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This study aims to improve the statistical spatial downscaling of coarse precipitation (TRMM 3B43 product) and also to explore its
limitations in the Mediterranean area. It was carried out in Morocco and was based on an open dataset including four predictors
(NDVI, NDWI, DEM, and distance from sea) that explain TRMM 3B43 product. For this purpose, four groups of models were
established based on different combinations of the four predictors, in order to compare from one side NDVI and NDWI based
models and the other side stepwise with multiple regression. The models that have given rise to the best approximations and
best fits were used to downscale TRMM 3B43 product. The resulting downscaled and calibrated precipitations were validated by
independent RGS. Aside from that, the limitations of the proposed approach were assessed in five bioclimatic stages. Furthermore,
the influence of the sea was analyzed in five classes of distance. The findings showed that the models built using NDVI and NDWI
have a high correlation and therefore can be used to downscale precipitation.The integration of elevation and distance improved the
correlation models. According to 𝑅2, RMSE, bias, andMAE, the study revealed that there is a great agreement between downscaled
precipitations and RGS measurements. In addition, the analysis showed that the contribution of the variable (distance from sea) is
evident around the coastal area and decreases progressively. Likewise, the study demonstrated that the approach performs well in
humid and arid bioclimatic stages compared to others.

1. Introduction

Researchers agree on the key importance of precipitation
data and its broad spectrum of use [1, 2]. In addition to its
crucial role in the hydrological cycle balance, precipitation
data is integrated into the assessment of extreme events,
used as input in runoff and erosion modeling, utilized as
an important parameter for hydrometeorological and agri-
cultural hazards assessment, such as drought and flood. It is
also one of the most challenging aspects of climate modeling.
Precipitation is also a useful parameter in other fields such as
ecology, natural resources, and environment.

Conventional measurements of precipitation in rain
gauge stations (RGSs) allowed point-based estimations at
specific geographic locations. The quality of the recorded

precipitation data depends heavily on field observations, and
the establishment of an adequate measuring network at the
watershed level requires a nonnegligible cost (equipment,
installation, maintenance, etc.). Furthermore, to consider
the geographic variability of precipitation, one often relies
on deterministic and geostatistical interpolation techniques
such as IDW and Kriging. Although spatial interpolation
techniques are widely used, they are hindered by several
impediments [3] related to data precision, especially in
watersheds where the number of RGSs is insufficient or
inadequately distributed, as it is the case in developing
countries [4].

The progress in open satellite precipitation products
has relatively overcome this problem to some extent. In-
deed, satellite missions such as TRMM (Tropical Rainfall
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MeasuringMission) andClimate PrecipitationCenter’s (CPC)
morphing technique precipitation product (CMORPH) pro-
vide spatialized precipitation data with a coarse spatial
resolution that is adequate for the characterization of large
watersheds. Among the freely accessible data, one can
mention TRMM 3B43, which is a monthly product, re-
sulting from the combination of TRMM and other data
sources (Huffman and Bolvin, 2014) [5, 6]. TRMM data is
freely available at a spatial resolution of 0.25∘ for a period
of 16 years, from 1999 to 2014 (https://disc.sci.gsfc.nasa.gov/
alerts/nearing-the-end-of-the-trmm-era). Although TRMM
data was restricted starting from October 7, 2014, due to the
end of its fuel, this source of information still constitutes an
important axis of research and is still applied in different
studies [7–10].

TRMM 3B43 allows characterizing precipitation across
large watersheds. However, the spatial resolution of this data
is not fine enough to apprehend spatial variety over small and
medium watersheds. For this purpose, different approaches
are used to downscale this data to a fine resolution of 1 km [1,
11, 12]. Downscaling is of key importance in the field of remote
sensing, since it allows an increase in spatial resolution [13].
Many downscaling techniques have been recently used in
different fields and were reviewed by Jia et al. [12].

This study focuses on spatial downscaling of coarse
satellite precipitation.This topicwas recently studied bymany
researchers. Nichol and Abbas [10] studied the relationship
between TRMM, at a spatial resolution of 0.25∘, and Nor-
malized Difference Vegetation Index (NDVI) at 1 km, in
the Iberian Peninsula. The significant statistical relationship
between these indicators allowed the downscaling of TRMM
3B43 products to a resolution of 1 km. A similar approach was
used by Immerzeel et al. [11] to downscale the same product
in the Qaidam Basin of China. During their analysis, TRMM
3B43 was downscaled using a multiple linear regression
model, integratingNDVI andDEM[1, 11] downscaled version
7 of TRMM 3B43 over a humid and semiarid area, covering
Lake Tana Basin in Ethiopia and Caspian Sea Region in Iran.
Thedownscaling approach adopted in this studywas based on
a nonlinear relationship between the annual precipitation and
the annual average of NDVI.The downscaled precipitation at
1 km was calibrated based on two approaches: Geographical
Differential Analysis (GDA) andGeographical RatioAnalysis
(GRA) [1]. In the same study, the researchers explored the dis-
aggregation of monthly precipitation and demonstrated that
the monthly downscaled precipitation has a good agreement
with RGS measurements. Another strand of research has
examined the downscaling of TRMM3B42 for six rainstorm
events in the mountainous area of the Xiao River Basin in
China [14]. The downscaling scheme was developed using
multivariate regression that explains the precipitation by local
topography and prestorm meteorological conditions. In this
study, elevation, angle between slop aspect and prevailing
wind, and the roughness index were used as a proxy of
local topography, while antecedent maximum temperature
and average humidity served as an indicator of prestorm
meteorological condition [13]. The study showed a good
agreement between downscaled precipitation and ground

observation and revealed a better result than the conventional
spline and Kriging interpolation methods.

Themain objective of this study is to improve downscaled
precipitation at a spatial resolution of 1 km using stepwise
regression and Akaike’s Information Criterion (AIC), based
on four predictors (NDVI, Normalized Difference Water
Index (NDWI), elevation, anddistance from sea).The specific
objectives of this study are as follows.

Indeed, it has been shown that vegetation response has
a positive relationship with precipitation at the annual scale
(e.g., Malo and Nicholson, 1990; Martiny et al., 2006; Nichol-
son et al., 1990).This relationship was exploited to downscale
annual TRMM precipitation using NDVI [1, 10]. With regard
to NDWI, it could be a good proxy of precipitation and thus
could be used to downscale TRMM 3B43, since it is sensitive
to vegetation water content [15] (Gao, 1996). In this study, the
potentialities of NDWI to desegregate TRMM 3B43 product
will be explored, compared to those of NDVI, and evaluated
using in situ measurements.

This study aims also to assess how stepwise regression
and AIC could improve the models selection and thus down-
scaled precipitation. In this sense, desegregated precipitation
through stepwise andAIC selectedmodel was comparedwith
those based on multiple regression using the four predictors
(NDVI, NDWI, elevation, and distance from sea) and then
evaluated through four statistical metrics estimated using
independent in situ measurements (𝑅2, RMSE, MAE, and
bias).

Furthermore, the study investigated the contribution of
distance from sea as a predictor to build robust regression
models that could improve downscaled precipitation and
assessed the sensitivity of the proposed spatial downscaled
approach in five bioclimatic stages of theMediterranean area.

2. Study Area

The study was carried out inMorocco, which is located in the
southwest of the Mediterranean region, at the northwestern
part of Africa. Morocco is bordered to the north by the
Mediterranean Sea, to the west by the Atlantic Ocean, to the
east by Algeria, and to the south and southeast byMauritania
(Figure 1). The country has a long coastline that extends for
more than 3,500 kilometers.

Morocco is essentially characterized by a Mediterranean
climate, with mild and relatively wet winters and hot to
dry summers. The climate shows enormous variations from
subhumid in the north to Saharan in the south (Figure 1).This
diversity is due to the combination of several factors, namely,
its latitudinal location, the influence of the Atlantic Ocean
and the Mediterranean Sea, and the influence of elevation
through Atlas and Rif mountains. Spatial and temporal
rainfall variability is considerably important. Mean annual
rainfall ranges from less than 100mm (Saharan bioclimatic
stage) to 1200mm (humid bioclimatic stage). The rainy
season lasts from October to March in most of the country,
and December, January, and February receive the maximum
rainfall. The summer months have low rainfall and stormy
character in general.

https://disc.sci.gsfc.nasa.gov/alerts/nearing-the-end-of-the-trmm-era
https://disc.sci.gsfc.nasa.gov/alerts/nearing-the-end-of-the-trmm-era
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Figure 1: Bioclimatic stages of Morocco according to Emberger’s quotient.

The total land area of Morocco is about 710850 km2,
including 58000 km2 of forests (8%), 92000 km2 of agricul-
tural lands (13%), and 460000 km2 of pastures, rangelands,
and deserts.

3. Datasets and Methodology

3.1. Datasets. Different free and accessible datasets were
collected and used in this study (Table 1). The list of the used
data includes the following:

(i) A short time series of 15 years, from 1999 to 2012, of
version 7 of TRMM 3B43 product.These images were
collected in NetCDF format and used in this study.

(ii) NDVI and NDWI short time series of SPOT Vegeta-
tion (Satellite pour l’Observation de la Terre), from
April 1998 to 2012, used in this research. This time
series can be freely downloaded from SPOT Vegeta-
tion website (http://www.vito-eodata.be/PDF/portal/
Application.html#Home). The Maximum Value
Composites of the NDVI data over one or ten days,

http://www.vito-eodata.be/PDF/portal/Application.html#Home
http://www.vito-eodata.be/PDF/portal/Application.html#Home
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Table 1: Datasets used in this study.

Data Period Spatial resolution Temporal resolution
(synthesis)

Name of the
variable

TRMM 3B43 1998–2012 0.25∘ Monthly TRMM
NDVI SPOT Vegetation April 1998–2012 1 km Decadal NDVI
NDWI SPOT Vegetation April 1998–2012 1 km Decadal NDWI
Altitude (SRTM V4.1) 2008 90m — Altitude
Distance from sea and ocean 2014 1 km — Distance
Bioclimatic map 1932 reviewed 1958 1/2,000,000 — —

respectively, known as S10NDVI product, were used
to generate monthly maximum value composite
NDVI images and then to compute average annual
NDVI images. The same approach was used in order
to compute the average annual NDWI images on the
basis of 10-day synthesis of NDWI.

(iii) Version 4.1 of Shuttle Radar Topography Mission
(SRTM), which is available through the CGIAR-
CSI Geoportal http://srtm.csi.cgiar.org/. The SRTM
provides digital topographical data with a spatial
resolution of 3 arc-seconds.

(iv) Map of distance, which was generated based on the
coastline of the Atlantic Ocean and Mediterranean
Sea using ArcGIS [16].

(v) A dataset of monthly rainfall data recorded in RGS,
gathered fromdifferent sources and covering different
periods between 1977 and 2012. Only the available
data between 1998 and 2012 (period of acquisition of
TRMM and SPOTVegetation) were considered. Dur-
ing the first phase, themethodologywas applied using
a period of 6 years (1999–2004); after its validation,
it was generalized to all the dataset (1999–2012). The
number of the used stations varies fromyear to year in
function of data availability. The number of the used
stations during the first phase was 53, 61, 34, 34, 32,
and 25 for the years 1999, 2000, 2001, 2002, 2003, and
2004, respectively.

(vi) A bioclimatic map: Emberger’s bioclimatic coefficient
is a quite old classic concept [17, 18] (Emberger, 1955;
Sauvage, 1963) that is still used in the Mediterranean
area [19]. Emberger’s quotient (Q2) is used to define
bioclimatic stages (per-humid, humid, subhumid,
semiarid, arid, and Saharan) based on annual rainfall
in mm (𝑃), the average maxima of the hottest month
(𝑀), and the average minima of the coldest month
(𝑚) through this equation:

𝑄2 = 2000 ∗ 𝑃(𝑀 + 𝑚 + 546,4) ∗ (𝑀 − 𝑚) . (1)

3.2. Methodology. The adopted methodology in this study
includes several steps (Figure 2). The main important ones
are as follows.

3.2.1. Data Preparation. Themonthly TRMM3B43 precipita-
tionwas accumulated in order to calculate the annual TRMM
precipitation year by year. Also, the zonal average of each
predictor was calculated at a spatial resolution of 0.25∘, to
produce a dataset with the same spatial resolution. The same
data preparation process was applied by Nichol and Abbas
[10], by Zheng and Zhu [7], and by Duan and Bastiaanssen
[1].

3.2.2. Comparison of the TRMM 3B43 and NDVI Relationship
versus TRMM 3B43 and NDWI. For each year between
1999 and 2012, regression models were established using
TRMM average annual precipitation as a dependent variable
and NDVI as an independent variable. These models were
compared to those performed using NDWI. Then, elevation
and distance were integrated progressively in models, in a
second and a third iteration.

3.2.3. Stepwise Regression and AIC Analysis. Stepwise mul-
tiple regression is a widely used approach to assess the
importance of different predictors to explain a dependent
variable. It is considered as a semiautomated process of build-
ing a model by successively adding or removing variables
based on their estimated coefficients. The process of adding
more variables stops when all of the variables have been
included or when it is not possible to make a statistically
significant improvement in 𝑅2 using any of the variables not
yet included in themodel.This statistical technique is applied
in different fields including mathematics, Earth observation,
and geoinformation [20–22].

It is worth mentioning that although it is a widely used
approach by remote sensing and GIS community, stepwise
multiple regression has several limitations, such as the bias
arising from variable selection on the basis of statistical
significance [23, 24]. To overcome these limitations, other
model selection protocols are recommended. An interesting
review of these techniques was given by Anderson et al.
[25]. Among the techniques discussed by these authors,
one can mention Akaike’s Information Criterion (AIC),
Kullback–Leibler Information, and Takeuchi’s Information
Criterion.

In this study, stepwise multiple regression and Akaike’s
Information Criterion were applied in order to select the
best combinations of variables (NDVI, NDWI, altitude, and

http://srtm.csi.cgiar.org/
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Figure 2: The methodology used in this study. DS: downscaled; GDA: Geographical Difference Analysis.

distance from sea) that explain the maximum variation of
TRMM and give the best models fit.

The stepwise multiple regressions were performed ini-
tially using a dataset of six years. These allowed choosing
the most robust models for each year. Then, these models
were double-checked and the best model fit for each year was
selected using AIC. The resulting regression models using
this approach led to a first group of models (Group 1) that
were compared with a second group of models (Group 2),
built on the basis of multiple regression using the same
dataset. The models of two groups were evaluated using in
situmeasurement through four statisticalmetrics (𝑅2, RMSE,
MAE, and bias). This evaluation aims to assess whether the

stepwise regression and the AIC improve the models fit and
performance.

Using the same dataset, two other groups of models
(Groups 3 and 4) were established. The models of Group
3 were built using stepwise regression integrating NDVI,
altitude, and distance from sea, while the models of Group 4
were established using stepwise regression based on NDWI,
altitude, and distance from sea. These two groups of models
allowed us to compare and to evaluate downscaled precipita-
tion using NDWI with those based on NDVI.The evaluation
was undertaken through the same statistical metrics (𝑅2,
RMSE, MAE, and bias).
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It is important to emphasize that the assumptions of
normality, linearity, and homoscedasticity of the residuals
were checked for all the selected models.

3.2.4. Downscaling and Calibration of TRMM Precipitation
to 1 km. Three groups of models were used to downscale
TRMM precipitation. This includes the selected models of
Groups 2, 3, and 4. The selected models of Group 2 were
chosen since they give a better fit compared to the models
of Group 1. The selected models of Groups 3 and 4 were
used to compare the contributions of NDWI and NDVI. The
evaluation of three groups of models was based on the four
statistical metrics mentioned above.

For each year and for each model, downscaled and cali-
brated precipitationswere calculated according to the scheme
used by Nichol and Abbas [10] and Duan and Bastiaanssen
[1]. This scheme considers all raster cells (in our case, 875
cells) and it is implemented on the basis of the five steps
described below:

(1) The selected regression models were used to esti-
mate the precipitation at a spatial resolution of 0.25∘
(PE0.25), in function of the predictors.

(2) Residual values of precipitation (RES0.25) were calcu-
lated at a spatial resolution of 0.25 by the difference
between TRMM precipitation (TRMM0.25) and esti-
mated precipitations (PE0.25). The residual values are
considered as the amount of the annual precipitation
that cannot be predicted by the models.

(3) The residual values (RES0.25) were interpolated to a
spatial resolution of 1 km through the spline algo-
rithm. This interpolation method estimates values
using a mathematical function that minimizes the
total surface curvature, resulting in a smooth surface
that passes exactly through the sampled points [26].
Such algorithm is recommended when the punctual
data is regularly spaced [10], as it is the case in
this study. These interpolations allowed estimating
the residual values at a fine resolution (RES1 km).
The same interpolation approach was adopted by
Immerzeel et al. (2009) and Duan and Bastiaanssen
(2013).

(4) Preliminary estimations of downscaled precipitation
were carried out by applying the regression models
using the predictors at fine resolution (1 km), and then
the results were corrected by adding the correspond-
ing residual values (RES1 km).

(5) The Geographical Differential Analysis (GDA) [27]
was adopted for the calibration of downscaled precip-
itation using RGS measurements. This approach was
also used for the calibration of downscaled precipi-
tation by Duan and Bastiaanssen [1]. The GDA relies
on the in situ measurement at the level of rain gauge
stations andwas implemented year by year andmodel
by model. In this sense, the difference between down-
scaled precipitation (DSP) and in situ measurement
was calculated at the level of each gauge station. This
difference is noted as the likely precipitation error

(Perr). It was then interpolated via Inverse Distance
Weighting algorithm, since the gauge stations are
not regularly spaced. The final downscaled calibrated
precipitation (DSC) was calculated by summing the
downscaled precipitation (DSP) and the likely error
(Perr) at a spatial resolution of 1 km ∗ 1 km.

3.2.5. Comparison and Validation. The validation of the
downscaled and calibrated precipitations was based on com-
monly used statistical metrics, namely, the coefficient of
determination (𝑅2), the root mean square error (RMSE), the
bias, and the mean absolute error (MAE). The use of these
indicators is widespread among the remote sensing and GIS
community for models evaluation [1, 10]. The RMSE and
MAE have been also used as a standard statistical metric
to measure model performance in meteorology, air quality,
climate research studies, and geoscience [28]. It should be
pointed out that since there is no consensus on the most
appropriate metric for model errors, both RMSE and MAE
were used. In addition to these two metrics, the bias was also
assessed. The four metrics were calculated year by year and
for all the models based on independent RGS according to
the following equations:

RMSE = √∑𝑛𝑖=1 (𝑃𝑖 −𝑀𝑖)2𝑛 ,
Bias = ∑𝑛𝑖=1 𝑃𝑖∑𝑛𝑖=1𝑀𝑖 − 1,
MAE = ∑𝑛𝑖=1 𝑃𝑖 −𝑀𝑖𝑛 ,

(2)

where 𝑃 is the estimated precipitation for year, 𝑀 is the
measured precipitation, and 𝑛 is the number of RGSs.

It is worth noting that the same statistical metrics were
used for the comparison of regression models of the three
groups (2, 3, and 4). Likewise, the resulting downscaled
precipitation was compared by visual interpretation. Also,
after comparison and validation, the approach that gives the
best model fit was used to extend the study to the other years
(between 2005 and 2012).

3.2.6. Sensitivity to Mediterranean Bioclimatic Stages. The
previously mentioned downscaled studies did not take into
consideration the climatic zoning. In fact, the downscaled
precipitation using the described scheme could be sensitive to
climatic conditions, especially in the area where precipitation
is low and/or denuded of vegetation. In this study, we
explored this potential sensitivity in five bioclimatic stages of
the Mediterranean area.

In this regard, it is worth mentioning that one of the
key steps in the downscaling process is the establishment of
robust regression equations, with the best fits. The regression
models with low and statistically insignificant correlation
coefficients will be unable to explain an important part of
TRMM 3B43 product, and thus they cannot downscale it
with accepted approximation. In this sense, the sensitivity of
the proposed approach to the different bioclimatic stages can
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Table 2: Summary of standardized and unstandardized coefficients for different predictors.

Predictors Unstandardized coefficients (𝐵) Standardized coefficients (Beta)
NDVI NDWI Distance Elevation NDVI NDWI Distance Elevation

Average 1129.91 425.59 −0.08 0.08 0.72 0.13 −0.05 0.25
SD 188.52 217.72 0.04 0.02 0.05 0.06 0.03 0.05
Average of significant models over the six years. SD: standard deviation.

be assessed based on the statistical parameters of regression
models. To this end, stepwise regression was performed year
by year (1999–2004) for each of the five bioclimatic stages
that characterizeMorocco (humid, subhumid, semiarid, arid,
and Saharan). The resulting regression models and their
statistical parameters were compared over the five bioclimatic
stages, year by year. The approach was considered sensitive
to bioclimatic stage when the correlation coefficients are low
and/or statistically not significant (𝑝 > 0.05). Downscaling of
precipitation using these models could lead to unsatisfactory
results. The approach was considered nonsensitive when
the correlation coefficients are important and statistically
significant.

3.2.7. Influence of Distance from Sea. The variable distance
from sea was included in the original set of candidatemodels.
However, the influence of distance could be important only
in the first kilometers near the sea and not over all the
study area. In addition, the area close to the Atlantic coast
could be influenced by the sea breeze effect. To provide a
better understanding of the influence and contribution of
the distance from sea to explain TRMM product, a second
analysis of this variable was performed. For this purpose, the
map of this variable was classified into five classes, namely,
Class 1 (0 to 0.25∘), Class 2 (0.25∘ to 0.50∘), Class 3 (0.50∘ to
0.75∘), Class 4 (0.75∘ to 1∘), and Class 5 (more than 1.00∘).
For each of these five classes, the stepwise regression was
performed, year by year, using the four predictors. Then,
the standardized coefficients of the distance from sea were
compared class by class, year by years, using Tamhane’s
post hoc test [29]. This allowed us to explore whether the
contribution of the distance is significantly different across
the five classes. The interval of 0.25∘ was chosen to be
consistent with the spatial resolution of TRMM.

4. Results and Discussion

4.1. Relationship of TRMM 3B43 versus NDVI and NDWI.
Figure 3 shows that TRMM versus NDVI and TRMM versus
NDWI relationships have high 𝑅2 and all the selected models
have a significant𝐹-statistic.𝑅2 ranges from to 0.70 to 0.82 for
theTRMMversusNDVI and from0.40 to 0.65 for theTRMM
versus NDWI. Although the correlation between NDWI
and TRMM is relatively moderate, they remain statistically
significant. It can be concluded that both NDVI and NDWI
can be used to explain TRMM 3B43.

Figure 4 illustrates graphically that, after integrating the
predictors elevation (Figure 4(b)) and distance (Figure 4(c))
in both NDVI and NDWI based models, all the correlation

coefficients increase slightly and progressively. The lower
limits of the correlation coefficients were increased from 0.76
to 0.83 for NDVI based models and from 0.51 to 0.63 for the
NDWI, while the upper limits of the correlation coefficients
increase slightly from 0.90 to 0.92 for the NDVI versus
TRMM relationship and from 0.81 to 0.84 for the NDWI
versus TRMM relationship.

The summary of unstandardized regression coefficients
(𝐵) of the NDVI, NDWI, elevation, and distance is given in
Table 2. It can be seen that the unstandardized coefficients
of NDVI and NDWI are higher than those of elevation
and distance. This means that the NDVI and NDWI are
the variables that contribute the most to the models. Ele-
vation and distance have small unstandardized coefficients
compared to NDVI and NDWI. By way of background,
in addition to 𝐵, standardized regression coefficients are
used in the interpretation of the contribution of the vari-
able in the regression models. The standardized regression
coefficients (Beta) refer to how many standard deviations
a dependent variable will change, per standard deviation
increase in the predictor variable. They are calculated by
multiplying the unstandardized coefficient, 𝐵, by the ratio of
the standard deviations for the independent and dependent
variables. The use of Beta coefficients facilitates comparisons
among independent variables since they are all expressed
in standardized units. According to this analysis, it could
be concluded that the statistical metrics of both NDVI and
NDWI are significant; nevertheless, those of NDVI are better
than NDWI.This can be explained by the fact that NDWI are
more dynamic thanNDVI; therefore, theNDWI syntheses do
not capture all the variation of water content.

According to Table 2, although the elevation has a small𝐵, it is characterized by high standardized coefficients (Beta).
This means that this variable has an important contribution
to the regression models because they have a large absolute
standardized coefficient (IBM Corp., 2012) The low values
of Beta for the distance from sea indicate that this variable
does not contribute significantly to the regression models.
This may be explained by the fact that the influence of the
sea could be important close to coastal areas and decreases
with distance. The effect of distance was further analyzed in
Section 4.5.2.

4.2. Stepwise Regression of TRMMand Predictors. It is impor-
tant to recall that assumptions of normality, linearity, and
homoscedasticity of the residuals were checked for all the
selected models. Table 3 presents the statistical parameters of
the models of Groups 1 and 2 that give the best model fit for
the six years. As reported inTable 3(a), the six selectedmodels
by stepwise regression and AIC (Group 2) are characterized
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Figure 3: Scatterplot matrixes of TRMM versus NDVI (a) and TRMM versus NDWI (b) over the study period (1999–2004).
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Figure 4: Correlation coefficients between TRMMand explanatory variables: (a) TRMMversusNDVI compared with TRMMversusNDWI,
(b) TRMM versus NDVI and elevation compared with TRMM versus NDWI and elevation, and (c) TRMM versus NDVI, elevation, and
distance compared with TRMM versus NDWI, elevation, and distance.

by high and statistically significant correlation coefficients
(𝑝 < 0.001) and by very important unstandardized and stan-
dardized coefficients of the NDVI and NDWI. This means
that NDVI and NDWI have an important contribution to
the models (because they have a large absolute standardized
coefficient).The variable elevation also contributes, to a lesser
extent, to the models. Although its unstandardized coeffi-
cients are low, its standardized coefficients are relatively large,
ranging from 0.21 to 0.32. Also, it should be noted that the
unstandardized coefficients of these variables (NDVI,NDWI,
and elevation) are positive, meaning that the precipitation
increases as the values of these variables increase. Regarding
the distance, it is characterized by negative standardized
and unstandardized coefficients. This indicates that rainfall

decreases as distance from the sea increases. However, the
variable distance contributes slightly to the models, since
the absolute values of their standardized and unstandardized
coefficients are very small [30].

The models of Groups 1 and 2 were compared in order
to assess whether stepwise regression and AIC improved the
models through the selection of the appropriate variables
and the best model fits. The comparison was based only on
the years 2000, 2001, and 2003, since for the other years the
models of Groups 1 and 2 are the same. It appears fromTables
3(a) and 3(b) that even though the correlation coefficients are
more or less the same for the two groups of models, Student’s𝑡 absolute values are small and statistically not significant for
themodels ofGroup 1 that correspond to the years 2000, 2001,
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and 2004. The use of stepwise regression and AIC allowed
addressing this constraint by selecting the “best” models that
do not include the variable distance.

On the other hand, the AIC values are relatively low for
the models of Group 2 compared to those of Group 1. This
confirms thatmodels ofGroup 2 perform relativelymore than
those of Group 1. Regarding the tolerance of the predictors,
they range from 0.27 to 0.53 for NDVI, from 0.26 to 0.55 for
the NDWI, from 0.58 to 0.62 for distance, and from 0.62 to
0.98 for elevation. This suggests that there is no significant
multicollinearity in the regression models.

It can be concluded that the use of stepwise regression
andAIC-basedmodel selection allowed refining relatively the
approach by choosing the best models. The selected models
are characterized by high and significant correlation coeffi-
cients, high and significant standardized coefficients, and low
AIC values and are without multicollinearity problems.

Table 4 compares the relationships between NDWI and
TRMM3B43 (group 3) with those of NDVI and TRMM3B43
(Group 4). It reveals that the resulting regression models of
Groups 3 and 4 have high and statistically significant corre-
lation coefficients. Those of Group 3 are relatively high than
those of Group 4. According to the tolerances, the models
of these two groups did not present any multicollinearity
problem.

4.3. Spatial Downscaled and Calibrated Precipitation. Three
groups of models were used to downscale TRMM 3B43 to
1 km. The selected models of Group 2 are more performant
than those of Group 1. The selected models of Groups 3 and
4 were chosen in order to compare downscaled precipitation
using NDVI and NDWI.

Figure 5 points out that the three groups of models
captured the spatial distribution of precipitation pattern in
Morocco, year by year. In general, northern Morocco is
better watered than the south, and west is better watered
than the east. The same figure helps to highlight the years
that experienced relatively abundant rainfall (2001, 2003, and
2004) and the years that experienced low rainfall, such as
1999.

Although the estimated precipitation has captured the
overall precipitation pattern over Morocco, some residual
values were observed (Figure 6). Negative residual values
indicate an underestimation of rainfall. This concerns the
Saharan bioclimatic stage where vegetation is very sparse
or absent, and hence vegetation growth is not proportional
to the rainfall. The positive residual values indicate an
overestimation of rainfall. This corresponds to the wettest
areas of Morocco that is covered by forests and matorral,
which are characterized by relatively deep roots and therefore
do not have necessarily an immediate response to rainfall.
Similar residual values were observed in Spain [10]. The final
downscaled and calibrated precipitations for the six years
according to Groups 2, 3, and 4 are presented in Figure 7.

Figure 8 reports that all the correlation coefficients are
important for the three groups.These coefficients range from
0,72 to 0,92 and are similar to or relatively higher than those
found by other authors in China [11]. Also, model fittings

have all passed the 𝐹 statistical test (𝑝 < 0.001) and are
statistically significant.This means that, in addition to having
a finer spatial resolution of 1 km, the downscaled precipitation
captured the pattern of TRMM 3B43.

The higher values of 𝑅2 correspond to the models of
Group 2 that range from 0.78 to 0.86, with an average of
0.83 for this group of models. The values of 𝑅2 of Group 3
are very close to those of Group 2. They range from 0.77 to
0.84, with an average of 0.81, while 𝑅2 of Group 4 is lower,
with values ranging from 0.50 to 0.70 and an average of 0.61.
Nevertheless, 𝑅2 of this last group remains important and
statistically significant. The performance of the models of
Group 2 could be explained by the fact that the models of
this group include all variables. Aside from that, the models
of Group 3 have good statistics compared to those of Group
4, since the models of Group 3 are based on NDVI, which is
less dynamic than NDWI.

4.4. Validation of Downscaled and Calibrated Precipitation.
Figure 9 reveals that the averages of 𝑅2 for the six years are
0.89, 0.87, and 0.79 for Groups 2, 3, and 4, respectively. The
averages of these coefficients for the three groups are slightly
lower than of the original TRMM 3B43. A similar result was
observed by Duan and Bastiaanssen [1].

As mentioned earlier, the number of the used RGSs for
spatial downscaling approach was 53, 61, 34, 34, 32, and
25 for the years 1999, 2000, 2001, 2002, 2003, and 2004,
respectively (in function of data availability). In order to
evaluate downscaled precipitation and to compare themodels
of Groups 2, 3, and 4, only independent rain gauge stations
can be used. In this study, 10 available rain gauge stationswere
used to estimate the statistical metrics (𝑅2, RMSE, MAE, and
bias). It is worthmentioning that all downscaling studies cited
earlier use independent rain gauge stations for the validation
purpose.

According to Table 5, the RMSE values range from 26
to 167, from 20 to 158, and from 33 to 170 for Group 2,
Group 3, and Group 4, respectively. In general, these values
remain lower than those of TRMM 3B43. The bias is also
more important for TRMM 3B43 compared to those of the
three groups. Group 2 has lower bias (−0.021 to −0.006).
The bias is between −0.026 and −0.06 and −0.027 and 0.037
for Group 3 and Group 4, respectively. The bias of Group
2 is systematically negative for the six years; this means
that the downscaled precipitations of this group slightly
underestimate the precipitation.

It can be concluded that the models of Group 2, which
were built using NDVI, NDWI, elevation, and distance,
perform slightly better than the models of Groups 3 and
4. It is also evident that the models developed by stepwise
regression based on NDWI, distance, and elevation have
good agreement with the observed precipitation. However,
these models perform slightly less than those of Group 3.

The developed methodology was applied to the recent
years, from 2004 to 2012. This allowed us to have an updated
picture of spatial distribution of precipitation over Morocco
during the last 14 years at a spatial resolution of 1 km2
(Figure 10).
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Figure 5: Spatial distribution of precipitation over Morocco according to TRMM 3B43 product, estimated precipitation using models of
Group 2 (NDVI, NDWI, altitude, and distance), Group 3 (NDVI, altitude, and distance), and Group 4 (NDWI, altitude, and distance).

Table 5: Statistical metrics calculated based on measured precipitation from independent gauge stations for three groups of models (DSC:
desegregated and calibrated precipitation).

1999 2000 2001 2002 2003 2004

𝑅2
TRMM 0.98 0.95 0.89 0.98 0.76 0.84

DSC Group 2 0.95 0.93 0.90 0.99 0.79 0.80
DSC Group 3 0.93 0.93 0.87 0.98 0.76 0.78
DSC Group 4 0.93 0.90 0.78 0.98 0.73 0.77

RMSE

TRMM 24.91 64.24 143.41 68.22 107.33 180.46
DSC Group 2 31.70 65.87 123.96 26.38 115.94 167.32
DSC Group 3 34.99 52.30 116.79 20.21 111.63 157.74
DSC Group 4 22.87 61.79 132.92 60.36 128.79 169.96

Bias

TRMM 0.041 0.168 0.412 0.163 0.282 0.403
DSC Group 2 −0.014 −0.013 −0.017 −0.006 −0.006 −0.021
DSC Group 3 −0.017 −0.021 −0.018 −0.006 −0.007 −0.028
DSC Group 4 −0.020 −0.027 0.037 0.016 0.015 0.036

MAE

TRMM 20.171 56.524 95.229 46.494 64.107 119.856
DSC Group 2 29.589 52.798 77.099 13.488 55.079 95.926
DSC Group 3 31.793 38.696 70.261 8.964 52.754 90.081
DSC Group 4 20.833 50.152 79.443 35.950 56.483 97.845
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Figure 6: Spatiotemporal distribution of residual values over 1999 to 2004, Groups 2, 3, and 4.

4.5. Limitations of the Downscaling Approach

4.5.1. Sensitivity to Bioclimatic Stages. The parameters of the
regression models for the five bioclimatic stages are reported
in Table 6. It seems that the subhumid stage is characterized
by very high and significant 𝑅, with an average of 0.88 for
the six years. The second area where the approach performs
well is the semiarid stage, with an average of 0.8. The average𝑅 coefficient in the arid bioclimatic stage is around 0.65.
The bioclimatic stages where 𝑅 was lower are the humid and
Saharan stages. In these stages, 𝑅 ranged from 0.22 to 0.48 for
the first and from 0.22 to 0.62 for the second.

These low values of 𝑅 in the Saharan bioclimatic stage
can be explained by the nature of the vegetation cover in
this area, which is very sparse or even nonexistent. It can
also be due to the nature of soil, which is skeletal and
sandy. Given these conditions, precipitation does not lead
to a substantial growth of vegetation, since there are other
limiting factors. Regarding the humid bioclimatic stage, low𝑅 could be explained by the coincidence of these areas with
mountain peaks that are characterized by the presence of
rocky outcrops and/or forests. Indeed, rocky outcrops are
almost devoid of vegetation, while forests are characterized
by deep roots that do not deplete the water needs directly and
immediately from precipitation. It is worth mentioning that

the low 𝑅 in the Saharan bioclimatic stage could be affected
also by the low number of RGSs. The same table reveals the
absence of multicollinearity except in the humid stage where
the maximum VIF value can reach 7.56.

4.5.2. Influence of Distance from the Mediterranean Sea.
Among all the possible combinations of variables, for the
five classes of distance over the six years, stepwise regression
identified 74 statistically significant models, from which only
16 models include distance. This number is equal to 5, 4, 2, 0,
and 5 for Classes 1, 2, 3, 4, and 5, respectively.

Figure 11 presents the average of standardized coefficients
of the variable distance for the five classes. It appears that the
absolute values of these coefficients are important for Class 1
and regress gradually for other classes.

This result was confirmed through an ANOVA 𝐹-statistic
test and was pursued further by applying Tamhane’s post
hoc test, to verify whether there is a statistically significant
difference between the standardized coefficients of pairwise
classes. The result (Table 7) shows that there is a significant
difference between Class 1 and Classes 3 and 5.The difference
is small and not significant between Classes 1 and 2. There is
a significant difference between Classes 2 and 5 and between
Class 3 and Class 5.
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Table 6: Correlation parameters of the five bioclimatic stages during the six years.

Years Bioclimate 𝑅2 Max. VIF

1999

Humid 0,10 2,91
Subhumid 0,80 2,03
Semiarid 0,46 2,89
Arid 0,42 2,64

Saharan 0,37 2,81

2000

Humid 0,08 5,89
Subhumid 0,87 1,06
Semiarid 0,41 1,19
Arid 0,38 1,15

Saharan 0,31 1,57

2001

Humid 0,09 4,61
Subhumid 0,62 1,08
Semiarid 0,64 1,87
Arid 0,33 1,00

Saharan 0,05 1,00

2002

Humid 0,07 3,42
Subhumid 0,71 1,00
Semiarid 0,44 2,18
Arid 0,51 2,70

Saharan 0,39 2,57

2003

Humid 0,23 7,56
Subhumid 0,83 1,11
Semiarid 0,70 2,87
Arid 0,57 1,54

Saharan 0,22 1,15

2004

Humid 0,05 5,36
Subhumid 0,82 1,21
Semiarid 0,59 1,68
Arid 0,30 1,48

Saharan 0,24 1,69

Table 7: Pairwise comparison of standardized coefficients of distance from sea using Tamhane’s post hoc tests.

(𝐴) Factor (𝐵) Factor Mean difference (𝐴 − 𝐵) Std. error Sig. 95% confidence interval
Lower bound Upper bound

0.00–0.25
0.25–0.50 −0,19 0,0614264 0,165 −0,458776 0,078376
0.50–0.75 −0,37∗ 0,0604362 0,015 −0,650249 −0,100151

More than 1∘ −0,28∗ 0,0694354 0,030 −0,539721 −0,028279
0.25–0.50

0.00–0.25 0,19 0,0614264 0,165 −0,078376 0,458776
0.50–0.75 −0,18∗ 0,0214165 0,008 −0,293996 −0,076004

More than 1∘ −0,09 0,0403411 0,320 −0,254147 0,066547

0.50–0.75
0.00–0.25 0,37∗ 0,0604362 0,015 0,100151 0,650249
0.25–0.50 0,18∗ 0,0214165 0,008 0,076004 0,293996

More than 1∘ 0,09 0,0388167 0,345 −0,076030 0,258430

More than 1∘
0.00–0.25 0,28∗ 0,0694354 0,030 0,028279 0,539721
0.25–0.50 0,09 0,0403411 0,320 −0,066547 0,254147
0.50–0.75 −0,09 0,0388167 0,345 −0,258430 0,076030

∗Themean difference is significant at the 0.05 level.
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Figure 7: Spatial distribution of downscaled and calibrated precipitation over Morocco based on TRMM 3B43 product, according to Groups
2, 3, and 4.

According to this analysis, it was seen that the standard-
ized coefficients of the variable distance are larger in Classes
1 and 2 than in Classes 3 and 4. It can be concluded that
the predictor distance has a relatively large and statistically
significant contribution in Classes 1 and 2. The contribution
of this variable over Classes 3 and 4 is nonsignificant. It is the
same forClass 5 since the unstandardized coefficients are very
small, with an average of −0.02.
5. Conclusion

This study investigated the spatial downscaling of coarse
satellite-derived precipitation over five bioclimatic stages in
Morocco, for a period of 14 years, from 1999 to 2012. The
case of TRMM 3B43 was studied through multiple stepwise

regressions and AIC based on an open dataset including
NDVI, NDWI, elevation, and distance from sea.

The study demonstrated the existence of a strong and sta-
tistically significant relationship between NDVI and TRMM
3B43, with correlation coefficients reaching 0.81. The inte-
gration of the predictors elevation and distance from sea in
these regression models can slightly improve the correlation
coefficients,. Likewise, the standardized coefficients ofNDWI
are high and statistically significant, meaning that they have
a high contribution to the selected models.

The pairwise comparisons of the selectedmodels through
stepwise regression and AIC with those based on multiple
regression showed that the first ones are more performant
than the second. In fact, the stepwise regression and AIC
allowed refining more the models by choosing the best
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Figure 8: Scatterplot matrix of TRMM 3B43 versus downscaled and calibrated precipitation (DSP) according to Groups 2 (a), 3 (b), and 4
(c).
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combination of predictors and therefore the most robust and
significant models (best-fit models).

The findings allowed concluding that both NDVI and
NDWI based regression models have significant regression
parameters and they can be used to downscale TRMM pre-
cipitation. However, the statistical parameters of the regres-
sion models based on NDVI present better performance.The
statistical metrics for this group can reach 0.99 for 𝑅2, 26.38
for RMSE, −0.006 for bias, and 13.48 for MAE.

The downscaled precipitation at 1 km captured the overall
spatiotemporal precipitation pattern of Morocco. The results
showed a good agreement with RGS measurements. It is
worth mentioning that the stepwise regression models built
using the four predictors present the best agreement and
therefore the best approximation of precipitation at a spatial
resolution of 1 km for the six years.

The analysis of the influence and the contribution of
distance from sea showed that the most significant correla-
tions were noted in the first and second classes that spread
over a distance of 0.50∘ (54 km approximately). Beyond this
threshold, the predictor (distance from sea) does not have any
significant contribution.

The study demonstrated the highest performance of the
spatial downscaling approach in the subhumid, semiarid
stages and in the arid bioclimatic stages, to a lesser extent.The
coefficients of determination noted in these areas can reach
up to 0.87, 0.70, and 0.57, respectively. However, the proposed
approach seems sensitive and therefore not adapted to the
relatively extreme climatic conditions, such as the Sahara
and humid stages, given the very low correlation coefficients
obtained based on the stepwise regression in these stages.
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