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*e assimilation of satellite soil moisture (SM) products with coarse resolution is promising in improving rainfall-runoff
modeling, but it is largely impacted by the data assimilation (DA) strategy. *is study performs the assimilation of a satellite soil
moisture product from the European Space Agency (ESA) Climate Change Initiative (CCI) in a physically based semidistributed
hydrological model (SWAT) in the upper Huai River basin in China, with the objective to improve its rainfall-runoff simulation.
In this assimilation, the ensemble Kalman filter (EnKF) is adopted with full consideration of the model and observation error, the
rescaling technique for satellite SM, and the regional applicability of the hydrological model. *e results show that the ESA CCI
SM assimilation generally improves the streamflow simulation of the study catchment. It is more effective for low-flow simulation,
while for very high-flow/large-flood modeling, the DA performance shows uncertainty. *e less-effective performance on large-
flood simulation lies in the relatively low dependence of rainfall-runoff generation on the antecedent SM as during which the SM is
nearly saturated and the runoff is largely dominated by precipitation. Besides, the efficiency of DA is deteriorated by the dense
forest coverage and the complex topography conditions of the basin. Overall, the ESA CCI SM assimilation improves the
streamflow simulation of the SWATmodel in particular for low flow.*is study provides an encouragement for the application of
the ESA CCI SM in water management, especially over low-flow periods.

1. Introduction

Soil moisture (SM) significantly impacts the rainfall-runoff
process as it dominates the partitioning of precipitation into
infiltration, runoff, and evaporation. In recent years, a large
body of studies have been implemented to explore the ap-
proaches to improving rainfall-runoff modeling via en-
hancing SM estimation [1–10].

One promising approach to improving SM estimation in
turn improving rainfall-runoff modeling is to integrate the
observed SM into the hydrological modeling process using
data assimilation (DA) techniques [11–16]. In general, the
SM data for integration can be obtained from field mea-
surements and satellite observations. *e in situ measure-
ments are insufficient in the availability and spatial
representativeness due to the high spatial heterogeneity of
SM. Major researches on in situ SM assimilation focus on

discussing the DA approaches and exploring the potential
of SM assimilation in improving the hydrological process
[13, 17, 18]. However, the satellite observations are capable
of capturing the spatial distribution and temporal dynamics
of SM on large scales. Despite the fact that the satellite
remote sensing (RS) can only detect the surface SM in-
formation with a few centimeters (∼5 cm), it could represent
the fastest response of SM dynamics to meteorological
conditions [19]. A large number of studies have been
implemented to assimilate the RS SM in the land surface
model for the purpose of obtaining a more accurate and
reliable profile SM data set on a regional or global scale
[20–26]. Nevertheless, the assimilation of coarse-scale RS
SM in the hydrological model targeted at improving the
rainfall-runoff process is implemented in relatively few
studies [10, 27–31]. Currently, there is still no consensus on
the improvement of streamflow modeling through satellite
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soil moisture assimilation [4, 7]. For instance, almost no
improvement of stream	ow simulation was obtained by
Brocca et al. [4] in the assimilation of the surface ASCAT SM
retrievals, while up to 10–30% improvements were achieved
in such other studies as Massari et al. [32], Lopez et al. [7],
and Loizu et al. [10]. �e large discrepancies of the DA
performance in previous studies are likely due to the fact that
it is in	uenced by various factors in the DA framework
setup, such as the quanti�cation of the model and obser-
vation error, the mismatch between the observed and
simulated SM, the data quality and rescaling technique for
RS SM, and the model physical mechanism and its regional
applicability. To date, the added value of satellite soil
moisture data in hydrological modeling is still underex-
plored [5, 32]. �e performance of RS soil moisture as-
similation in stream	ow modeling presents certain
speci�city on the satellite data itself, the hydrological model,

and the di�erent con�guration schemes in the DA frame-
work setup. �erefore, speci�c studies on satellite soil mois-
ture assimilation with comprehensive consideration of the
DA implementation strategies are essential for exploring the
signi�cance of satellite soil moisture in hydrological modeling.

In this paper, a case study for satellite soil moisture
assimilation is implemented in the upper Huai River basin in
China, with full consideration of the factors in the DA
framework including the quanti�cation of the model and
observation error, the rescaling technique for RS SM, and the
regional applicability of the hydrological model. �is data
assimilation is performed in a physically based semi-
distributed hydrological model (SWAT) based on a robust
sequential data assimilation approach (the ensemble Kalman
�lter (EnKF)). A multisatellite-merged soil moisture data set
from the European Space Agency (ESA) Climate Change
Initiative (CCI) is adopted as the assimilation data source.
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Figure 1: �e upper Huai River basin: location (the inset map), elevation, digital river network, location of the meteorological and
hydrological stations (ST), and the subbasin delineation in SWAT model building.
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�e main objective of this study is to explore the potential of
coarse-scale RS soil moisture in improving runo� modeling
and to provide recommendations on the assimilation strategy.

2. Study Area and Data Used

2.1. Study Area. �e study catchment is located in the up-
stream basin of the Huaibin hydrologic station in the Huai
River basin, China (Figure 1). �e watershed covers about
16000 km2. �e whole watershed is located in the transition
region between the northern subtropical zone and the warm
temperate zone. Its annual average rainfall is around
900mm, 50%–80% of which falls during June to September.
Here, the annual average temperature is about 15°C. �e
major land cover is the agriculture land (AGRC 32.5%, RICE
35%) and forest (FRST 23.6%) (Figure 2).

2.2. Data for SWAT Model. SWATmodel building requires
meteorological and underlying surface data. �e meteoro-
logical data mainly include precipitation, maximum and
minimum temperature, solar radiation, wind speed, and
relative humidity.�e precipitation data are drawn from 106
local rainfall stations within the catchment (Figure 1). �e
other �ve meteorological data come from the three meteo-
rological gauges (Xinyang, Gushi, and Guangshui) (Figure 1).
�e underlying surface data are the digital elevation
(DEM), land cover, and soil category data. �e DEM data are
downloaded from the Shuttle Radar Topography Mission
with a spatial resolution of 90m (http://datamirror.csdb.
cn/index.jsp). �e land use/land cover (LU/LC) data are
collected from the Chinese Cold and Arid Regions Science
Data Center (http://westdc.westgis.ac.cn/) with a spatial
resolution of 1 km (Figure 2). �e soil data are resampled
from a soil map at a scale of 1 :100000 from the Soil
Handbook of Henan Province. �e soil for the whole
catchment is divided into seven categories (Figure 2). �e
soil texture and its corresponding United States Department
of Agriculture (USDA) classi�cation for each category are
shown in Table 1. Besides, there are six hydrologic stations
(Dapoling, Changtaiguan, Zhuganfu, Xixian, Huangchuan,

and Huaibin) (Figure 1) with daily stream	ow measurements
of 1992–2008 (the data quality issue exists for the years 2000
and 2001) in this basin.

2.3. ESACCI SoilMoistureData. �e ESA CCI soil moisture
data are a merged multisatellite surface soil moisture
product developed in the Climate Change Initiative (CCI) by
the European Space Agency (ESA). It combines the soil
moisture retrievals from four microwave radiometers
(SMMR, SSM/I, TMI, and AMSR-E) and two scatterometers
(AMI and ASCAT) into a 0.25° global daily data set over 30
years from 1978. �e data integration relies on their re-
spective sensitivity to vegetation density and uses a Noah
GLDAS-1 surface soil moisture product [33] as a climatology
reference [34]. �e ESA CCI SM consists of active, passive,
or combined products. �e active/passive products are the
integration of the scatterometer/radiometer-based SM re-
trievals, respectively, while the combined product is the
fusion of both the active and passive products. In this study,
the combined product (ESA CCI SM v03.2) is adopted for
soil moisture assimilation.

3. Methodology

3.1. Soil and Water Assessment Tool (SWAT). �e SWAT is
a physically based semidistributed watershed model, which
has been widely used in rainfall-runo� modeling over recent
years [35, 36]. In hydrological modeling, the catchment is
�rstly delineated into several subbasins according to its to-
pography. �en, each subbasin is further divided into several
hydrological response units (HRUs) based on the land use,
soil, and slope. HRUs are basic calculation units for the land
phase of the hydrologic cycle, on which the processes for
surface runo�, lateral 	ow, and ground water are generated
accompanied by evapotranspiration and soil water routing.

Soil moisture lies in the center of the hydrologic cycle
andmakes di�erent impacts on the above process.�e initial
pro�le soil water content in	uences surface runo� gener-
ation through the curve number in the SCS method [37].
After surface runo� generation, the water in�ltrated to the
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Figure 2: Land use/land cover (LU/LC) classes and soil distribution for the upper Huai River basin.

Advances in Meteorology 3

http://datamirror.csdb.cn/index.jsp
http://datamirror.csdb.cn/index.jsp
http://westdc.westgis.ac.cn/


soil profile is redistributed based on a storage routing
technique with the soil water field capacity as the threshold.
*e water balance for each soil layer can be expressed as
follows:

SWly′ � SWly + Δwperc,ly −Qlat,ly −Ea,ly, (1)

where SWly and SWly′ are the soil water content (mm) at the
start and end of the day, Δwperc,ly is the net percolation from
the overlying layer (i.e., the layer ly + 1), Qlat,ly is the lateral
flow generated from the layer ly, and Ea,ly is the evapo-
transpiration drawn from the layer ly.

*e evapotranspiration from soil mainly includes two
parts: soil evaporation and plant uptake/transpiration. In the
SWAT, the potential evapotranspiration is firstly calculated
using the Penman–Monteith equation [38]. Based on the
potential evapotranspiration, the leaf area index, and the
aboveground biomass and residue conditions, both the
demand for transpiration/plant uptake and the demand for
soil evaporation are determined. *en, the soil evaporation
demand and the plant uptake demand for each soil layer are
estimated using a depth distribution function. Finally, re-
lying on the soil evaporation demand and the plant uptake
demand with the available soil water as a constraint, the
actual soil water evaporation and plant uptake are de-
termined. In the processes mentioned above, the actual soil
water extraction of a given layer is not allowed to be
compensated by the extraction from other layers. However,
the soil water deficiency can be made up by adjusting the soil
compensation (esco) and plant compensation (epco) factors
via changing the depth distribution of the soil evaporation
demand and the plant water uptake demand. Besides, the
calculation for the soil water percolation (wperc,ly) and lateral
flow (Qlat,ly) is [39] omitted here.

In the water routing phase, the SWAT adopts a storage
feature to calculate the surface runoff and lateral flow gen-
erated from each HRU to the main channel, while it applies
a linear reservoir similar technique to account for the ground
water to the main channel. *e channel water routing is
performed using a variable storage routing method [40].

3.2. 2e Ensemble Kalman Filter (EnKF) for Soil Moisture
Assimilation. *e EnKF is a sequential DA approach evolved
from the standard Kalman filter [41]. It is based on an ensemble
of model states produced by adding the Monte Carlo noise to
model forcing and states and/or parameters to approximate the
model state error covariance matrix for the purpose of opti-
mally merging the model predictions with observations.

*e state ensemble forecast at time t can be expressed as
follows:

X
f
t � F X

u
t−1, ut, δ( 􏼁 + wtwt ∼ N 0, σ2s􏼐 􏼑, (2)

where Xf
t is the forecasted state ensemble at time t and Xu

t−1 is
the updated state ensemble at t− 1. In this study, it is con-
structed by the profile SM with up to four layers (Table 1) for
all HRUs of the study basin (the HRUs delineation is detailed
in Section 3.1). ut represents the model forcing inputs. In this
study, it mainly includes the observed precipitation P and
temperature T at each site. *e precipitation error is assumed
to be independent both in time and in space; that is, both the
autocorrelation between time steps at each rainfall station and
the error correlation among different stations are ignored.*e
perturbation (ηp) to precipitation is assumed to be a lognormal
multiplicative distribution with mean 1 and covariance σ2p (3).
*e perturbation to temperature (ηT) is assumed to be an
additive normal distribution with mean 0 and covariance σ2T
(4). Besides, δ represents the model parameter with a per-
turbation (ηpar) of normal multiplicative distribution of mean
1 and covariance σ2par (5). wt is the stochastic perturbation to
the forecasted SM, being assumed to be an additive normal
distribution with mean 0 and covariance σ2s :

Pe � P · ηp, ηp ∼ lnN 1, σ2p􏼐 􏼑, (3)

Te � T + ηT, ηT ∼ N 0, σ2T􏼐 􏼑, (4)

δe � δ · ηpar, ηpar ∼ N 1, σ2par􏼐 􏼑. (5)

*e state update for soil moisture can be obtained by

X
u
t � X

f
t + Kt Zt −H X

f
t􏼐 􏼑􏼐 􏼑, (6)

where Zt is the observation ensemble at time t. It is constructed
by the RS SM for all grids covering the basin and being sto-
chastically perturbed by an additive normal distribution with
mean 0 and covariance σ2R. H is the observation operator, being
used tomap themodel states to the observations. It is constructed
by the area proportions of HRUs in RS grids as the SWAT
model-simulated SM is on theHRU level, while the observed SM
is on RS grids. Kt is the Kalman gain, which is calculated based
on the forecast and observation error covariance:

Kt � Pms,t Ps,t + Rs,t􏼐 􏼑
−1

, (7)

where Pms,t is the cross-error covariance between the predicted
SM (Xf

t) and the measurement prediction H(Xf
t) at time t,

Table 1: Soil classification and its area proportions in the upper Huai River basin.

Soil category Clay Silt Sand Rock USDA soil
texture Soil layer (mm) Area

proportion (%)(%) (%) (%) (%)
Cugutu 7.05 34 35.9 23.1 Sandy loam 0-50-150 7.35
Huanghetu 23.43 65.1 11.5 0 Silt loam 0-50-150-400-800 21.52
Huangzongrang 17.03 39.4 43.6 0 Loam 0-50-150-400-800 13.7
Huichaotu 12.86 51.8 35.3 0 Silt loam 0-50-150-400-800 4.72
Shajiangheitu 20.32 65.5 14.2 0 Silt loam 0-50-150-400-800 9.81
Shizhitu 9.16 44.1 46.7 0 Loam 0-50-150 7.8
Shuidaotu 16.46 71 12.5 0 Silt loam 0-50-150-400-800 34.62
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Ps,t is the error covariance of the measurement prediction at
time t, and Rs,t is the error covariance of the RS SM at time t.

3.3. Implementation of the ESA CCI SM Assimilation in
SWAT. To set up the ESA CCI SM data assimilation in the
SWATmodel, the SWATmodel for the study catchment should
be �rstly built up. �e model applicability is evaluated over the
model calibration and validation processes. �en, the model
error for the validated SWATmodel is estimated based on the in
situ stream	ow observations at the Huaibin hydrologic station.
Besides, the observation error estimation for the ESA CCI SM is
implemented before the bias correction on the basis of the
model-simulated soil moisture. A 	ow chart for implementing
ESA CCI SM assimilation in SWAT is shown in Figure 3.

3.3.1. SWAT Calibration. �e SWAT model for the upper
Huai River basin is built up based on the meteorological
forcing and land surface data (Section 2.2). �is catchment is
partitioned into 37 subbasins (Figure 1) and 146 hydrological
response units (HRUs). To simplify and improve the model
calibration process, a sensitivity analysis of the model pa-
rameters to the hydrologic modeling is implemented using
the Latin-hypercube and one-factor-at-a-time method
[42, 43]. �ereafter, the model is calibrated and validated
using the daily runo� records over 1992–1999 and 2002–2008
at the interior and outlet hydrologic stations (i.e., Dapoling,
Changtaiguan, Zhuganfu, Xixian, Huangchuan, and Huaibin
in Figure 1), respectively. �e parameter optimization is
achieved by a combination of the autocalibration using the
Sequential Uncertainty Fitting (SUFI2) [44] with the Nash–
Sutcli�e coe©cient of e©ciency (detailed in Section 3.4) as the
objective criteria and the manual �ne-running method.

3.3.2. Model Error Estimation. �e determination of the
model error is signi�cant for the performance of DA as
the model predictions and observations are merged based on
the relative weight between the model and observation error
(as in (6) and (7)). In this study, the model error is mainly
contributed by the model input error for precipitation and

temperature, the model parameter error for parameters sen-
sitive to SM simulation (e.g., the available soil water capacity),
and the model state error for simulated SM.�e various errors
mentioned above are characterized by additive/multiplicative
normal/lognormal distribution speci�ed in Section 3.2. �e
assumed distribution is only controlled by the standard de-
viation (SD), that is, σp, σT, σpar, and σs in (3), (4), (5), and (2),
respectively. �erefore, the model error estimation is to
quantify the model error parameters σp, σT, σpar, and σs.

�e quanti�cation of σp, σT, σpar, and σs is performed by
analyzing the statistical characteristics of the simulated
stream	ow ensemble driven by model error perturbations
on the basis of the observed stream	ow at in situ sites. If the
ensemble spread after perturbation is too large, the over-
�tting of observation exists in DA. Otherwise, the observed
information cannot be fully utilized in DA. �erefore, the
two ensemble veri�cation measures (8) and (9) should be
satis�ed [32].�at is, if the ensemble spread sp is large enough,
the temporalmean of the ensemble skill sk should be similar to
the temporal average of the ensemble spread sp:

sp

sk
� 1. (8)

And the observation should be indistinguishable from
a member of the ensemble (N is the ensemble size):

〈sk〉
〈mse〉

�
�����
N + 1
2N

√
, (9)

where

sp �
1
T
∑
T

k

1
N
∑
N

i�1
Qik −Qk( )

2



,

sk �
1
T
∑
T

k�1
Qk −Qobs,k( )

2
{ },

〈sk〉 �
1
T
∑
T

k�1
Qk −Qobs,k
∣∣∣∣

∣∣∣∣,

〈mse〉 �
1
T
∑
T

k�1

1
N
∑
N

i�1
Qik −Qobs,k( )

2





1/2

,

(10)

where Qik is the model simulated stream	ow of the en-
semble member i at time k, Qk is the ensemble mean of the
model simulated stream	ow, Qobs,k is the observed stream	ow at
time k, and T is the total time step. Di�erent sp/sk and
〈sk〉/〈mse〉 can be obtained with di�erent σp, σT, σpar, and σs,
that is, f(σp, σT, σpar, σs) � sp/sk and g(σp, σT, σpar, σs) �
〈sk〉/〈mse〉. �erefore, the optimal estimation of σp, σT, σpar,
and σs can be realized by searching for the minimum value of
the following function:

F �
����������������������������������������������������
f σp, σT, σpar, σs( )− 1( )

2
− g σp, σT, σpar, σs( )−

����������
(N + 1)/2N
√

( )
2

√
. (11)

In situ streamflow
observation

SWAT model building

Calibration + validation

Model error estimation Bias correction for
ESA CCI SM

Error estimation for
ESA CCI SM

ESA CCI SM

Figure 3: Flow chart for implementing ESA CCI SM assimilation
in SWAT.
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In the soil moisture assimilation, the temperature error
(σT) is not very sensitive to DA performance. Hence, σT is set
to be 1°C as referenced from the study of Chen et al. [12].
Besides, the predicted/simulated SM error σs is set to be
0.01m3/m3 to avoid rapid changes of soil water content
between continuous time steps [45, 46]. Finally, the pre-
cipitation (σp) and model parameter error (σpar) are de-
termined by searching for the minimum F based on the
streamflow measurements at the catchment outlet (Huaibin
station) over 2002–2004 with an ensemble size of 200.

3.3.3. ESA CCI SM Bias Correction. Remote sensing (RS)
retrieval of SM often has systematic bias to the in situ ob-
served and model-simulated soil moisture due to their large
differences in spatial resolution and detection depth. *e
model-simulated SM can generally meet the water balance of
the basin/region. In order to keep the basin’s water balance
in DA, the systematic bias in RS SM needs to be corrected
before DA [47]. In this study, the bias correction for the ESA
CCI SM uses the cumulative distribution function (CDF)
approach [48], where the probability of the RS SM and the
simulated SM is assumed to be the same. *e spatial
matching between them uses the area-weighted average
method to aggregate the simulated SM from HRUs to RS
grids. Here, the rescaling is performed over the complete
model validation period of 2002–2008, considering that CDF
estimation typically requires a long record of observed and
model simulated data [6].

3.3.4. ESA CCI SMError Estimation. Rational quantification
on the uncertainty of RS SM is important for its optimal
application. RS SM still has considerable uncertainty al-
though its accuracy and reliability have been largely im-
proved in recent years [49, 50]. In this study, referencing
from previous researches [5, 51, 52], the error for ESA CCI
SM is assumed to be an additive Gaussian distribution with
the standard deviation (SD) of σR. Here, the estimation of σR
is obtained from the equation referring to the study of
Lievens et al. [30]:

σR � a0 + b0 sm_uncertainty + c0 frc, (12)

where sm_uncertainty is an indicator of the data uncertainty
for the ESA CCI SM [53, 54], which is not fully considered as
the representativeness error (e.g., the error caused by veg-
etation or different layer depths). *e representativeness
error is accounted by the parameter a0, which represents the
minimum retrieval error for ESA CCI SM. frc is the fraction
of the ESA CCI SM grid cell covered by the forest. *e
calculation of frc is based on the land cover data collected
from the Chinese Cold and Arid Regions Science Data
Center (http://westdc.westgis.ac.cn/) (Figure 2). a0, b0, and
c0 are given parameters, and b0, c0 ∈ (0, 1). Referencing from
the study of Lievens et al. [30], a0, b0, and c0 are given as 0.02,
0.5, and 0.02, respectively, in this study. It should be noted
that when the ESA CCI SM is high orderly rescaled
(Section 3.3.3), the observation error parameter σR needs
to be rescaled according to

σ∗R �
σsim
σobs

σR, (13)

where σ∗R is the standard deviation (SD) of the rescaled ESA
CCI SM observation error, and σsim and σobs are the SD of
the simulated SM error and the ESA CCI SM error,
respectively.

3.4. Evaluation Metrics. *e relative error (RE), the root
mean square error (RMSE), the Nash–Sutcliffe coefficient of
efficiency (NSE), and Pearson’s correlation coefficient (R)
are used to measure the coincidence level of the simulated
streamflow to the field observations. Meanwhile, the effec-
tiveness criterion (EFF) [55] and the normalized error re-
duction index (NER) are used to directly assess the
performance of soil moisture assimilation.

RE describes the deviation rate (%) of the predicted
streamflow to its field measurements. It can be expressed by

RE �
􏽐

n
i�1 Qsim

i −Qobs
i( 􏼁

􏽐
n
i�1 Qobs

i

· 100%, (14)

where n is the total time step and Qsim
i and Qobs

i are the
simulated and observed streamflow at time i.

NSE is expressed by

NSE � 1−
􏽐

n
i�1 Qsim

i −Qobs
i( 􏼁

2

􏽐
n
i�1 Qobs

i −Q
obs

􏼒 􏼓
2, (15)

where Q
obs indicates the mean value of the measured

streamflow for the whole period. *is NSE expression puts
more importance on high flow. In order to give more weight
to low flow, a modified version of the Nash–Sutcliffe co-
efficient of efficiency is adopted. It is actually a calculation of
the NSE in a logarithmic form of the variable (NSElog):

NSElog � 1−
􏽐

n
i�1 logQsim

i − logQobs
i( 􏼁

2

􏽐
n
i�1 logQobs

i − logQ
obs

􏼒 􏼓
2. (16)

EFF reflects the data assimilation effects by comparing
the sum of square error between the streamflow under as-
similated and nonassimilated cases. It can be expressed as

EFF(%) � 100 · 1−
􏽐

n
i�1 QEnKF

i −Qobs
i( 􏼁

2

􏽐
n
i�1 QEnOL

i −Qobs
i( 􏼁

2
⎛⎝ ⎞⎠, (17)

where QEnKF
i and QEnOL

i are the predicted streamflow under
assimilated and nonassimilated cases at time i.

NER is expressed by the following [55]:

NER(%) � 100 · 1.0−
RMSEEnKF

RMSEEnOL
􏼠 􏼡, (18)

where RMSEEnKF and RMSEEnOL are the root mean square
errors of the variable in EnKF and EnOL (detailed in
Section 4), respectively. *e expression for RMSE and R

can be found in the study of Liu et al. [56]. *e EFF and
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NER> 0 means that theDAperformance is e�ective.�e larger
EFF and NER values indicate the better performance of DA.

4. Results

�e e©ciency of ESA CCI SM assimilation is highly de-
pendent on the quality of model calibration, model, and
observation error estimation. Hence, the ESA CCI SM as-
similation e�ects on stream	ow simulation accompanied by
the results for model calibration and validation and for
model and observation error estimation are analyzed. To
illustrate the e©ciency of DA, the ensemble open-loop
(EnOL) cases and the EnKF cases are compared. �e
EnOL is an ensemble running of the SWAT model with
perturbations on model inputs, model parameters, and
model states without the integration of observed SM, while
the EnKF is an ensemble running of the SWATmodel with
the same perturbation to EnOL, but with the integration of
ESA CCI SM during the model propagation process.

4.1. Model Calibration and Validation. Table 2 presents the
SWAT model parameters being calibrated, which are ob-
tained from the parameter sensitivity analysis detailed in
Section 3.3.1. Figure 4 plots the simulated and observed daily
series of runo� at the catchment outlet during the calibration
(1992–1999) and validation (2002–2008) periods. �e
hydrograph of the simulated stream	ow is highly consistent
with that of the observed stream	ow for both the calibration
and validation stages, although slight underestimation exists
in 	ood peak modeling over some periods. �e statistics
(Table 3) for the simulated stream	ow at the catchment
outlet (Huaibin) suggest that it agrees well with the mea-
sured runo� as RE< 5%, NSE> 0.8, and R> 0.9. In addition,
the statistics for the other �ve hydrological sites (Dapoling,
Changtaiguan, Zhuganfu, Xixian, and Huangchuan) also
indicate that the SWATmodel has fairly good applicability
in the upper Huai River basin. In the calibration stage, for all
six stations, RE< 15%, NSE falls between 0.65∼0.81, and
R> 0.83. In the validation state, RE< 15%, NSE falls between

Table 2: SWAT model parameters being calibrated.

Sensitivity sequence Parameters Description
1 CN2 SCS curve number for moisture conditon II
2 surlag Surface runo� lag coe©cient
3 αgw Base	ow recession constant
4 Kch E�ective hydraulic conductivity
5 esco Soil evaporation compensation constant

6 aqshthr,q
�reshold depth of water in the shallow aquifer

required for the return 	ow to occur
7 SOL_AWC Available soil water capacity
8 N Manning’s n value for the main channel

9 canmx
Maximum amount of water that can be trapped in
the canopy when that canopy is fully developed

10 epco Plant uptake compensation factor
11 βrev Revap coe©cient
12 δgw Delay time for aquifer recharge
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Figure 4: �e observed (Obs) and simulated (Sim) daily runo� at the outlet (Huaibin) of the upper Huai River basin over the calibration
(1992–1999) and validation (2002–2008) periods.
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0.69∼0.9 (except for Huangchuan), and R> 0.83. �e un-
expected NSEs at Huangchuan are caused by the serious
disturbances of the human activities (principally the res-
ervoir impacts) on runo� over the years 2004, 2006, and
2008.

4.2. Model Error Estimation for Precipitation and Model
Parameter. Figure 5 shows the objective function F (11) with
varying standard deviation (SD) of the lognormal multi-
plicative perturbation on precipitation (σp) from 0.05 to 0.5
along with the varying SD of the normal multiplicative
perturbation on parameter from 0.1 to 0.5. �e objective
function F reaches its minimum value when σp approxi-
mates 0.35, which suggests that, in this case, the simulated
outlet stream	ow is the best matching to the observed
stream	ow from its ensemble statistics. However, it can be
seen that σpar is not that sensitive to the objective function,
and the allotropism or nonuniqueness issue exits in its
optimal parameter estimation. Considering the good per-
formance of the SWATmodel in the study basin (Section 4.1),
the small values of σpar (<0.25) are more credible. Besides,
in consideration of the robustness of the EnKF method
[45], 0.25 for σpar is adopted. Note that, in this estimation of
σp and σpar, the observed stream	ow at the subbasin outlet
is regarded as the truth, that is, the observation error is
ignored. In this case, σp and σpar are likely to be slightly
overestimated.

4.3. ESA CCI SM Error Estimation. Figure 6 shows the
standard deviation (SD) of the observation error σ∗R (13) for
the ESA CCI SM at each grid (34 grids in total) within the
catchment.�e location for 1–34 grids is present in Figure 7.
In general, σ∗R falls between 0.03 and 0.05m3/m3 for all grids,
which is consistent with the accuracy of the ESA CCI SM on
average (0.04∼0.05m3/m3) [57]. At each grid, σ∗R presents
certain ranges (∼0.01m3/m3), which is related to the soil
moisture dynamic with time changes over 2003–2006. �is
also indicates the necessity for considering the temporal
characteristics of the observation error for RS SM. In ad-
dition, σ∗R shows a considerable di�erence among di�erent
grids. �e high σ∗R mainly appears on grids with the dense
forest coverage, for example, the grids 10, 11, 25, 26, 33, and
34, in particular for the grid 33.�e dense forest obscures the
emitted radiance of the soil surface, which results in large
uncertainty to the surface SM retrieval. Besides, major dense
forests are distributed over the catchment with high altitudes

(Figure 1), where the complex topography also impedes the
accuracy and reliability of remote sensing for SM [58].

4.4. ESA CCI SM Assimilation on Stream�ow Simulation.
Table 4 statistically compares the model simulated stream	ow
with (EnKF) and without (EnOL) ESA CCI SM assimilation at
the six hydrologic sites in the upper Huai River basin except
for Huangchuan (Figure 1). �e reason for Huangchuan not
being taken into account is that it has data quality issue over
2004 and 2006 caused by severe human activities. Table 4
shows that the RE and RMSE are decreased and the NSE,
NSElog, and R are increased at the �ve gauges except for
Zhuganfu due to ESA CCI soil moisture assimilation. �e
improvement is more signi�cant in terms of the NSElog as its
increase rate is greater than NSE and R, which indicates that
the RS soil moisture assimilation ismore e�ective for low 	ows
than high 	ows. Besides, EFF/NER> 0 for four sites, in par-
ticular for Dapoling, Xixian, and Huaibin (where NER> 5%
and EFF> 10%), which suggests the good performance of the
assimilation. �e none�ective performance of ESA CCI SM
assimilation on runo� simulation of Changtaiguan and
Zhuganfu is probably related to their large proportions of the
dense forest and complex topography coverage upstream
(Figures 1 and 7). Both dense forest coverage and complex
topographical conditions reduce the data quality of RS SM
retrievals, thus impeding its performance in DA.

Figure 8 compares the daily series of themodel simulated
stream	ow at the catchment outlet during 2003–2006 with
(EnKF) and without (EnOL) ESA CCI SM assimilation on
the basis of the observed runo� (Obs). It can be seen that
ESA CCI SM assimilation improves the stream	owmodeling
over low-	ow periods. �e predicted runo� with ESA CCI SM

Table 3: Statistical comparison of the observed and simulated daily runo� over the calibration (1992–1999) and validation (2002–2008)
periods.

Hydrologic station
Calibration (1992–1999) Validation (2002–2008)

RE (%) RMSE (m3/s) NSE R RE (%) RMSE (m3/s) NSE R
Dapoling 12.97 28.06 0.66 0.84 15.14 35.49 0.81 0.91
Changtaiguan −0.74 47.59 0.69 0.85 6.21 63.27 0.78 0.89
Zhuganfu −7.74 38.53 0.64 0.83 −13.29 51.29 0.69 0.83
Xixian −1.65 115.84 0.75 0.88 2.24 173.05 0.75 0.88
Huangchuan 0.13 39.61 0.67 0.83 9.89 68.32 0.42 0.73
Huaibin 3.56 133.74 0.81 0.91 1.74 154.13 0.9 0.95
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Figure 5: Contour plot of the objective function F (11) with respect
to the standard error deviation for precipitation (σp) and for model
parameter (σpar).
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assimilation (the red line) is closer to the observed runo� (the
black line), and the NSElog increases from 0.6 to 0.71. However,
the impact of soil moisture assimilation on stream	ow mod-
eling over very high-	ow/large-	ood periods presents certain
uncertainty. For instance, data assimilation improves the
stream	ow simulation over the periods August 2, 2004–August
12, 2004, and July 3, 2006–July 23, 2006, while it deteriorates
the stream	ow modeling over the period June 29, 2003–July 9,
2003. �ese results are consistent with those of the previous
researches, for example, the study of Alvarez-Garreton et al. [5]
and the study of Massari et al. [32].�e uncertain performance
of soil moisture assimilation on large-	ood simulation mainly
lies in the relatively low dependence of runo� generation on
antecedent soil moisture because during large-	ood periods,
the soil moisture is nearly saturated and the runo� is largely
controlled by precipitation inputs.

5. Discussion

In general, our results indicate that the ESA CCI soil
moisture assimilation in SWAT performs well in runo�

modeling of the whole basin. Stream	ow improvements
over �ve in situ sites (except for Zhuganfu) are shown after
proper con�gurations of the model and observation error.
However, the improvements are not signi�cant, which can
be attributed to the following factors: First, the model error
is estimated based on analyzing the ensemble characteristics
of the stream	ow simulations driven by the model error
perturbations in reference to the ground-based runo� ob-
servations, during which the observation error for the
stream	ow is ignored. It might lead to an overestimated
model error. In observation error estimation for satellite soil
moisture, subjectivity does exist in parameter assignment of
the estimation equation although the temporal and spatial
variability has been taken into account.�ese two factors are
likely to deteriorate the model and observation error esti-
mation, which eventually degrade the DA performance.
Second, the runo� improvements are obtained by updating
the pro�le SM using the satellite SM products, which highly
relies on the physical vertical coupling-based model. SWAT
soil layers have limited vertical coupling [12, 18] as it does
not allow actual soil water compensation from other soil
layers in the storage routing technique, and the soil water
de�ciency is only made up by adjusting the depth distri-
bution of soil evaporation demand. �e exponential �lter
[59] used to derive the pro�le SM indicator from the surface
SM observations is a common solution to the inconsistency
of the shallow (surface) RS detection and the runo� root
zone control mechanism [5, 32]. However, this approach is
more applicable to the hydrological model with a single soil
layer setup. For the multilayer setup model (e.g., SWAT),
a more promising approach to the physical coupling issue
would be adopting Richard’s equation because it is more
representative of the real-world water movement of soil
water. Finally, the runo� improvements show large dis-
crepancies over di�erent hydrological sites with di�erent
geographical locations, which suggests that the land surface
conditions considerably in	uence the DA performance
(similar to the results from the study of Massari et al. [32]).
�e dense forests and complex topographical conditions
reduce the data quality of microwave soil moisture retrievals,
thus deteriorating the e©ciency of satellite soil moisture
assimilation.

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Remote sensing grid coding

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

(m
3 ·m

–3
)

σ R∗
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6. Conclusions

�e ESA CCI soil moisture assimilation in the SWAT
model using the ensemble Kalman �lter (EnKF) with the
objective to improve its rainfall-runo� simulation is un-
dertaken in the upper Huai River basin in China. In the

assimilation framework, the bias correction for the ESA CCI
SM is based on the model-simulated SM using the cumu-
lative distribution function method. �e model error is
estimated by analyzing the statistical character of the sim-
ulated stream	ow ensemble under various model error
perturbations based on the in situ observed runo� at the
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Figure 8: �e model-simulated stream	ow at the catchment outlet (Huaibin) with (EnKF) and without (EnOL) the ESA CCI SM data
assimilation over 2003–2006. �e upper plot is for the whole period with a base 10 logarithm coordinate. �e four plots below are for the
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Table 4: Statistical comparison of the estimated stream	ow in EnOL and EnKF cases based on the observed stream	ow over 2003–2006.

Hydrologic station
EnOL EnKF

EFF (%) NER (%)
RE (%) RMSE (m3/s) NSE NSElog R RE (%) RMSE (m3/s) NSE NSElog R

Dapoling 15.15 35.28 0.82 0.05 0.92 6.65 33 0.84 0.1 0.92 12.51 6.47
Changtaiguan 7.43 61.71 0.78 0.62 0.89 0.09 60.89 0.79 0.68 0.89 2.65 1.33
Zhuganfu −11.4 43.87 0.67 0.04 0.83 −18.9 44.45 0.66 0.16 0.82 −2.67 −1.3
Xixian 4.1 165 0.74 0.44 0.88 −3.61 156.37 0.77 0.57 0.88 10.19 5.23
Huaibin 5.74 149.9 0.88 0.6 0.94 0.02 140.2 0.9 0.71 0.95 12.47 6.44
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catchment outlet. In observation error assessment for the
ESA CCI SM, both the spatial heterogeneity and the tem-
poral variability are considered. *e observation error is
obtained from a linear combination of the minimum re-
trieval error, the uncertainty indicator in retrieval, and the
forest proportions on SM grids. Besides, the SWAT model
applicability for the study catchment is assessed before DA
as it has significant impacts on the performance of satellite
SM assimilation.

*e SWAT model has good applicability to the study
catchment as the model-simulated daily runoff series are
highly consistent with those of the in situ measurements,
and the evaluation statistics for all six hydrologic stations are
satisfying. In general, the ESA CCI SM assimilation im-
proves the streamflow modeling of the study basin. *e DA
is more effective for the improvement of low-flow simula-
tion, while for very high-flow/large-flood modeling, the DA
performance presents uncertainty. Besides, the DA efficiency
is likely to be deteriorated by the dense forest coverage and
the complex topographical conditions as it shows large
discrepancy over the stations with large and small pro-
portions of themountainous region at the upstream. Overall,
the coarse-scale ESA CCI SM assimilation could improve the
streamflow modeling of a physically based semidistributed
model, especially for low flow. *is study provides an en-
couragement for the application of the ESA CCI SM in water
management over dry seasons or low-flow periods.
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