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We utilize the tropospheric NO2 columns derived from the observations of OzoneMonitoring Instrument (OMI) onboard AURA
to analyze the spatial distributions and temporal trends of NO2 inWanjiang City Belt (WCB) of China from 2005 to 2016.+e aim
of this study is to assess the effect of industrial transfer policy on the air quality in WCB. Firstly, we used the surface in situ NO2
concentrations to compare with the OMI-retrieved tropospheric NO2 columns in order to verify the accuracy of the satellite data
over the WCB area. Although it is difficult to compare the two datasets directly, the comparison results prove the accuracy of the
OMI-retrieved tropospheric NO2 columns in cities of WCB. +en, the spatial distributions of the annual averaged tropospheric
NO2 total columns over Anhui Province show that NO2 columns were considerably higher in WCB than those in other areas of
Anhui. Also, we compared the spatial distributions of the total NO2 columns in 2005 through 2010 and in 2011 through 2016 and
found that the total NO2 columns inWCB increased by 19.9%, while the corresponding value increased only 13.9% in other Anhui
areas except the WCB area. Furthermore, the temporal variations of NO2 columns show that although the NO2 columns over
WCB and Anhui increased significantly from 2005 to 2011, they decreased sharply from 2011 to 2016 due to the strict emission
reduction measures in China. Finally, the HYSPLITmodel was used to analyze the origins of NO2 and transport pathways of air
masses in a typical city, Ma’anshan city.

1. Introduction

Nitrogen dioxide (NO2) is a reactive, short-lived atmo-
spheric trace gas with both natural and anthropogenic
sources. Major sources of NO2 are fossil fuel combustion,
biomass burning, soil emissions, and lightning [1]. NO2 is
a toxic air pollutant on the condition of high concentration
and plays an important role in tropospheric chemistry as
a precursor of tropospheric ozone and secondary aerosols
[2]. Observations of the spatiotemporal variations of NO2
form the basis of understanding the spatial distributions and
temporal trends of NO2.

Many techniques and methods have been successfully
used in monitoring atmospheric NO2 based on surface in
situ measurements, remote sensing from satellite sensors,
and ground-based instruments [3–8]. Although the in situ

measurements and remote sensing from ground-based in-
struments show high accuracy and precision, their usefulness
in determining the spatiotemporal distributions of trace gases
is limited due to their sparse spatial and temporal coverage.
Space-based measurements provide information on NO2
distributions at a large scale and over areas where in situ and
ground-based systems cannot be easily deployed [9].

A series of sun-synchronous satellites were launched
with spectrometers, which allowed scientists to observe the
global distribution of several important tropospheric trace
gases including NO2, SO2, and O3. Satellite observations
make it easy to understand the spatiotemporal variations of
atmospheric NO2 [10–13]. Lamsal et al. examined the sea-
sonal variation in lower tropospheric NO2 by the obser-
vation of the OMI, in situ surface measurements, and
a global GEOS-Chem model [9]. Ul-Haq et al. applied the
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linear regression model for tropospheric NO2 and the an-
thropogenic NOx emissions using OMI data [14]. Gu et al.
used the NO2 columns observed from OMI and the
Community Multiscale Air Quality (CMAQ) model to de-
rive the ground-level NO2 concentrations in China [15].
Sharma et al. presented the temporal variations of surface
NOx during 2012 to 2014 at an urban site of Delhi, India [16].
Varotsos et al. found a progressive increase of mean values of
NO2/NOx versus NOx when the level of NOx increases in
Athens, Greece [17].

Han et al. used the tropospheric NO2 columns observed
fromOMI to compare with the bottom-up emissions of NO2
derived from the CMAQ model and three emission in-
ventories over East Asia [18]. Liu et al. [19] analyzed the NOx
emission trends and the major reasons for changes over
China from satellite observations and the Multi-resolution
Emission Inventory for China (MEIC). +e emissions de-
rived from the bottom-up method based on the inventory
and the top-down method based on OMI observations
showed good agreement. Lamsal et al. used aircraft and
surface in situ measurements as well as ground-based re-
mote sensing data to validate the OMI retrieval of tropo-
spheric NO2 [20]. Ialongo et al. compared the OMI NO2
total columns with the ground-based remote sensing data
collected by the Pandora spectrometer to evaluate the sat-
ellite data product at high latitudes [21]. Tong et al. utilized
OMI observations and Air Quality System (AQS) data to
study the long-term NOx trends over eight large US cities
[22]. McLinden et al. combined OMI observations with
a regional-scale air quality model to monitor the air quality
of the Canadian Oil Sands [23]. Kim et al. used three re-
gression models in conjunction with OMI tropospheric NO2
columns to estimate the surface NO2 volume mixing ratio in
five cities of South Korea [24].

Tropospheric NO2 vertical columns obtained from sat-
ellite instruments have been widely used to study NOx
pollutions over China [25–27]. Lin found that the anthro-
pogenic emissions are the dominant source of NOx over East
China [28]. Understanding global and regional distributions
and temporal trends of the pollution gases provides a basis
for development of mitigation strategies. Most studies focus
on the air quality of North China Plain, Pearl River Delta,
and Yangtze River Delta [28, 29], which are the economic
development centers of China and have regional heavy
pollutions. But we pay little attention to mideastern China.
Mideastern China is experiencing significant socioeconomic
changes following the national industrial transfer strategies.
Excessive development in a limited number of regions tends
to be unsustainable because of limited resources. So in-
dustrial transfer is performed from the coastal areas to the
inland areas [30]. Wanjiang City Belt (WCB) was established
in January 2010 by National Development and Reform
Commission (NDRC) of China to make the industrial
transfer from the Yangtze River Delta and other mega-
regions to Anhui Province [31]. Anhui is located in the
mideastern region of China.

+e aim of this study is to describe the spatial distri-
butions and temporal trends of tropospheric NO2 based on
satellite observations in twelve years in Anhui, in order to

assess the effect of industrial transfer policy on the air quality
in WCB. +is paper is organized as follows. Firstly, the
materials and methods used are described in Section 2. +e
area of Wanjiang City Belt, satellite data, surface in situ data,
and HYSPLIT model used in the analysis are introduced.
Secondly, results and discussion are presented in Section 3.
Comparisons of satellite data with surface in situ data for
NO2 in WCB are made in Section 3.1. +e spatial distri-
butions of the annual averaged tropospheric NO2 total
columns in Anhui Province are shown in Section 3.2. +e
variation of the total tropospheric NO2 columns before and
after establishment of the WCB is discussed in Section 3.3.
Also, the seasonal variations of tropospheric NO2 are an-
alyzed in Section 3.4. Finally, conclusions are presented in
Section 4.

2. Materials and Methods

2.1. ,e Introduction of Wanjiang City Belt. Industrial
transfer is one of the important national strategies in China.
+e construction of WCB is the first approved demon-
stration area for industrial transfer on the national level [32].
WCB comprises 59 counties in Anhui Province along the
Yangtze River, including Anqing, Chaohu, Chizhou,
Chuzhou, Hefei, Ma’anshan, Tongling, Wuhu, Xuancheng,
Jin’an District, and Shucheng County of Lu’an [33]. Figure 1
shows the location of Anhui Province, and the green area
represents WCB.

Anhui Province has diverse topography, as shown in
Figure 2. +e north of Anhui belongs to the North China
Plain, while the north-central areas are part of the Huai River
Plain. +e two regions are flat with dense population. +e
south of the province is characterized by uneven topography.
+e Yangtze River runs through the south of Anhui between
the Dabie Mountains and a series of hills.

2.2. Satellite Data. OMI is an ultraviolet/visible spectrom-
eter aboard the NASA’s EOS Aura satellite. +e instrument
provides information on trace gases, such as ozone (O3),
sulfur dioxide (SO2), and nitrogen dioxide (NO2), and other
pollutants retrieved from the spectral region between 270
and 500 nm [34]. EOS Aura circles in a polar sun-
synchronous orbit with a 98.2° inclination to the equator,
at an altitude of around 705 km. +e overpass times are
about 13:45 mean local solar time [11, 34].

In the present study, we collect the OMI-retrieved
tropospheric NO2 columns from Royal Netherlands Mete-
orological Institute (KNMI) DOMINO v2.0 products from
2005 to 2016, which are available at http://www.temis.nl/
airpollution/no2col/no2regioomimonth_v2.php. +e spatial
resolution is 0.125 × 0.125° latitude-longitude, which has
been widely used for scientific applications [21, 35, 36]. We
used the monthly mean data to analyze the spatial distri-
bution and temporal trends.

2.3. Surface In Situ Data. +e Chinese Ministry of Envi-
ronmental Protection issued “construction scheme of Na-
tional Environmental Monitoring Network (in cities at the
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Figure 2: Digital elevation model (DEM) of Anhui (m).
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Figure 1: �e location of (a) Anhui Province and (b) Wanjiang City Belt (WCB).
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prefecture level and above) during the Twelfth Five-Year
Plan” in 2012. 1436 monitoring stations have been set up in
338 cities in China since then. +ese surface monitoring
stations provide the concentrations of NO2, SO2, PM10, CO,
O3, and PM2.5 and visibility. Chinese National Environ-
mental Monitoring Center (CNEMC) is responsible for
publishing the near-real-time data collected from all mon-
itoring stations publicly. +e ground-level NO2 concen-
trations are mainly obtained by a nitrogen oxide analyzer
based on the gas-phase chemiluminescence method. +e
surface in situ data of NO2 are only accessible from 2015 to
2016, so we use the surface data in the two years. +e
temporal resolution of the ground-level NO2 concentrations
is one datum per hour in each monitoring station.

2.4. HYSPLIT Model. In this study, we used the Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
model developed by National Oceanic and Atmospheric
Administration (NOAA) to simulate the back trajectories of
air mass [37]. +e HYSPLIT model is a complete system,
which has been extensively used in calculation of air mass
trajectories, atmospheric transport, and dispersion. +e
model is often used to locate the origin of air masses and
build the relationships between source and receptor by back

trajectory analysis [38]. +e input for the HYSPLITmodel is
the Global Data Assimilation System (GDAS) meteorolog-
ical data, which are available at the GDAS website (ftp://
arlftp.arlhq.noaa.gov/pub/archives/gdas1).

3. Results and Discussion

3.1. Comparison of Satellite Data with Surface Data. We used
the surface in situ data to compare with the satellite data in
order to verify the accuracy of the OMI-retrieved tropospheric
NO2 columns.+e ground-level NO2 concentrations observed
by the CNEMC stations in 2015 and 2016 were utilized. +e
satellite data were extracted corresponding to the data grid in
which the monitoring stations are located. We collected the
surface data from 13:00 to 14:00 everyday, as this time period
coincides with the OMI overpass local time. Figure 3 shows
the selected CNEMC stations in Anhui Province.

+emonthly averaged data from each CNEMC station in
Anhui are compared with satellite data. Figure 4 shows the
comparison results of the two datasets. From Figure 4, the
two data show almost the same variation trend of NO2 in
each city. +e Pearson linear correlation coefficients of
the data for each area are high, as listed in Table 1. We used
the 2-tailed test to test the statistical significance of the
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Figure 3: Distribution of CNEMC stations in Anhui.
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Figure 4: Continued.
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correlation coecient, and the correlation is signi�cant at
the 0.05 level. �e two datasets have di�erent spatial scale
representativeness and surface sensitivity, so it is un-
reasonable to compare the two datasets directly. However,
our comparison results prove the accuracy of the OMI-
retrieved tropospheric NO2 columns in the WCB area.

3.2. Spatial Distributions of Tropospheric NO2 in WCB.
Figure 5 plots the spatial distributions of the annual averaged
tropospheric NO2 total columns over Anhui throughout the
years from 2005 to 2016. It is found that the NO2 columns
were considerably higher in WCB than those in other areas
of Anhui. �e annual averaged NO2 column reached 811 ×
1013molec./cm2 in theWCB region from 2005 to 2016, while
the annual averaged NO2 column was 733 × 1013molec./cm2

in other areas of Anhui during the same period. �e p value
is 0.09221 when the two-sample t test is used. Figure 6 is the
plot of the histogram of the annual averaged tropospheric
NO2 total columns in each city of Anhui Province. As can be
seen from Figure 6, the highest NO2 columns appeared in
the Ma’anshan city, where iron and steel industry is the

major industry with high emission of pollutions. �e spatial
distributions of annual averaged tropospheric NO2 columns
in this province agree with the results of satellite-retrieved
NO2 emissions in eastern China in other studies [1, 10].

3.3. Temporal Trends of TroposphericNO2 inWCB. �eWCB
region is established in 2010, so we compared the tropo-
spheric NO2 columns in this region before and after the year
of 2010. Figure 7 shows the spatial distributions of the total
NO2 columns in 2005 through 2010 and in 2011 through
2016 as well as the di�erence between the two periods. �e
di�erence between the two periods represents the change
in the total NO2 columns. �e total NO2 columns in
WCB increased from 531 × 1015molec./cm2 to 637 ×
1015molec./cm2, and the relative increase rate is about 19.9%
between the two periods. �e total NO2 columns in other
Anhui areas except the WCB area increased from 494 ×
1015molec./cm2 to 563 × 1015molec./cm2, and the relative
increase rate is about 13.9%. It is clear that the total columns
in WCB increased more than those in other areas, which
may result from the construction of the WCB and the policy
of industrial transfer from eastern coastal areas to inland
areas. Furthermore, the fraction of tropospheric NO2 col-
umns in WCB to the total tropospheric NO2 columns in
Anhui is up to 59.3% in 2016, while this value is 56.6% in
2011 (Figure 8). �e increased fraction of tropospheric NO2
columns after the year of 2011 in WCB also re�ects the e�ect
of the construction of WCB on the air quality.

Furthermore, the temporal variations of NO2 columns are
studied. �e NO2 columns of Anhui and WCB from 2005 to
2016 are plotted in Figure 9. Fortunately, it is found that the
NO2 columns over WCB and Anhui increased signi�cantly
from 2005 to 2011 and then decreased sharply from 2011 to
2016.�e statistical signi�cance of all the linear �ts in Figure 9
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Figure 4: Comparison of OMI-retrieved tropospheric NO2 columns and surface in situ concentrations for eight WCB cities: (a) Hefei;
(b) Wuhu; (c) Ma’anshan; (d) Chuzhou; (e) Chizhou; (f ) Anqing; (g) Tongling; (h) Xuancheng.

Table 1: �e Pearson correlation coecients of OMI-retrieved
tropospheric NO2 columns and surface in situ concentrations for
eight WCB cities.

City Correlation coecient
Hefei 0.75
Wuhu 0.69
Ma’anshan 0.63
Chuzhou 0.53
Chizhou 0.65
Anqing 0.50
Tongling 0.83
Xuancheng 0.69
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Figure 6: Annual averaged OMI-retrieved NO2 columns (×1013molec./cm2) from 2005 to 2016 of cities in Anhui Province.
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Figure 5: Annual averaged OMI-retrieved NO2 columns (×1013molec./cm2) from 2005 to 2016 in Anhui Province.
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was con�rmed by using the t test and F test, at the 95%
con�dence level. �e recent decrease trend re�ects the
impact of emission control measures and policies taken by
the government. It is well known that the new Ambient Air
Quality Standard has been implemented since 2012. It is
a stricter air quality standard than the previous standard,
especially for NO2 and �ne particles in the atmosphere
[39, 40].

3.4. Seasonal Variations of Tropospheric NO2 in WCB.
Seasonal variations of tropospheric NO2 were analyzed. In
Anhui, spring includes March, April, and May, summer
comprises June, July, and August, autumn includes

September, October, and November, while winter comprises
December, January, and February. Figure 10 displays the
tropospheric NO2 columns in di�erent seasons during the 12
years. It is apparent that the highest NO2 column occurred in
winter, followed by autumn and spring, while summer had
the lowest NO2. Also, the seasonal variation shows the same
trend during all twelve years. �is seasonal trend may be due
to the combined e�ect of the emission source, sink, and
weather conditions. Emissions from power plants increase
due to domestic heating in winter. In addition, the weather of
winter is characterized by lower temperature and more
overcast days than that of other seasons, which results in the
reduction of the photochemical reaction of NO2 with volatile
organic compounds (VOCs) [41].
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Figure 7: Total of OMI-retrieved vertical column densities (×1015molec./cm2) of NO2 in Anhui. (a) Total of NO2 vertical column densities
from 2005 to 2010. (b) Total of NO2 vertical column densities from 2011 to 2016. (c) Di�erence in the total of NO2 vertical column densities
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Figure 11 illustrates the time series of the annual av-
eraged tropospheric NO2 columns for each city in Anhui
Province from 2005 to 2016. It can be seen from Figure 11
that Ma’anshan, Bengbu, Huainan, and Chuzhou showed
the maximum NO2 level in 2011. Bozhou, Lu’an, Fuyang,
Xuancheng, Hefei, Huangshan, Chizhou, and Anqing dis-
played the maximum NO2 level in 2012. Suzhou, Huaibei,
Wuhu, and Tongling showed the maximum NO2 level in
2013. As mentioned earlier, the new Ambient Air Quality

Standard of China has been implemented since 2012. �e
e�ect of Ambient Air Quality Standard often lags behind the
policy itself, so some cities in Anhui Province reached their
maximum of NO2 columns in 2012 or 2013.

We used the HYSPLIT model to analyze the origins of
NO2 and transport pathways of air masses in the typical city
of WCB, Ma’anshan city. Ma’anshan city is in the west of
Nanjing area and about 40 km from the center of Nanjing
city, whereas Nanjing is one of the industrial centers of
Yangtze Delta.
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We performed the cluster analysis of the 24 h air mass
back trajectories starting at 500m for the full year of 2015.
Figure 12 shows �ve major types of backward trajectory
clusters for di�erent seasons in Ma’anshan in 2015. During
the spring, summer, and autumn, air masses are mainly from
the eastern regions, so the high emissions of NO2 in the
Nanjing area may in�uence the concentration of atmo-
spheric NO2 in the Ma’anshan area. In the winter, the
prevailing wind is from north (>50%), where the tropo-
spheric NO2 columns are relatively low. �is means that the
high level of NO2 in Ma’anshan in winter is not from the

transport but caused by the local emissions. �e high level of
tropospheric NO2 in the Ma’anshan area results from the
rapid industrial development and the increase of vehicles on
the road.

4. Conclusions

Atmospheric nitrogen dioxide plays an important role in
tropospheric chemistry and air quality. Satellite observations
have great potential for understanding the spatial distri-
butions and temporal variations in atmospheric NO2 on

120E

30N

16.7%
8.3%

Spring

22.2%
36.1%

(a)

120E

30N

Summer

21.7%
17.4%

31.9% 15.9%
13.0%

(b)

120E

30N

Autumn
32.2%
23.7%

20.3%
3.4%

(c)

120E

30N

Winter

24.6%
29.8% 10.5%

5.3%

(d)

Figure 12: �e cluster of air mass backward trajectories in di�erent seasons in Ma’anshan based on the HYSPLIT model: (a) spring;
(b) summer; (c) autumn; (d) winter. �e black triangle represents the location of Ma’anshan.
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a regional scale, with high spatial and temporal resolutions.
We utilize the tropospheric NO2 columns observed from
OMI to analyze the spatial distributions and temporal trends
of NO2 in Wanjiang City Belt (WCB) of China from 2005 to
2016. +e objective of this study is to describe the spatial
distributions and temporal trends of tropospheric NO2
based on satellite observations in twelve years, in order to
assess the effect of industrial transfer policy on the air quality
in WCB.

Firstly, we used the surface NO2 concentrations to
compare with the OMI-retrieved tropospheric NO2 columns
in order to verify the accuracy of the satellite data over the
WCB area. Although the two datasets have different spatial
scale representativeness and surface sensitivity, the com-
parison results prove the accuracy of the OMI-retrieved
tropospheric NO2 columns in cities of WCB.

+en, we examined the spatial distributions of the annual
averaged tropospheric NO2 total columns over Anhui
Province. +e results show that NO2 columns were con-
siderably higher in WCB than those in other areas of Anhui.
+e annual averaged NO2 column reached 811 ×

1013molec./cm2 in theWCB region from 2005 to 2016, while
the annual averaged NO2 column was 733 × 1013molec./cm2

in other areas of Anhui during the same period. Also, the
spatial distributions of annual averaged tropospheric NO2
columns in this area agree with the results of satellite-
retrieved NO2 emissions in eastern China in other studies.

In order to evaluate the effect of industrial transfer
policy on the air quality in WCB, we compared the spatial
distributions of the total NO2 columns in 2005 through
2010 and in 2011 through 2016. It is obvious that the total
NO2 columns in WCB increased more significantly than
those in other areas between the two periods. +e total NO2
columns in WCB increased by 19.9%, while the corre-
sponding value increased only 13.9% in other Anhui areas
except the WCB area. Furthermore, the increased fraction
of tropospheric NO2 columns in WCB to the total value in
Anhui after the year of 2011 also reflects the effect of the
construction of WCB on the air quality. Fortunately, the
temporal variations of NO2 columns show that although
the NO2 columns over WCB and Anhui increased sig-
nificantly from 2005 to 2011, they decreased sharply from
2011 to 2016 due to the strict emission reduction measures
in China.

Furthermore, the seasonal variations of tropospheric
NO2 were analyzed in detail. As is seen from the results, the
highest NO2 column occurred in winter, followed by au-
tumn and spring, while summer had the lowest NO2 during
all twelve years. +e seasonal trend may be due to the
combined effect of the emission source, sink, and weather
conditions as well as air mass transport. We used the
HYSPLITmodel to analyze the origins of NO2 and transport
pathways of air masses in the typical city of WCB,
Ma’anshan city. +e outcome shows that the high level of
NO2 in Ma’anshan in winter is not from the air mass
transport but from the local emissions. Although the study
involves only one important trace gas, the results offer
a useful tool for policy-makers to plan and implement
pollution control regulations.
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