘
(𝑃 | 𝑓

𝑘
, 𝐷) , (1)

where 𝑝(𝑓
𝑘
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𝑓
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𝑓
𝑘
fits 𝑌. The posterior model probabilities add up to one,

and they can thus be viewed as weights. 𝑝
𝑘
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𝑘
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the conditional PDF of the prediction and 𝑃 conditional on
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where 𝜎2
𝑘
is the variance associated with model prediction 𝑓

𝑘

and observations 𝑌. In order to make this assumption valid,
some techniques such as Box-Cox transformation are needed
to make the data approximately normally distributed and to
narrow the data range. In the case that the observations and
individual model predictions are all normally distributed, the
BMA predictive model is then
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where 𝑤
𝑘
is the posterior probability of forecast 𝑓

𝑘
being the

best one and is based on forecast 𝑓
𝑘
’s performance in the

training period. The 𝑤
𝑘
’s are probabilities and so they are

nonnegative and add up to 1; that is ∑𝐾
𝑘=1
𝑤
𝑘
= 1.
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3.2.2. EM Algorithm for BMA Parameter Estimation. To
estimate BMA weight 𝑤

𝑘
and model predication variance 𝛿2

𝑘
,

the Expectation-Maximization (EM) algorithm has proved
to be an efficient technique for BMA calculation based on
the assumption that 𝐾-member predictions are normally
distributed [33].

3.3. Hydrological Model

3.3.1. Introduction of SWAT. The Soil and Water Assessment
Tool (SWAT) is chosen to simulate the hydrological processes
in this study. The SWAT is a newly developed model that can
be applied to a large ungauged rural watershedwith hundreds
of small subwatersheds. It was developed in the early 1990s
by the US Department of Agriculture’s Agricultural Research
Service. SWAT can be applied to large-scale river basins and
in different time scales. It has been used extensively world-
wide and shown to adequately reproduce the hydrological
response of watersheds across a range of geographical regions
and climates. SWAT is a physically based model able to
estimate the impact of land uses on water, sediment, and
agricultural chemicals on subcatchment and or land use unit
scales over long periods of time, aswell as responses of climate
factors, for example, precipitation and evaporation, spatial
variation of underlying surface factors, and human activities.
By now, the SWAT model has been widely used in domes-
tic and international basins for simulation of watershed
hydrologic processes and hydrologic responses under the
conditions of climate change and land use change, evaluation
of human activities’ impacts on ecological environments, and
planning and management for regional water sources [31, 50,
51].

3.3.2. Simulation Methods. The precipitation input of the
SWATmodel is the daily precipitation at 9 stations.Themodel
then calculates the areal precipitation for each subcatchment
by using spatial interpolation method. Since only the daily
precipitation data are available, the surface streamflow is
estimated using the Soil Conservation Service (SCS) runoff
curve number method. The Priestley-Taylor method was
selected to calculate potential evapotranspiration (PET).
According to the relationship between sensible heat flux
and latent heat flux in wet surfaces and depending on the
idea of evapotranspiration balance, Priestly and Taylor put
forward the PET calculation formula under low-advective
conditions. This method takes into consideration several
meteorological elements such as solar radiation, soil heat flux,
air temperature, and relative humidity. It has been proved to
be applicable for calculating PET in humid areas by many
researchers [52–54]. For river flood routing, the Muskingum
method is adopted. The time scale of the streamflow simu-
lation is monthly and the evaluation objective of parameter
calibration is monthly streamflow efficiency coefficient.

3.3.3. SWAT Parameter Calibration. There are numerous
parameters in the SWAT model, which can be classified
into two types. Parameters of the first type can be directly
determined by their physical meaning. The values of those
attribute parameters such as soil physical properties and

land use/land cover properties can be determined via the
SWAT model database. Parameters of the second type are
mainly related to discharge, including initial SCS runoff curve
number formoisture condition (CN), availablewater capacity
of the soil layer (SOL AWC), soil evaporation compensa-
tion factor (ESCO), groundwater reevaporation coefficient
(GW REVAP), and the baseflow recession constant (ALPHA-
BF). This paper focuses on the watershed streamflow sim-
ulation and optimization of the second type of parameters.
The parameter calibration process follows several principles:
give upstream priority over downstream; first adjust the
water balance and then the flow duration curve; and first
adjust the surface flow and then the soil water, evaporation,
and underground streamflow [31, 50, 51]. In view of the
complexity of the SWAT model, both automatic and manual
calibration methods are used to optimize the second type of
parameters.

3.4. Performance Criteria for Evaluating the Simulation. The
Nash-Sutcliffe coefficient of efficiency (NSC), the coefficient
of correlation (RC), and the relative error (ERR) (%) are used
to measure model performance.The expressions are given by

NSC = 1 −
∑
𝑛

𝑖=1
(𝑋𝑖obs − 𝑋

𝑖

sim)
2

∑
𝑛

𝑖=1
(𝑋𝑖obs − 𝑋obs)

2
,

RC =
∑
𝑛

𝑖=1
(𝑋𝑖obs − 𝑋obs) (𝑋

𝑖

sim − 𝑋sim)

√∑
𝑛

𝑖=1
(𝑋𝑖obs − 𝑋obs)

2

∑
𝑛

𝑖=1
(𝑋𝑖sim − 𝑋sim)

2

,

ERR =
∑
𝑛

𝑖=1
𝑋𝑖sim − ∑

𝑛

𝑖=1
𝑋𝑖obs

∑
𝑛

𝑖=1
𝑋𝑖obs

× 100%,

(3)

where 𝑛 is the number of time steps,𝑋𝑖obs is the observed data
at time step 𝑖,𝑋𝑖sim is the simulated data at time step 𝑖,𝑋obs is
the mean value of the observed data, and 𝑋sim is the mean
value of the simulated data. The closer the values of NSC
and RC are to 1, the more successful the model calibration
or validation is. Simulations are considered satisfactory when
ERR is below 10% and excellent when ERR is less than 5%.

4. Results and Discussion

4.1. Precipitation Downscaling Results. In this study, the first
30 years (1961–1990) is chosen for calibrating the models
and the remaining data (1991–2009) are used for validation.
The three models are tested for the period 1991–2009 for
reproduction of various daily precipitation statistics. All
downscalingmethods are usedwith the same set of predictors
for training. To assess the accuracy of the three downscaling
models in producing rainfall inputs for hydrological model,
a comparison of the predictors is selected including mean
precipitation, 95th-percentile-of-rain-day amounts (P 95q,
mm), largest 5-day total rainfall (P M5, mm), maximum
length of wet spell (CWD, days), maximum length of dry
spell (CDD, days), and percentage of days long-term exceed-
ing 90th percentile (R90t, %). The values of indictors are
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Table 2: Results of three statistical downscaling methods (calibration and validation).

Statistical
indicators Season Calibration Validation

Observation SVM BCC/RCG-WG SDSM Observation SVM BCC/RCG-WG SDSM

Mean/mm

Spring 2.30 2.17 2.04 2.12 1.76 1.61 1.54 1.83
Summer 4.33 4.41 4.19 4.37 4.03 4.06 3.75 4.19
Autumn 2.95 2.78 2.70 2.83 2.01 2.12 1.83 2.05
Winter 0.37 0.42 0.46 0.39 0.41 0.45 0.51 0.43
Annual 2.49 2.46 2.23 2.38 2.06 2.27 2.32 2.15

P 95q/mm

Spring 22.96 18.72 17.48 20.92 22.85 18.22 17.71 18.91
Summer 41.98 35.51 30.84 36.2 41.25 31.56 30.69 34.69
Autumn 26.98 25.41 20.56 23.96 24.88 22.28 20.3 21.14
Winter 7.58 5.74 4.97 6.13 7.71 5.47 4.88 5.53
Annual 28.51 23.99 20.93 25.65 28.85 23.06 21.13 23.83

P M5/mm

Spring 114.16 122.68 111.79 126.21 98.83 93.37 90.92 99.56
Summer 233.99 190.81 165.14 207.7 213.71 181.54 180.13 181.07
Autumn 171.39 178.52 134.62 155.47 126.44 123.59 109.81 124.24
Winter 36.09 32.14 28.98 31.32 33.15 23.86 24.09 22.9
Annual 236.46 216.87 171.33 213.85 214.35 186.23 186.82 185.66

CDD/d

Spring 23 20 18 19 20 21 15 24
Summer 19 17 13 18 23 24 11 20
Autumn 25 23 23 22 26 29 17 26
Winter 49 37 33 38 54 50 25 40
Annual 47 36 31 36 53 41 26 38

CWD/d

Spring 10 11 15 11 9 8 15 8
Summer 12 11 17 13 11 9 18 10
Autumn 17 16 19 17 15 12 20 10
Winter 10 9 14 7 7 6 13 6
Annual 17 19 20 18 15 13 23 11

R90t/%

Spring 39 36 44 37 36 40 44 38
Summer 63 59 65 60 64 61 66 62
Autumn 46 47 51 44 42 39 51 43
Winter 6 7 5 4 5 4 5 3
Annual 51 52 54 48 50 50 54 50

shown in Table 2. The observed and predicted monthly
precipitation time series during the validation period are
shown in Figure 7(a), and the comparisons between observed
monthly precipitationswithmonthly precipitations predicted
by SDSM, SVM, and BCC/RCG-WG are shown in Figures
7(b)–7(d).

It can be seen that there is a small difference between
the simulated and observed mean daily precipitation in all
three methods. It is also evident that the simulation results
of P 95q and CDD obtained by BCC/RCG-WG are close to
those simulated by SVM and SDSM, while the other statis-
tical indicators’ simulation results by BCC/RCG-WG have
a relatively large deviation. In addition, SDSM has a slight
advantage compared with SVM in the simulation results
of P 95q and R90t, showing that SDSM performs better
at simulating precipitation extreme values. SVM is more
effective to simulate CDD, and other indicators are similar
to SDSM simulated results. The result of continuous dry days

is better than continuous wet days, but both of the results are
smaller compared with the observed variance. Therefore, the
simulation accuracy for rain/no rain event needs to be further
improved. SDSM has no significant advantage in individual
indicator simulation but is slightly better than other two
methods in overall stability through comparing simulation
results of different seasons. In general, the SVM model can
simulate rainfall distribution characteristics in the year better,
while it is a little less than SDSM on the accuracy of extreme
values in precipitation. This may be related to SDSM by
precipitation of conditional probability to estimate rainfall.

The comparison results shown in Figure 7 also indicate
that BCC/RCG-WG performed worse than SDSM and SVM,
while SDSM performed a little better than SVM. The reason
for the poor simulation by WG in recent years is associated
with the parameter estimations using observed climate data
before the year 2000. Since SDSM and SVM require the
input of meteorological factors in corresponding years to
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Figure 4: Comparison between simulated and observed monthly
streamflow in the study area during calibration periods of 1961–1990.
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Figure 5: Comparison between simulated and observed monthly
streamflow in the study area during validation periods of 1991–2009.

predict precipitation by using the established relationships
between meteorological factors and precipitation, the results
are relatively better than those obtained by BCC/RCG-WG.
Comparing SVM and SDSM, the results by SDSM are a little
better than SVM because all 10 factors in Table 1 were used
in SVM, while the meteorological factors of each station
are screened and the factors which correlated well with the
precipitation are chosen in SDSM (see Table 6).

4.2. Simulation Analysis of SWAT Model. The historical
records for DJK Reservoir over the period of 1961–2009 are
split into two periods: 1961–1990 for calibration and 1991–
2009 for validation. The SWAT model is first calibrated
on the period 1961–1990 and then validated on the period
1991–2009. Model calibration and validation are conducted
by comparing the SWAT simulated data with the observed
discharge on a monthly basis. Figures 4 and 5 compare
simulated monthly streamflow with observed streamflow
values. Except for several years, most of the periods have a
very good agreement between the simulated and observed

Table 3: Performance assessment of SWAT model during calibra-
tion and validation periods.

Calibration (1960–1990) Validation (1991–2009)
NSC RC ERR/% NSC RC ERR/%

All 0.87 0.95 −6.31 0.76 0.89 −12.31
Jan. −10.48 0.27 −76.87 −5.60 0.27 −83.79
Feb. −3.82 0.66 −58.54 −3.13 0.39 −74.21
Mar. −0.15 0.80 −28.33 −3.79 0.36 −50.24
Apr. 0.67 0.91 3.98 −1.39 0.58 −30.56
May 0.74 0.87 3.23 0.51 0.86 −12.33
Jun. 0.73 0.91 −5.58 0.73 0.93 −11.73
Jul. 0.51 0.82 10.11 0.66 0.84 1.64
Aug. 0.65 0.88 10.78 0.82 0.91 −1.77
Sep. 0.93 0.97 −4.07 0.91 0.95 −3.60
Oct. 0.92 0.97 −11.20 0.88 0.94 −6.15
Nov. −0.08 0.71 −28.04 0.75 0.94 −21.69
Dec. −3.98 0.58 −67.21 −2.34 0.72 −76.35

streamflow. The different performance measures, including
the Nash-Sutcliffe coefficient of efficiency (NSC), the coef-
ficient of correlation (RC), and the relative error (ERR)
between the model outputs and the observed data, are also
summarized in Table 3. In the model calibration period,
the relative error for monthly average streamflow is −6.31%,
and RC and NSC are 0.95 and 0.85, respectively. All the
three are within the range of satisfactory accuracy. The
model validation result shows that the model gives sat-
isfactory and comparable performance on the streamflow
simulation. Model performance over the validation period
is acceptable, with values of −12.31% for ERR, 0.89 for RC,
and 0.76 for NSC. Because the monthly data include the
seasonal cycle, the correlation is very high.Thus to objectively
evaluate the predictability, the performance of each month
is shown in Table 3. Considering individual months, the
simulation results show good performance from May to
October, although the accuracywas quite low fromDecember
to February. In other words, the SWAT model can operate
well in the wet season but it is less accurate in the dry season,
like many other hydrological models. In general, the results
indicate that it is feasible to apply the SWAT distributed
hydrological model to streamflow simulations.

4.3. Simulation Results Analysis of Ensemble
Downscaling Method Based on BMA

4.3.1. Precipitation Simulation. Ensemble downscaling
method based on BMA combined with SVM, BCC/RCG-
WG, and SDSM model is set up and a weighted average
of precipitation sequences from 1991 to 2009 is simulated.
And the NSC and RC of the nine stations are calculated
by ensemble downscaling method based on BMA and
compared with single downscaling model (SVM, BCC/RCG-
WG, and SDSM) and the simple averaged (SA) ensemble
method. The compared values are shown in Table 4.
Figure 6 presents the effect of the BMA method through
comparing the mean value of evaluation indictors of the nine
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Table 4: Different methods precipitation simulation results comparison.

Stations SVM BCC/RCG-WG SDSM BMA SA
NSC RC NSC RC NSC RC NSC RC NSC RC

Hanzhong 0.32 0.58 −1.1 0.07 0.31 0.57 0.29 0.62 0.20 0.46
Foping 0.31 0.56 −0.8 0.11 0.29 0.54 0.24 0.59 0.22 0.47
Shangxian 0.14 0.39 −0.75 0.06 0.26 0.51 0.20 0.55 0.15 0.40
Xixia 0.19 0.44 −0.98 0.04 0.22 0.49 0.19 0.52 0.09 0.32
Shiquan 0.28 0.54 −0.78 0.04 0.25 0.51 0.22 0.55 0.16 0.40
Ankang 0.21 0.48 −0.74 0.07 0.23 0.48 0.19 0.52 0.16 0.40
Yunxian 0.23 0.52 −1.21 0.02 0.31 0.57 0.27 0.62 0.16 0.41
Fangxian 0.25 0.51 −0.92 0.04 0.24 0.49 0.25 0.57 0.14 0.38
Laohekou 0.23 0.48 −0.87 0.02 0.27 0.54 0.26 0.59 0.13 0.37
Mean values 0.24 0.50 −0.91 0.05 0.26 0.52 0.23 0.57 0.16 0.40

SVM WG SDSM BMA SA
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Figure 6: BMA method compared with single simulated rainfall
downscaling method.

stations. It can be seen from Table 4 that the efficiency
coefficients of precipitation sequence are negative, and
correlation coefficients are all below 0.11 when simulated
using BCC/RCG-WG. It demonstrates that the simulated
precipitation process by BCC/RCG-WG has a big difference
compared with the observed data which corresponding to
the efficiency coefficient of BMA approach to improve the
effect is not obvious. The correlation coefficients calculated
by the BMA method are greater than the three single
downscaling models and the SA ensemble method, and the
comparison result of correlation coefficients indicates that
the BMA method could improve the correlation between
simulated and measured values. Because the same weight
is applied to each individual method in the SA ensemble
method, the simulation effect of SA is better than WG
but worse than SVM and SDSM. However, the simulation
forced by the BMA ensemble outperformed not only the
simulations forced by individual reanalysis datasets, but
also the equal-weight ensemble simulated precipitation.
These results suggest that the BMA ensemble method is
an effective method for improving model performance in
climate downscaling.

4.3.2. Runoff Simulation. In order to fully analyze the effect of
rainfall-runoff simulation using the BMA method, the daily

precipitation sequences obtained by SVM, BCC/RCG-WG,
SDSM, SA, and ensemble downscaling method based on
BMA are put into the SWAT model which is calibrated well
in the above content. The simulated runoff results from 1991
to 2009 are compared with the measured data, and the eval-
uation indictors are listed in Table 5 and the runoff process
is shown in Figure 8. The runoff coefficient is only about
0.2 when using the input daily precipitation downscaled by
the BCC/RCG-WG model. The value is significantly lower
compared with the runoff coefficients calculated by input of
the precipitation downscaled using SVM and SDSM. From
the specific values of relative error, BCC/RCG-WG model
shows well at simulating the total amount of precipitation
while it is poor at grasping the process of precipitation.

The simulated runoff processes are similar by input of
the precipitation using SVM and SDSM method and the
response to the runoff of these two models is almost the
same, but the relative error of the indicators is significantly
greater than the measured ones. This indicates that there
are great uncertainties when simulating the precipitation
through downscaling method. The NSC of simulated runoff
calculated by input precipitation downscaled using SVM is
bigger than that using the SDSM. But from the ERR which
reflects the total error, we can see that SVM performs a
little better. This runoff simulation result does not agree with
the downscaling precipitation results. In the downscaling
precipitation results, SDSM can describe the precipitation
more reasonably. From the point that precipitation is the
main factor affecting the runoff, the idea that evaluation
indictors can describe precipitation well may not accu-
rately describe the runoff and the correlation characteristics
between rainfall and runoff. Similarly, the runoff simulation
by SA ensemble method is better than WG but worse than
SVM and SDSM. It can be seen that the simulated runoff
accuracy is improved when inputting the weighted average
precipitation by BMA compared with the single downscaling
method. Also, the efficiency coefficient and correlation coef-
ficient are slightly increased, and the relative error obviously
decreases.

In general, due to the uncertainty and randomness of
precipitation simulation, statistical downscaling method is
focused on the statistical distribution characteristics rather
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Figure 7: (a) Monthly precipitation time series of observed data and data predicted by three methods and the relationship of observed
monthly precipitation with monthly precipitations predicted by (b) SDSM, (c) SVM, and (d) BCC/RCG-WG.

than errors of the precipitation process. Therefore, the statis-
tical downscaling methods should be improved at compre-
hensive analysis of the precipitation simulation and collected
methods together to get better effects.

5. Conclusions

This paper first assesses the three downscaling models which
are SVM, BCC/RCG-WG, and SDSM by comparing the pre-
dictands against observed historical data and then evaluates
the runoff modelled by the SWAT rainfall-runoff model
using the downscaled daily rainfall against observed histor-
ical runoff characteristics and further proposed ensemble

downscaling method based on BMA combined with the
above three statistical downscaling models; at the same time
the performance of each model is measured by the chosen
indexes. In particular, the downscaled precipitation from
all these methods is put into the SWAT model for detailed
comparison and analysis. The specific conclusions are as
follows.

(1) In terms of mean precipitation, the downscaled results
are close to the observed data, while for the other predictors
each downscaling model has different performance. For the
ability to estimate precipitation events and simulate the
distribution of rainfall during the year, SVM performs well.
SDSM has no significant advantage in the assessment of
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Table 5: The BMA method precipitation runoff result of input
analog.

Input precipitation NSC RC ERR/%
Observed 0.76 0.89 −12.31
SVM 0.52 0.77 20.1
BCC/RCG-WG 0.19 0.55 5.52
SDSM 0.50 0.76 23.46
SA 0.38 0.68 18.5
BMA 0.56 0.79 13.74

Table 6: The forecast factors of each station for SDSM.

Station Forecast factors
Hanzhong Temp, p500, r500, r850, and p5 v
Foping Temp, p500, r500, r850, and p5 v
Shangxian Temp, p500, r500, r850, and p5 v
Xixia Temp, p500, r500, r850, p8 u, and p5 v
Shiquan Temp, p500, r500, r850, and p5 v
Ankang Temp, p500, r500, r850, and p5 v
Yunxian Temp, p500, r500, r850, and p5 v
Fangxian Temp, p500, r500, r850, p8 u, and p5 v
Laohekou Temp, p500, r500, r850, and p5 v

individual indicators but slightly higher accuracy can be
obtained on the indicators that reflect precipitation extremes.
The ensemble downscaling method based on BMA is pro-
posed by combining the three statistical downscaling models
and the results show it can improve the correlation between
simulated and measured values.

(2) The SWAT rainfall-runoff hydrological model is used
to simulate monthly runoff. With calibration on the period
of 1961–1990 and validation on the period of 1991–2009, the
model gives satisfactory and comparable performance on the
streamflow simulation in the study area.

(3) Daily downscaled precipitation simulated using the
three models and the ensemble downscaling method based
on BMA is obtained and separately put into the SWAT
model. By comparing the simulated runoff derived from
precipitation of the ensemble downscaling method based on
BMA and the three individual models, it can be seen that the
BMA method may improve the runoff simulation effect to a
certain extent and reduce the simulation uncertainty of both
precipitation and runoff.

Based on the study, it is found that BMA is a particularly
useful method. It can assess the relative performances of
all models by assigning weights to each model when there
are two or more competing models available for the same
issue and then produce more accurate mean prediction by
weighted averaging of all predictions from those models.
In the next step, more evaluation indicators can be con-
sidered, and more downscaling methods and hydrological
models can be applied to analyze their feasibility in other
basins.
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Figure 8: Simulated monthly streamflow by SWAT model through
inputting the precipitation obtained using BMA method. The red
and blue solid curves are precipitation with values shown on the
right 𝑦-axis, while the black and blue-dashed curves are runoff with
values shown on the left 𝑦-axis. The scales have been adjusted to
avoid overlapping of the curves.
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