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This study utilizes a recent nonparametric disaggregation𝐾-nearest neighbor (𝐾NN)model, to resamplemonthly flows depending
on annual flows at different sites. Both temporal and spatial approaches will be followed in this model while preserving the
distributional statistics of the observed data. This model assumes that a set of aggregated annual streamflows at a key station is
available and desired for disaggregation to a corresponding series of streamflow at key station (temporal disaggregation) as well
as at tributary stations (spatial disaggregation). The model is applied to the annual streamflow data of particular stations in the
Kızılırmak Basin, which is exposed to drought periods during the years (1970–1974 and 1994-1995). The aim of this study is to find
the possibilities of using the nonparametric approaches as generators ofmonthly flows, with emphasis on the ability to reproduce the
statistics related to drought and storage analysis for the selected stations in Turkey. The results show that the spatial disaggregation
approach has the ability to reproduce the historical data better than the temporal approach for the tested sites and provides a variety
of generated monthly sequence flows that can then be utilized to analyze the performance of the water resources planning system.

1. Introduction

Streamflow simulation is an important component in the
analysis of water resource management, flood, drought, and
reservoir operation. Water resources planning and man-
agement depend mostly on the observed streamflow data.
The lack of streamflow data is an obstacle to suitable water
resources management, especially in the developing coun-
tries. Additionally, the lack of fine temporal resolution
data (e.g., daily) for detailed hydrological model represents
another problem. Streamflow simulation processes have ear-
lier been performed utilizing linear autoregressive moving
average (ARMA) models for annual data and parametric
autoregressive (PAR) for seasonal data. These models joined
with some assumptions like a probability distribution apply-
ing to the historical flow. Pumo et al. [1] developed a model
to estimatemonthly runoff depending onmany variables, like
precipitation, temperature, and exploiting the autocorrelation
with runoff at the previous month. The model reproduced

the observed hydrological time series at both monthly and
coarser time resolutions. Among the available stochastic
generation models, the disaggregation method is proposed
to overcome the problem of data limitation. Through this
method, streamflow can be disaggregated into lower-level
scales, either temporally or spatially. While the only one
streamflow data set observed at the key station can be used
in temporal disaggregation method, we can include the data
of periphery stations into the simulation procedure in spatial
disaggregation method.

There are two main disaggregation methods: parametric
and nonparametric. Unlike the nonparametric approaches,
parametric approaches require linearity and statistical dis-
tribution assumptions. The first parametric approach was
proposed by [2] to disaggregate the annual to seasonal
streamflows using a linear autoregressive (AR) model for a
single site. Although their approach is accepted as a pioneer
disaggregation model, it has two disadvantages: (1) the
moments being preserved are not consistent; (2) the number
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of parameters is large [3]. The basic approach was improved
by adding a column matrix containing seasonal values of
the previous year and one more parameter matrix [4].
The model required an excessive number of parameters to
be estimated. So, a condensed model was introduced for
the temporal disaggregation model to reduce the number
of parameters required drastically [5]. The autoregressive
moving average (ARMA) and typical PAR(1) models were
also utilized to modify and improve the basic model [6].
A periodic disaggregation method was proposed by [7] for
disaggregation into subseasonal flows from seasonal flows
generated from a periodic autoregressive (PAR) scheme of
any order. The model also shows the ability to preserve
the first and second moments of the decade (10-day) flows
generated frommonthly flows. Indeed, some aforementioned
approaches have concentrated on the temporal disaggrega-
tion of annual to seasonal or seasonal to subseasonal flows
and fit in the transformed space. However, the summation of
disaggregation flowsmay not ensure preserving the historical
statistics when the results are back transformed to the
original flow domain. So, a stepwise disaggregation approach
was suggested by [8] to solve the inconsistency problem
of the additive disaggregation approaches. Some studies
demonstrated that nonparametric disaggregationmodels can
overcome the drawbacks of the parametric ones [9–11].
The nonparametric approach was utilized by [9] including
kernel density estimation approach. Then, this model was
improved by [10] using 𝐾-nearest neighbor (𝐾-NN) method
to resample monthly flows depending on an annual flow
value in a temporal disaggregation or multiple upstream sites
based on a downstream site for a spatial disaggregation. This
model shows the ability to capture all statistical distributional
properties of monthly flows at all sites. Meanwhile, the𝐾NN
approach presented by [11] was effective to resample daily
flows at multisite from a single annual flow value. The model
is flexible for disaggregation of annual to any different time
scales and preserves the historical statistics very well. The
nearest neighbor approachwas utilized also in nonparametric
approach by [12] to disaggregate seasonal flow to daily flow
which includes a two stepwise: from season to monthly
disaggregation followed bymonthly to daily disaggregation to
overcome the weakness of the stepwise procedure presented
in parametric approach which is unable to preserve the
historical correlation between flows of the first day of the
month and last day of a previousmonth.The software package
(stepwise) of model [8] was developed and extended by [13]
to be implemented for the multivariate stochastic emulation
and disaggregation of monthly hydrological time series to
daily series that preserves the characteristics of annual,
monthly, and daily historical data. With some nonparametric
methods, the values not seen in the historical data cannot be
generated. To treat this problem, a modified𝐾-NN bootstrap
was suggested [14]. This approach is found to offer better
performance in capturing the features of historical data
when compared to both a periodic autoregressive parametric
approach and a nonparametric index sequential method.
Additionally, another method was suggested to disaggregate
generated annual streamflow data into monthly streamflow
series using three approaches with different criteria to set

the classes of fragments and to select the fragments [15]. For
disaggregationmonthly streamflows to a daily flow, amethod
based on an autoregressive model was presented by [16], and
they obtained a good result for reproducing duration curves
and the hydrographs of the streamflow.

Given the past researches as described above, it is clear
that there is a need for a robust, simple, and parsimonious
approach for space-time streamflow disaggregation that can
capture any arbitrary features exhibited by the data and
applied easily to regulated and unregulated waterways. To
this end, we adopted a nonparametric disaggregation model
via 𝐾-nearest-neighbor approach to resample the monthly
flow in both temporal and spatial disaggregation because the
method is parsimonious, as only the parameter 𝐾 (number
of nearest neighbors to be used in resampling) is estimated.
The model is utilized to generate monthly streamflow series
starting from historical annual data at three stations on the
Kızılırmak Basin which, in turn, may be used to manage the
water resources system in this region.

2. Methodology

The 𝐾-NN resample approach was firstly utilized by [17] to
develop a nonparametric disaggregation method.They man-
aged to alleviate the drawbacks of the classical parametric and
nonparametric methods based on kernel density estimation.
However, the𝐾-NNapproach generates only historical values
as it is a resampling technique. The model developed by [11]
indicated that aforesaid models are not performing well for
disaggregation to daily time scales. Their method is based
on conditional probability distribution function, 𝑓(𝑋𝑡/𝑝𝑡),
where 𝑋𝑡 is a matrix of flows that sum the vector of annual
aggregate flows to be disaggregated, and 𝑝𝑡 is the vector of
daily proportions, whose elements sum to unity.Their model
can be used to disaggregate the annual data to different time
scales. The steps of disaggregation annual historical data to
monthly data temporally in a single site are summarized as
follows. The detailed procedure of the methodology can be
found in Nowak et al. [11].

(1) Historical monthly streamflow data at any year are
transformed to a proportion of the total annual flow to
obtain [𝑃𝑦1 (= streamflow value observed on January
in an apparent year/total annual flow for an apparent
year), . . . , 𝑃𝑦12] of that year; the same procedure is
repeated for all months in the years to obtain a
proportion vector matrix, 𝑃𝑦, with dimensions 𝑛 × 13
(first column represents the historical years and the
other columns represent the monthly flows) where
𝑛 is sample size. The summation of each row except
the first column in the matrix should be unity. Then
the historical annual flow data are written as a matrix
form, 𝑧, with dimensions 𝑛 × 2.

(2) Assume that𝑍 is the annual flow of any year required
to be disaggregated. 𝐾 nearest neighbors of 𝑍 are
selected from the historical annual flow (𝑧). The
number of neighbors, 𝐾, is calculated from the
heuristic scheme as (𝐾 = 𝑛0.5) which is a well-known
procedure for this aim [18]. A weight is assigned to
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Table 1: Location and characteristic of stations.

Station name Longitude Latitude Historical duration Sample size
1528-Salur 34∘ 39 02 40∘ 39 05 1964–1996 32
1517-Sefaatli 34∘ 44 51 39∘ 30 14 1953–2000 47
1541-Cadirhoyuk 34∘ 07 09 40∘ 18 31 1981–2000 19
1503-Yahsihan 33∘ 28 54 39∘ 50 36 1939–2000 61
1501-Yamulu 35∘ 15 31 38∘ 53 25 1939–2000 61

Figure 1: Gauges station schematic: (1) EIE1528; (2) EIE1541; (3) EIE1517; (4) EIE 1503; (5) EIE1501.

each 𝐾 nearest data by using the weight function,
𝑊(𝑖), as

𝑊(𝑖) = 1
𝑖 ∗ (∑𝐾𝑖=1 (1/𝑖))

, where 𝑖 = 1, 2, . . . , 𝐾. (1)

The weight function provides larger weight to the
nearest neighbors and less weight to the farthest
neighbors.

(3) One of the 𝐾-nearest neighbors (one of historical
years) is chosen depending on the weight function
from (1). The proportion vector corresponding to
the chosen year, (𝑃𝑦), is multiplied by the annual
streamflow (𝑍) to obtain the monthly streamflow
vector (𝑑), which is given as

𝑑 = 𝑍 ∗ 𝑃𝑦. (2)

(4) Steps (2) and (3) are repeated to generate all ensem-
bles of monthly streamflows.

For spatial disaggregation, the procedure takes another
dimension. The matrix 𝑃 (13 × 𝑛) will be arranged as (13 ×
𝑛 × 𝑠), where 𝑠 represents the number of sites needed to
be disaggregated. Therefore, the proportion vector 𝑃𝑦 will
become a matrix of the dimension (13 × 𝑠).

3. Study Area

Data of the study were selected from three streamflow
gauging stations located along the Kızılırmak River in Turkey
since they have the longest length of historical data. Indeed,

Kızılırmak River is the longest river in Turkey with a length
of 1355 km and the basin size of 122,277 km2 [19]. The gauge
stations are Salur (EIE 1528) and Yahsihan (EIE 1503) which
are located on the main river and Cadirhoyuk (EIE 1541)
located on the biggest tributary (Delice River) of the main
river as shown in Figure 1. Site information, including
latitude, longitude, elevation, and observation period, is listed
in Table 1. Historical monthly streamflow data were provided
by theGeneralDirectorate of StateHydraulicWorks (DSI). As
shown in Figure 1, EIE 1503 and EIE 1528 stations are located
downstream of the existing dams (Hirfanlı, Kesikköprü
Dam, and Kapulukaya). Since the observed streamflow data
of the two stations have been influenced by the existing
dams, unaffected streamflows of these two stations should
be obtained. EIE 1501 station, located upstream of the dams,
and EIE 1541 station, located on the tributary, were used as a
reference to obtain the natural streamflow values (unaffected
form) of the stations by obtaining the correlation coefficient
between the monthly observed data of these stations before
the construction of the dams. Furthermore, data of EIE 1517
streamflow gauging station were used to extend the data of
observation duration of EIE1541 station. The measures of
goodness of fits (𝑅2) which are explained by EIE 1503 with
EIE 1501, EIE 1541 with EIE 1517, and EIE 1528 with EIE
1503 + EIE 1541 were 0.96, 0.86, and 0.88, respectively. These
relationships are reasonably good to obtain the natural data
by using the regression equation.

4. Results and Discussion

The statistics include monthly mean, variance, skewness
coefficient, minimum and maximum discharge, and lag-1
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Figure 2: Definition of drought statistics.

autocorrelation coefficient of flow for the three stations.
Statistics were calculated from 100 simulated traces; each
trace consists of 37 years (the same length of annual observed
streamflow data at each station), using both temporal and
spatial nonparametric approaches for comparison. In addi-
tion, drought analysis, including maximum length and mag-
nitude, and storage capacity are also calculated frommonthly
simulation values to evaluate the performances of the two
approaches. These statistics are displayed as boxplots. A box
in the boxplots indicates the interquartile range of simula-
tions and whiskers, ranging between 5th and 95th percentile
confidence bounds. The horizontal line in the box represents
the median of simulated values, while the dots represented
the outside values in this range. The historical statistics
are denoted as a triangle. Performance of any statistic is
considered good when the historic statistic value falls within
the range of the box.

The mean discharge from the 100 generated flow series
is taken as a threshold in order to calculate the drought
statistics. So, each period of one or more consecutive months
with flow below the mean values is defined as a drought
event and the length of each drought event is the duration
of the period with flow below the mean discharge while
the magnitude is the deficit of the total volume carried by
each event with respect to the mean total volume relative
to that length (i.e., product of the mean discharge by the
length of drought) as shown in Figure 2. In general, some
drought lengths are obtained in a time series in order to select
demand level and model size. The drought characteristics
of the model are computed and presented as boxplots to
be compared with that obtained from the historical series
[3].

The reservoir storage capacity is calculated by applying
the sequent peak method [20]. Some release values are
taken as a threshold release ranging between 10% and 90%
of the mean monthly discharge. To evaluate the storage
capacity, the monthly mean storage (𝐴𝑔) and the standard
deviation [𝜎(𝐴𝑔)] for 100 generated time series are estimated
to find the range limits of storage capacities which can
be computed from [𝐴𝑔 − 𝐾 ∗ 𝜎(𝐴𝑔); 𝐴𝑔 + 𝐾 ∗ 𝜎(𝐴𝑔)]
where 𝐾 can equal 1.0, 1.5, or 2.0. 𝐾 could be taken as
1.96 for 5% significance level [3, 21]. The monthly storage

capacities of simulated data were compared with historical
ones.

4.1. Temporal Disaggregation Results. The monthly basic
statistics from the temporal disaggregation approach along
the observed results were presented in Figure 3 (station
EIE1503), Figure 4 (station 1541), and Figure 5 (station 1528).
It can be seen from the figures that the model reproduces
the mean value statistic well in each station. The tighten
boxplots indicate that the 100 simulations have a high level
of agreement with each other as well as with the historical
data. In addition, the mean of historical streamflow data
was nearly the same as the median of the simulated data
for each month and stations. Boxplots of the variance and
skewness coefficient statistics also show that the model is
efficient in reproducing the historical data. Furthermore, the
variance and skewness values of the historical data were
within the boxplot for each month. Extreme behaviors of
the simulated streamflow were inspected since they are of
primary importance in analyzing reservoir operations and
river basin management policies through minimum and
maximum results. Also, the results of the minimum and
maximum monthly values were reasonably well simulated
in all stations. Backward lag-1 correlations are also well
captured in all months, which indicated that the generated
flows have factual continuity. It can be seen that only
the last month of the year and the first month of the
next year (December-January) are not captured well in all
stations.

The drought analysis was applied to monthly inflow
values obtained from the approach. It includes the maximum
length period and maximummagnitude of drought. Accord-
ing to Figure 6, the simulated maximum length of drought
periods tends to be good at station EIE1541 and over and
lower estimated at EIE1528 and EIE1503 stations, respectively
(i.e., the simulated maximum length of drought periods).
For the maximum magnitude of drought (Figure 6(b)), the
results of the boxplots show that the model is unable to
reproduce efficiently at EIE1541 station and that the historical
statistic is near the edge of the box at EIE1503 and EIE1528
stations.
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Figure 3: Simulated and observed statistics values from EIE1503 station. The triangle denotes the observed values.
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Figure 4: Simulated and observed statistics values from EIE1541 station. The triangle denotes the observed values.

The drought statistics estimated above depend on a
selected threshold (herein it is the average streamflow of the
historical period). Therefore, the results are specific to this
chosen threshold. A more effective process estimates the
wanted storage for the selected streamflow series to match

various demand levels. This includes the effect of many
linked droughts, so it is more accurate in performing critical
droughts. The algorithm of the sequent peak [20] is used
for this purpose. The results of storage capacity presented
in Figure 7 show that the historical data based on storage
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Figure 5: Simulated and observed statistics values from EIE1528 station. The triangle denotes the observed values.

capacity lies between the range of minimum and maximum
limits calculated from the generated data at all stations. This
indicates the ability of the approach to effectively preserve the
historical storage capacities. Actually, the range of minimum
and maximum limits calculated from simulation is wide in
all stations and the station EIE1528 shows the best results
as the historical storage capacity line falls almost in the

middle of the minimum and maximum limits plots. The
sequent peak algorithm runs for different demand levels
with the historical flow denoted as a triangle and each trace
of simulated series (boxplots) shown in Figure 8. It can
be observed that the approach provides a variable storage
and the simulated results variability increases relevantly with
the storage. Consider that the dash line in station EIE1503
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Figure 7: Monthly historical storage capacity and their limits calculated from the temporal approach at all stations.

represents the storage capacity of 500MCM. For the demand
of 50% of the mean discharge, the observed flow sequences
need 445MCM of storage capacity, while the simulations
represent the interquartile range of storage capacities between
346.6 and 590MCM. This means that about 30% of the
storage capacity of simulations is more than 500MCM and
that shows 70% reliability. This variation from the temporal
approach simulations can offer a good estimate of system
reliability.

4.2. Spatial Disaggregation Results. This section presents the
monthly flow results obtained from the spatial disaggregation

approach over the study area. The advantage of spatial disag-
gregation model is the ability to provide reliable streamflow
data and realistic spatial structures at each time step and that
can be easily adapted to different regions.The performance of
the model was evaluated using monthly statistics. Observed
and disaggregated values were tabulated in Table 2 for some
months (September, October, November, January, and Febru-
ary). It can be seen from Table 2 that the model preserved
the mean and variance statistics in all stations and it can
capture the skewness for all months very well, especially at
low flowmonths (September andOctober) at all stations.The
minimum andmaximum simulated values show the ability of
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Figure 8: Sequent peak results based on the demand of 10–90% of mean discharge from the temporal approach. The triangle denotes the
observed values.

the approach to capture these two statistics for most months.
For lag-1 correlation statistic, Figure 9 shows that the spatial
approach preserves well the historical statistic, especially in
low flow months through the convergence of the historical
value with the median of simulated values. It can be seen
that only the last month of the year and the first month of
the next year (December-January) are not captured well in
all stations. The performance of the model in reproducing
themonthly streamflow is satisfactory, especially for the skew
statistic.

To evaluate the performance of the approach in capturing
the drought characteristics, the maximum drought length
and magnitude were computed. The maximum monthly
drought period lengths demonstrated a good preservation
of the historical maximum drought length (Figure 10(a)).
In addition, the maximum length drought has a varying
length in the boxplots at all stations. This means that the
approach generated more drought values than the historic

record. The maximum magnitudes of drought (Figure 10(b))
are captured within the interquartile rang at all stations,
though they tend to be over- and underrepresented at
EIE1503 and EIE1528 stations, respectively. The storage
capacity results displayed in Figure 11 show that the his-
torical storage capacity data lie virtually in the center of
the maximum and the minimum plots. Also, the histor-
ical storage capacity is very near to the limits through
the range (10–50%) of the mean discharge. This indicates
that the approach preserves the historical storage capacities
efficiently.

For any selected storage capacity, we can find the
demand level corresponding to it as shown in Figure 12.
For example, the dashed line represents the storage capac-
ity of 500MCM at the site EIE1503. So, it can be seen
that the spatial approach strongly overestimate storages
for demand below the 40% of mean discharge and that
about 90% of the needed storage is over than 500MCM
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Figure 9: Simulated and observed lag-1 values from all stations. The triangle denotes the observed values.

for demand 50%. This variation from the spatial approach
simulations can give a good reliable estimation of the
system.

The comparison between the storage capacity charac-
teristics of the observed and the generated data from the
temporal and spatial approaches at all stations is shown in
Figure 13. The results indicate that the storage capacities are
reproduced very well when the threshold is taken as 60%
of the mean discharge or less. The difference between the
historical and simulation data is then increased progressively.
In addition, it can be seen that best results are obtained
when applying the spatial approach to all stations. This result
supports the utilization of spatial approach since it gives
a good improved storage capacity compared to temporal
approach.

5. Conclusions

This study discusses the efficiency of the nonparametric
disaggregation streamflow model to generate monthly
flow series. The model was applied at three stations at
Kızılırmak River in Turkey. The model is based on𝐾-nearest
neighbor (𝐾NN) approach to resample the proportion
vectors of monthly flow data from annual data. Historical
annual streamflows were used to examine the performance of
the model in generating monthly flow data. For comparison,
the model was employed in both temporal and spatial
approaches. The results show that the model can reproduce
historical data in space and time domain, especially for
the first two moments (mean and variance), and can also
reproduce the continuity of the flows of the historical
data at all stations. The spatial approach is showed to
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observed values.
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Figure 11: Monthly historical storage capacity and its limits calcu-
lated from the spatial approach at all stations.

be the best through overall results. The main advantage
of spatial approach is the ability to obtain values at
each time step and the flexibility to get values at several
stations from one station, while the major drawback
of both approaches was the inability to preserve the
continuity between the last month of a year and the first
month of the following year. Additionally, the monthly
analysis of maximum drought length and magnitude offered
a good preservation of the observed data characteristics. The
results of drought analysis indicated that the spatial approach
performs better when compared with temporal approach.
In addition, the simulations generated a rich variety of dry
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Figure 12: Sequent peak results based on the demand of 10–90%
of mean discharge from spatial approach. The triangle denotes the
observed values.

sequences that will be of great benefit to manage water
resources in the basin. The threshold used to determine
drought statistics are based on the average of the historical
flow. This threshold has been sensitized by the length of
the historical data and can be adjusted as required for each
basin. So, the various demands and storages founded from
the sequent peak algorithm are considered a good way to
identify drought analysis. However, the results of the
storage capacity analysis obtained from the spatial and
temporal approaches are found to preserve the historical
data in Figures 7 and 11. In a conclusion, the nonparametric
disaggregation streamflow based on 𝐾NN approach
showed efficacy in producing monthly flow values, and
the spatial approach is found to be a favorite choice
for future hydrological applications at this region in
Turkey.
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Figure 13: Monthly storage capacity calculated using historical flow and data generated by spatial and temporal disaggregation approaches
in all stations.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

Shatha H. D. Al-Zakar and Omar M. A. Mahmood Agha
thank the University of Mosul, Department of Dams and
Water Resources Engineering, Mosul, Iraq, for giving them
the opportunity to pursue their Ph.D. degree studies at the
University of Gaziantep.

References

[1] D. Pumo, F. Viola, and L. V. Noto, “Generation of natural runoff
monthly series at ungauged sites using a regional regressive
model,”Water, vol. 8, no. 5, article no. 209, 2016.

[2] D. R. Valencia and J. C. Schakke, “Disaggregation processes in
stochastic hydrology,”Water Resources Research, vol. 9, no. 3, pp.
580–585, 1973.

[3] J. D. Salas, J. W. Delleur, V. Yevjevich, and W. L. Lane, Applied
Modeling of Hydrologic Time Series, Water Resources Puplica-
tions, Littleton, Colo, USA, 1980.



16 Advances in Meteorology

[4] J. M. Mejia and J. Rousselle, “Disaggregation models in hydrol-
ogy revisited,”Water Resources Research, vol. 12, no. 2, pp. 185–
186, 1976.

[5] W. L. Lane, “Corrected parameter estimates for disaggregation
schemes,” in Statistical Analysis of Rainfall and Runoff, V. P.
Singh, Ed., Water Resources Publications, Littleton, Colo, USA,
1982.

[6] D. Koutsoyiannis and A. Manetas, “Simple disaggregation by
accurate adjusting procedures,” Water Resources Research, vol.
32, no. 7, pp. 2105–2117, 1996.

[7] M. S. Mondal and S. A. Wasimi, “Disaggregation model for
synthetic stream-flow generation,” Journal of Civil Engineering
(IEB), vol. 33, no. 1, pp. 43–54, 2005.

[8] D. Koutsoyiannis, “Coupling stochastic models of different
timescales,”Water Resources Research, vol. 37, no. 2, pp. 379–391,
2001.

[9] D. G. Tarboton, A. Sharma, and U. Lall, “Disaggregation proce-
dures for stochastic hydrology based on nonparametric density
estimation,”Water Resources Research, vol. 34, no. 1, pp. 107–119,
1998.

[10] J. Prairie, B. Rajagopalan, U. Lall, and T. Fulp, “A stochas-
tic nonparametric technique for space-time disaggregation of
streamflows,”Water Resources Research, vol. 43, no. 3, 2007.

[11] K. Nowak, J. Prairie, B. Rajagopalan, and U. Lall, “A non-
parametric stochastic approach for multisite disaggregation of
annual to daily streamflow,” Water Resources Research, vol. 46,
no. 8, Article IDW08529, 2010.

[12] J. M. Molina, Stepwise nonparametric disaggregation for daily
streamflow generation conditional on hydrologic and large-scale
climatic signals [M.S. thesis], Colorado State University, 2010.

[13] Y. G. Dialynas, S. Kozanis, and D. Koutsoyiannis, “A computer
system for the stochastic disaggregation of monthly into daily
hydrological time series as part of a three-level multivariate
scheme,” in Proceedings of the European Geosciences Union
General Assembly, vol. 13, Vienna, Austria, 2011.

[14] J. R. Prairie, B. Rajagopalan, T. J. Fulp, and E. A. Zagona, “Modi-
fied K-NNmodel for stochastic streamflow simulation,” Journal
of Hydrologic Engineering, vol. 11, no. 4, pp. 371–378, 2006.

[15] A. T. Silva and M. M. Portela, “Disaggregation modelling of
monthly streamflows using a new approach of the method of
fragments,”Hydrological Sciences Journal, vol. 57, no. 5, pp. 942–
955, 2012.

[16] N. Rebora, F. Silvestro, R. Rudari, C. Herold, and L. Ferraris,
“Downscaling stream flow time series from monthly to daily
scales using an auto-regressive stochastic algorithm: Stream-
FARM,” Journal of Hydrology, vol. 537, pp. 297–310, 2016.

[17] U. Lall and A. Sharma, “A nearest neighbor bootstrap for
resampling hydrologic time series,” Water Resources Research,
vol. 32, no. 3, pp. 679–693, 1996.

[18] U. Lall, “Recent advances in nonparametric function estima-
tion: hydrologic applications,”Reviews of Geophysics, vol. 33, no.
S2, pp. 1093–1102, 1995.
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