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Lightning is one of the most spectacular phenomena in nature. It is produced when there is a breakdown in the resistance in the
electric field between the ground and an electrically charged cloud. By simple observation, we observe that precipitation, especially
the most intense, is often accompanied by lightning. Given this observation, lightning has been employed to estimate convective
precipitation since 1969. In early studies, mathematical models were deduced to quantify this relationship and used to estimate
precipitation. Currently, the use of several techniques to estimate precipitation is gaining momentum, and lightning is one of the
novel techniques to complement the traditional techniques for Quantitative Precipitation Estimation. In this paper, the authors
provide a survey of the mathematical methods employed to estimate precipitation through the use of cloud-to-ground lightning.
We also offer a perspective on the future research to this end.

1. Introduction

The estimation of precipitation is important because of its
impact on several aspects of human life [1-5]. Depending on
the spatial and temporal scales, the accuracy of Quantitative
Precipitation Estimation (QPE) can impact several fields such
as hydrology, water resources, agriculture, natural hazards,
drought, climatology, meteorology, among many others [2, 3,
6,7].

Rain gauges and radars have traditionally been used to
monitor and estimate precipitation [8-11]. Both instruments
have their own strengths and weaknesses and these have been
documented in a number of authors [6, 12-18], among many
others. As a result, researchers and agencies have opted to
combine these two measurements in order to get more accu-
rate QPE [6, 8-11, 19]. Multisensor precipitation estimation
(MPE) consists of merging network radar data with gauge
bias correction [6] plus model inputs and quality controlled
data. Examples of these data are the stage IV data [20] and
NMQ precipitation data [21], among others. Although the
MPE represents progress in estimating QPE, the accuracy
of these estimations, especially in mountainous regions, has
been questioned [22].

Satellites data also has been proposed as an alternative to
complement ground-based MPE. It has almost global cov-
erage [7, 23], can estimate precipitation at relatively high
time and space resolution, and is not affected by topography
as are other observational platforms [5, 24]. Currently, in
fact, there are some data products that combine ground-
based and satellite precipitation [25, 26], such as PERSTANN
[27], CMORPH [28], and TMPA-RT [29], which actually
represent an improvement in monitoring precipitation [25,
26]. However, satellite data suffers of its own limitations [7].
Reference [7] evaluated parameters like bias, probability of
detection, and false alarm ratio, among others. They con-
cluded that satellite precipitation products presented poor
results in cases when high precipitation events associated
with complex terrain occur. Coincidentally, in many places of
the world, these kinds of events occur over mountainous
zones where ground base sensors do not have spatial coverage
(e.g., southwest USA) [22, 30]. Furthermore, satellite data
latency may be inadequate for real-time forecasting.

Considering that the problem of sensor coverage is recur-
rent, even with multisensor QPE products (either ground
or space-based), other alternative techniques to address this
problem are required.
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FIGURE 1: Convective storm in Midland, Texas, lightning-QPE
correlation example, from [84].

Figure 1 shows the precipitation distribution of a thun-
derstorm over Mid Land, Texas. It is clear that regions
with higher precipitation coincide with those with more
lightning events (dots); based on this kind of observations,
the relationship between cloud-to-ground lightning and
convective precipitation has been proposed since the late
1950s to complement QPE estimations [31-35]. Many authors
have demonstrated empirical correlation between these two
variables [32-36]. In contrast with the use of radar, making
use of the Lightning-Precipitation Relationship (LPR) has
the advantage that, with a proper network, it can estimate
precipitation in real time at high resolutions without spatial
coverage problems such as mountainous regions with sparse
data and weather radar blockage [22, 34]. However, this
potential has not been fully explored and most of the
operational QPE methods limit the use of lightning only to
locate thunderstorms [37].

When studying precipitation, it is appropriate to focus on
the basic types, convective and stratiform. Convective pre-
cipitation occurs predominantly in the form of localized rain
showers and thunderstorms and may have greater intensity.
Stratiform precipitation tends to be of larger-scale and long-
lasting, with lesser intensity. Disaggregated precipitation
data can be used for parametrizing climate models which
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simulate convective and stratiform (large-scale) precipitation
separately [38], as well as for analyzing climate change effects
on precipitation patterns. While the recorded precipitation
is often a mixture of both, convective precipitation rates are
generally much higher [39]. There are a variety of algorithms
to discriminate convective precipitation through subjective
methods or through more sophisticated techniques (e.g.,
radar reflectivity [40]).

There is scientific evidence that the occurrence of light-
ning is linked with convective precipitation. This can be phys-
ically explained by the fact that cloud electrification processes
need the presence of supercooled water, ice particles, and
larger heavier graupel to coexist in a region experiencing
moderately high updraft velocities [36, 41]. Observational
experiments (e.g., [42-46]) and some modeling studies (e.g.,
[47-49]) have established that the rate of all lightning dis-
charges (intracloud and cloud-to-ground flashes) is strongly
correlated with the rate of cloud electrification, and the latter
is controlled by the convective cycles, the updraft mass flux,
and the mass of ice-phase precipitation. The storm severity or
the updraft intensity may not be correlated with the rates of
CG flashes; however, they are correlated with the formation
of precipitation and its descent to lower levels of the storm
[46, 50].

On the other hand, lightning data have also been used in
models as a proxy for deep convection to improve parameters
related to cold clouds and precipitation [51-53]. Lately,
researchers have investigated the utility of lightning obser-
vations for identifying convective events at several different
spatial scales for which they conclude that the assimilation of
lightning favorably impacts several model variables as well as
initial conditions [54, 55].

In view of the scientific evidence, lightning based meth-
ods have been proposed as a complement or alternative for
QPE [22, 32-35]. A number of studies have demonstrated the
relationship between cloud-to-ground (CG) lightning and
convective rainfall [22, 32-36]. More recently, in [5], the
authors demonstrated the value of combining satellite
infrared and lightning information to estimate rainfall, at
least for large time periods (hours to days).

In practice, many regions of the world have ground
lightning detection networks [56-61]; ground global detec-
tion networks are emerging and growing, networks such as
WWLLN [62] and GLD360 from Vaisala Inc. [63] are such
examples. Furthermore, NASA is launching a Geostationary
Lightning Mapper (GLM) which will detect total lightning
(intracloud and cloud to ground) over the western hemi-
sphere. With the aforementioned technological infrastruc-
ture in addition to the demonstrated weaknesses of the actual
MPE methods previously discussed. We believe that the use
of lightning based methods as a complement to convective
precipitation estimation and the integration of this estimate
to the current MPE may improve the rainfall estimations,
warranting a further discussion of such methods.

This paper attempts to contribute to the discussion of
the methods to estimate QPE by using lightning. We present
a brief survey of the mathematical models used over the
years and provide an overview of future research geared
towards development of a system that may provide a basis to
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incorporate lightning-derived precipitation into the current
multisensor precipitation products.

2. Estimation of
Lightning-Derived Precipitation

2.1. Simple Models. Let D be a spatial domain or region,
divided into a gridded partition, where A; ; is the grid located
in the ith row and jth column of grid partltlon Let s be a
location in D and Z,(s) the rainfall in a fixed time interval in
location s at time ¢. The QPE problem resides in estimating
the spatial precipitation

Z, (A ) ! J Zt (s) ds, )
[,
where |A, ;| is the area of the grid A, ;.

In much of the previous work investigating the LPR, the
mathematical model was a simple linear least squares regres-
sion [35, 36]. In general, linearly estimated precipitation at
time f and A; ; grid can be defined as

Z,(4:;) = (1.1, (L’Ai,j))TQ 2

where f,(L, A; ;) = A (L, Ay fra, Ai,]-))T is a feature
vector of dimension k at time ¢ from lightning observations
data L and O is a vector of estimation parameters.

The feature vector f;(L, A; ;) can be calculated in different
ways. For instance, a model can be defined by comparing the
mean of convective precipitation at every time step with the
corresponding lightning accumulation in the same domain.
For this case, f;(L, A, ;) is established with only one feature
as f(L, A; ;) = L,(A; ;) the number of lightning occurrences
ingrid A, ; at time t.

In [22] the model parameters are estimated in two ways.
First, in order to estimate the model parameters, a vector of
mean value of precipitation and lightning is obtained as

(3)

=DLZE<>

where D, = {A;; | L,(A;;) > 0} is the set of grids in the
domain with lightning counts different than zero at time t and
ID,| = % A,j€D, |A; ;| is the area of D,. The parameters are
obtained solving by least squares the equation

Z, =0, +0,L,. (4)

The model parameters are estimated by comparing the total
seasonal convective precipitation accumulation with the total
lightning strikes accumulated per grid. At this point, all the
research relating LPR had correlated precipitation with dis-
crete lightning counts. In [22] the authors proposed a method
to get LPR relationships for higher time and space resolutions
by using what they called Gaussian counts (GC). They noted

that lightning counts and precipitation are not variables of
the same nature; while precipitation is continuous quantity,
lightning counts is a discrete variable. This could be a problem
when using gridded data because most of the lightning events
can fall in different adjacent grid than precipitation and
therefore the correlation can be affected. A GC is simply
defined as a convolution of every discrete count by a Gaussian
distribution assuming an uncorrelated identical variance in
latitude and longitude 0. The lightning Gaussian counts are
obtained by

Ly (Ai,j)
(5)

ZJ exp(——a(s—sl) (s—sl)>ds.

2
2710 oD,

The values of L,(A; ;) are obtained by a simple numerical
integration procedure.

2.2. Power Law Model. Based on the power law relationship
that is employed for the relationship between liquid water
reflectivity and precipitation rate used to estimate precipita-
tion by radars [32, 33, 64, 65] this model has also been used to
estimate lightning-derived precipitation. The model is given
by

L=a(Z), (©)

where a and b are the optimal parameters of the power law.
This power law is equivalent to estimating a simple linear
model

log(Z; ) = 6, +6,log (L,), 7)

where 0, = —log(a)/b and 0, = 1/b. In [22] the authors did
not find any benefit in using a power law relationship for a
complex terrain domain.

2.3. Space-Time Invariant (STI) Model. Overall, previous
results demonstrate that LPR is reliable when one compares
relatively large regions and/or longer time periods. However,
if this relationship is tested at higher resolutions (such as
those of the new precipitation products), lightning events and
convective precipitation may not be colocated. On the other
hand, some results report a time lag between lightning and
precipitation [35, 36, 66]. To address this problem, in [22],
the authors proposed a model that considers spatial and time
neighbors that will be described next.

Let Nv(Lt(Az,])) = (L (Az v, j— v) ’Lt(Ai+v,j+v)) be
the Gaussian lightning counts of spatial neighboring of A;;
at time ¢ with v vicinity. Let f,(L,A;;) be the temporally
associated vector of lightning observations

fi(LAy)

= (N (Lot (A55)) -0 Ny (Leag (427))

where nl and pl are the negative and positive time lags,
respectively. Using the model from equation (2), the vector

(8)
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FIGURE 2: Cumulative total domain Mean Squared Error: simple
linear model, STT model, and Kalman filter, from [84].

O is adjusted by least square criteria with all the convective
covered grids in the relevant dataset. As will be noted further
in Figure 2, the STT model improves the results with respect
to the simple linear models because it allows having more
parameters that consider the time lag and space relationship
of the LPR.

2.4. Dynamical Linear Models. The STI model is a set of
linear parameters fixed in time. Physically LPR changes from
one storm to another or even within the same convective
event. Therefore, a fixed time model may work better when
the thunderstorms are close to the average but fails for non
“typical storms.” This suggests the need to develop a method
to model the LPR changes in time. Let

Z, (Ai,j) = (1’ft (L’Ai,j))T®t )

be model (2) with time-varying model parameters. Assume
that the parameters evolve from one time step to the next one
as

0, =0,+W, (10)

where W, is a parameter estimation error modeled as a
Gaussian random variable with zero mean and a covariance
matrix Q,.

The ®,,, estimation should be realized only with the
covered grids (grids with valid precipitation observations).
Let Ay, = (A,,..., Ac) be a vector of grids with observed
precipitation, so

Y, =(Z,(A),....Z,(Ac)) + V, (11)

is the observed precipitation vector at covered grids, where
V, is the observation noise assumed to be Gaussian with
zero mean and covariance R. The estimated precipitation of
covered grids is obtained from (9) as

Y, = A(L,1) O, (12)
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where A(L,t) = (fi(L,A)),..., fi(L,Ac))T is the matrix
whose rows are the feature vectors for each observed grid.

Equations (10) and (12) define a discrete-time linear
system and thus the parameter vector ®, can be estimated by
means of a Kalman filter [67] as

Ptlt—l = Pt—llt—l + Qt>

T T -1
K, = Py AL (AL ) Py (AL +R,) )
0,=0, ,+K,(Y,-A(L1)®,),

Ptlt = (I - KA (L, t)) Pt|t—1’

where Py, is the covariance estimate and K, is the Kalman

gain matrix. At each time step ©, is estimated, and then the
precipitation in nonobserved grids is estimated by (9).

In order to apply the Kalman filter for estimation, some
conditions must be assumed, such as a zero mean Gaussian
distribution of the parameters variations. Also, fixed and
known covariance matrices Q and R are usually assumed and
computed experimentally. Future research in time-varying
STI models and experimental validation is required not only
for lightning based QPE but in general for a large class of
remote sensing models.

Figure 2 shows the benefit of the fixed STI model and
the dynamic Kalman filter estimations. Comparing with the
simple linear model, it is clear that the new proposed methods
decrease the total mean square error down to half.

3. Geostatistical Approach

3.1. Geostatistical Basic Model. A random field Z is a set of
random variables (precipitation in our case) parametrized by
some set D ¢ R”

Z={Z(s):seDcR"}, (14)

where s is a spatial coordinate. An extensive treatment of
random fields” theory can be found in [68-71].

The construction of optimal predictors on a single and
partial realization of a random field is based on some form of

stationarity. A random field is called second-order stationary
if

E[Z(s)]=u VseD, (15)

Cov[Z(s1),Z ()] = E[(Z(s1) - 1) (Z(s5) —w)], (16)

where E is the expected value operator and Cov is the
covariance operator.

For processes for which the above conditions do not hold
(i.e., covariance function does not exist) another hypothesis
is introduced. A random field is called intrinsic stationary if

E[Z(s)]=u VYseD
17)
or E[Z(s;)—Z(s,)] =0 Vsy,s, € D.

If additionally the covariance Cov[Z(s, ), Z(s,)] depends only
on the separation between s, and s,, then the random field is
called isotropic.
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Let
VIZ(s))-Z(sy)] =2y (h), (18)

be the variance between the precipitation on two spatial coor-
dinates and let & = ||s; — s, || be the distance between s, and
s,. The semivariogram y is expressed by means of expected
value operator. The semivariogram as a structural function
of intrinsically stationary random fields describes a broader
class of phenomena, where covariance may not exist. Addi-
tionally, semivariogram does not require the mean value
of a random field to be known; therefore it became the

The semivariogram is a measure of dissimilarity between
a pair of observations. As a function, it provides information
on spatial continuity and variability of a random field. The
inference on the shape is based on empirical semivariogram
g(h) and some a priori knowledge of the behavior of a
phenomenon. In [72] the author presents three types of
models for the fitting of the experimental semivariogram well
adapted for precipitation estimation.

(i) The spherical model with range a:

3
preferred function of geostatistician. In case of second-order 1'5E ~05 (E) , ifh<a;
stationary spatial processes, the covariance operator and the gh) = a a . (20)
semivariogram are related as L, otherwise.
y(h) = Cov[Z(s,), Z(s1)] - Cov[Z(s), Z(sy)] . (19) (ii) The cubic model with range a:
h\? h\’ h\° nY
71 =) =-875( - 35— =075 =), ifh<a
g(h) = <a> (a> ' (a> <a> nr=a (1)

1)

(iii) The dampened hole effect model:

g(h)zl—exp(—%)cos(%), (22)

where d is the distance at which 95% of the hole effect
is dampened out.

The most common algorithm of geostatistical estimation
is the so-called ordinary kriging which can be viewed as
heterogeneously linear estimator [69]

Z(s0) = A(s0) Z(), (23)

assuming Z is a second-order stationary random field
with constant unknown mean value, Z(s) = (Z(sy),...,
Z(sm))T is the vector of m observed data, and A(s;) = (1, (sy),
- A, (so))" is the parameters vectors for the spatial location
So-

' Ordinary kriging is a minimal variance estimator, given
by E[A(SO)TZ(S) - Z(so)]2 under the condition (15):

E[Z(s0) - Z(s9)] = E[A(50)" Z(5) - Z (s,)]

:y(A(sO)Tl—l):O.

(24)

Hence, the objective function to be minimized through
Lagrange multipliers can be expressed as

J(A(s0), ) = E [A(s0) Z(s) - Z (s0)]”

~2a(A(s))" 1-1).

(25)

otherwise.

Taking partial derivatives with respect to A;(s,) and &, and
setting them to zero, provides the system of 1 + 1 equations
with m + 1 unknowns:

Do) y(si—s;)—a=y(si=s0), i=To..m
j=1
J (26)

iaj (s,) = 1.

The ordinary kriging approach is the simplest practical
model for geostatistical estimation. There are several modi-
fications of ordinary kriging; some deal with a nonconstant
mean like kriging with a trend or universal kriging; some
others deal with nonlinear transformations of the random
field, such as indicator kriging or log-normal kriging (69, 73,
74]. In general these approaches are straight forward from the
ordinary kriging.

3.2. Block Kriging. The ordinary kriging is a punctual esti-
mator, while the QPE is a spatial estimation. Therefore, it is
necessary to modify the method. Let A be a defined area; then

1
z= L 7 (s)ds 27)

is the area average of Z over A. Intuitively, Z(A) can be
estimated by first estimating Z(s) for a large number of
locations in A and then using the average of these values. That
suggests a solution to the problem of how to estimate an area
average by ordinary kriging

Z(A) =AA) Z(s), (28)



and, again, A(A) is determined by imposing the same con-
ditions of some kriging approach. If the constraint used in
ordinary kriging is applied, then the equations to solve the
ordinary block kriging are

ZAj(A)y(si—sj)—oczy(s,-,A), i=1...,m

=1
(29)

Y24 =1,
j=1

where y(s;, A) is the point-to-block average variogram. In
contrast to the average of the estimated values in A, this
has been replaced by averaging values of the variogram. In
practice, these point-to-block average variograms are obtained
numerically from an empirical variogram on a regular spaced
grid in A.

It can be shown that this is equivalent to using ordinary
kriging in each grid point, thus averaging the estimated
values. However, there are several important differences.
First, since the distribution of the unknown values is itself
unknown, it is not possible to predict the appropriate choice
of the grid to obtain a given error tolerance when averaging
the kriged estimates. On the contrary, it is possible to estimate
an appropriate grid when numerically integrating a known
function. Secondly, this approach results in many estimation
errors (one for each kriged estimate) and many kriging
standard deviations. In contrast, it blocks kriging results in a
single kriging standard deviation for a given area and control-
lable numerical integration errors.

3.3. Kriging with External Drift. Kriging with external drift
is a method to merge two sources of spatial information:
a primary variable that is precise but only known at few
locations and a secondary variable that is available in the
spatial domain [75]. The primary variable is considered a
random field Z with a nonconstant mean, but rather depends
on the location. In particular it is assumed that E[Z(s)] is
a function of a secondary variable Y(s). The simplest repre-
sentation might be

E[Z(s)] = Y aY (s) +b, a0)

where coefficients are assumed unknown. The kriging esti-
mator form would not change from (23). For an = 1 the
following constraints are sufficient:

le (s0) =1L,
=1
31

m
Z/\j (sp)Y (s]-) =Y (sp),
=1

whereas for n > 1 the additional constraints

Z/\j(so)Y(sj)izY(so)i, i=2,...,n (32)
j=1
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would be necessary. To minimize the estimation variance
subject to these constraints several Lagrange multipliers
would be necessary. Note that (30) might be thought of as a
regression model, then the residuals are used to estimate and
model the variogram function of Z(s,).

For QPE several authors have used block kriging with
external drift with elevation as the secondary variable. In the
reviewed literature, there is a dearth in the research on the
use of lightning data to carry out kriging with external drift.
Nevertheless, there is physical and modeling evidence that
justifies the assumption that the expected value of the QPE
is dependent on the lightning values.

4. Probabilistic Quantitative
Precipitation Estimation

4.1. Simulation Approach. Quantitative precipitation esti-
mates often have significant uncertainty. Stochastic precipita-
tion models provide an alternative framework for Quantita-
tive Precipitation Estimation [76-78]. Most stochastic precip-
itation models are developed for the purposes of precipitation
simulation rather than conditional precipitation estimation.
The parameters of such simulation models are estimated from
station data, but the temporal variability is generally not
constrained to fit station observations.

In [79] a method for conditional precipitation estimation
is proposed, based on a locally weighted regression, in which
observed grid information are used as explanatory variables
to predict spatial variability in precipitation. For each time
step, regression models are used to estimate the conditional
cumulative distribution function of precipitation at each grid
cell and ensembles are generated by sampling to extract
values from the gridded precipitation cumulative distribution
function.

Based on this idea, one approach to perform probabilistic
QPE based on lightning data is to compute an empirical
climatological cumulative distribution function of precip-
itation in grids with observed precipitation and using a
lightning based kriging with external drift to estimate a
locally weighted regression for each grid. This model will be
used to estimate a conditional cumulative distribution func-
tion of precipitation at each grid.

4.2. Conditional Random Fields. Another approach to prob-
abilistic QPE is to model the conditional probability distribu-
tion function of each grid Pr(Z,(A; j) | L,) as a continuous
conditional random field [80]. Let

Pr(Z,(A;;)IL,)
1 S (33)
= N (Lt,oc) exp (k_lakfk (Zt (Ai,j) ’Lt)> )

where f,(-,-) are known as feature functions, o« = («y, . .., ag)
is the coeflicients vector, and N(.-) is a normalization
function

N(L,«)= JZ exp (Z(xkfk (z, Lt)> dz.  (34)

k=1



Advances in Meteorology

KEMX 2010 Total Observed Precipitation

_ . — 60
322
A &L e L 450
e O ": . *
®e o oo %
150 ) IR
32 I N S e A A .
Le . o . 0 ey °
e o+ 4 40
31.8 & oy SRRV (S
L S s
o . L4 30
31.6
31.4
31.2
o) [\ — — N © [N )
- = Z = =g 2 £ =
T 7T T 7T T T

KEMX 2010 CV1 Kalman Estimated Precipitation

— 60

322
ool - 50

32
- - 40

31.8
-9 30

31.6
20

31.4
10

31.2
0

e} N
— —
— —
— —

| |

-111.1
-110.9
-110.8
-110.7
-110.6

FIGURE 3: Precipitation map for a Mesoscale Convective System in southern Arizona. Dots are lightning strikes; grids with crosses do not

have precipitation sensor coverage, from [84].

The coeflicients vector is obtained by maximization of the
log-likelihood criteria

J@= )

Z,(A; ;)20

log Pr (Zt (Ai,j) | Lt) ,
(35)

o = argmax J (@),

where ZO is the set of grids in the domain with observed
precipitation. In general, to evaluate Pr(Z,(A;;) | L,)
for inference or optimization, one would need to use time
consuming sampling methods such as Markov Chain Monte
Carlo-based algorithms. However, in [80], it is argued that
there is an efficient algorithm for optimization if the feature
functions are defined as

Ji (Zt (Ai,j)’Lt) = I (L) (Zt (Ai,j) = Uy (Lt))2 , (36)

where I(-) is an indicator function, based on the expert
knowledge of a problem. By introducing indicator functions
we essentially make a partition of the whole data set of
observed precipitations into smaller subsets. For each subset
the learning problem is convex and a global optimal solution
can be estimated by a EM approach. Estimated oy, represents
our belief in y(L,) in different subsets, corresponding to
different prediction conditions.

5. Storm Tracking

The benefit of using a dynamic model to track LPR is
evident in Figure 2. However, even in this case, the spatial
extension of the domain may contain more than one storm
and each of these storms can be described by different
models. For instance, Figure 3 shows a case in southern
Arizona where it is clear that we have two LPR behaviors, one
in the southern domain (non-sensor-covered domain), char-
acterized by larger lightning events and the central north area
where there were not many lightning events, but there was
intense precipitation. In order to address this problem, one
additional improvement to the dynamic model is to develop
a method to follow in space and time LPR. Methods of
clustering may be employed in order to recognize storms in
the spatial domain.

In the clustering problem, we are given a training set
(the lightning locations at one interval time in this case)
and want to group the data into a few cohesive clusters [81].
Clustering can be achieved by various algorithms that differ
significantly in their notion of what constitutes cohesive clus-
ters. Popular notions of cohesive clusters include groups with
small distances among the cluster members, dense areas of
the data space, intervals, or particular statistical distributions.

Since storms change with time, it is important to capture
the main transitions. In recent years, there has been an
increasing interest in tracking scenarios in which a very large
number of coordinated objects evolve and interact. It should



be noted that clusters can be thought of as extended objects
that produce a large number of observations. In recent work
[82] merging and splitting objects are modeled using point
processes. This is a fundamental issue characterizing storm
behavior.

Assume that at time ¢ there are s, storms, or clusters at
unknown locations. Assume that the storms can be ade-
quately represented by a parametric statistical model p(S, |
¢,). Each storm may produce more than one lightning
yielding the realization set [, = {s},..., s:nt}, where typically
m, > s, Let Ly, = {L,,...,L,} be the lighting location
history up to time ¢ and I;,, = {l;,...,[,} its realization. The
storm tracking problem could be defined as the estimation
of the posterior distribution of the random set of unknown
parameters p(¢, | [,) from which point estimates for
¢, and posterior confidence intervals can be extracted. In
[83] a filtering algorithm for tracking multiple clusters of
coordinated objects is presented. The algorithm is based on
a MCMC mechanism. A dynamic Gaussian mixture model
is utilized for representing the time-varying clustering struc-
ture.

6. Conclusions

In this paper, several approaches for estimating QPE from
lightning measurements were reviewed. We also reviewed the
existing techniques for storm tracking, since these methods
can be used in conjunction with linear models, allowing a
better parametrization of the models for convective events.

Linear models assume implicitly that the data used to
parametrize the model is independent, normal, and homo-
geneous in variance. The most simple models are suitable for
a first approach or when the data are expensive or limited.
On the other hand, the STI models provide a powerful tool
to easily express a heuristic knowledge about the space-
time relation of lightning with QPE. Dynamical STI models
allow adjustment of the STI model in response to changes
in LPR from one storm to another (or even in the same
convective event). However, for these models to be effective it
is necessary to carry out an adjustment phase of the tracking
parameters, which is critical for the quality of the estimation.

Geostatistical methods generate smooth interpolated sur-
faces, where the estimation errors depend strongly on the
assumed probability distribution, derived from the vari-
ogram model. Kriging methods are suitable when there is suf-
ficient data to establish (and statistically verify) a variogram
function. On the other hand, discriminant models (such as
conditional random fields) require less assumptions about the
distribution of the data and the structure of the model, so it is
possible to reduce estimation errors. However, discriminative
models do not offer clear representations of relations between
lightning and convective precipitation. These models are
suitable in large regions, with a large amount of historical
data.

As mentioned at the end of Section 1, efforts to detect
lightning globally with both ground-based and space-based
sensors have increased in recent years. An example of this is
the Vaisala GLD360 network [63], which is capable of
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detecting approximately 80% of events occurring all over the
planet. On the other hand, NASA’s next mission to put the
new generation of GOES satellites into orbit will be launched
in late 2017 [85]. This new generation of satellites has a
lightning mapper, which implies that the entire network will
be able to monitor lightning events at a global level. This
implies that, as never before, electrical activity due to thun-
derstorms will be able to be studied and observed over the
entire planet.

This infrastructure represents a great opportunity to
investigate the relationship between convective precipitation
and the occurrence of lightning at a global level. It Investigates
the differences that may exist in LPR depending on the
geographic location as well as the nature of the different
convective events. The development of new algorithms and
mathematical models for the estimation of convective precip-
itation as well as those that emerge from other investigations
will be of great importance to develop systems of prediction
of severe storms, to study the physical relationship between
LPR for convective events of different nature, or simply to
complement existing methods and techniques for estimating
precipitation.
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