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Due to limited number of weather stations and interruption of data collection, the temperature field data may be incomplete. In
the past, spatial interpolation is usually used for filling the data gap. However, the interpolation method does not work well for the
case of the large-scale data loss. Matrix completion has emerged very recently and provides a global optimization for temperature
field data reconstruction. A recoverymethod is proposed for improving the accuracy of temperature field data by using sparse low-
rank matrix completion (SLR-MC).+e method is tested using continuous gridded data provided by ERA Interim and the station
temperature data provided by Jiangxi Meteorological Bureau. Experimental results show that the average signal-to-noise ratio can
be increased by 12.5%, and the average reconstruction error is reduced by 29.3% compared with the matrix completion
(MC) method.

1. Introduction

Temperature field data are measured at a height of at least
1.5m above the ground, which is an important parameter to
describe the environmental conditions of the land [1] and
widely utilized in weather forecast. +e initial research on
city thermal environment phenomenon mainly employed
the temperature data from meteorological stations [2]. +e
number of meteorological stations is often limited. In ad-
dition, the data are continuous, but not in space. Based on
the above data characteristics, it is challenging to investigate
the temperature-related problem over large area. Sparse
temperature field data are highly correlated with low spatial
variability; interpolation is usually used to obtain the tem-
perature data missed in a region. And so far, no research on
the sparse property of continuous temperature data has been
conducted.

With the rapid development of sparse representation,
matrix completion (MC) method [3–5], which extends
the idea of compressed sensing to matrices, has been
proposed recently. Matrix completion aims to recover

a corrupted matrix from a small part of its entries. It is
impossible to recover a corrupted matrix without any
assumptions about the matrix. Candès and Recht [3]
found if the given matrix is low rank or approximately
low rank, the missing entries of the corrupted matrix can
be recovered through minimizing the matrix rank.
Mathematically, for a corrupted matrix M ∈ Rn1×n2, the
low-rank matrix completion problem usually can be
formulated as

minimize rank(X),

subject to PΩ(X) � PΩ(M),
(1)

where rank(X) denotes the rank of matrix X, Ω represents
the locations of sampling in matrixXwhich is the number of
known entries, and PΩ is the sampling operator which
obtains only the entries indexed by Ω.

Unfortunately, matrix completion problem is NP-hard
because the rank is nonconvex and discontinuous in reality.
To solve the problem, Candès and Tao proposed convex
nuclear norm to solve the rank minimization problem [6].
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While the known entries are sampled randomly and uni-
formly from the unknown matrix, the missing entries can be
recovered accurately if the matrix satisfies low-rank struc-
ture and incoherence condition [7]. Nuclear norm repre-
sents the sum of the singular values and can be seen as
a special case of l1 norm. It is easy to know that nuclear norm
is widely adopted as a low-rank convex surrogate [8], which
can be solved via the convex optimization. In order to solve
the convex problem, semidefinite programming (SDP) has
been proposed. Since SDP has high computational cost,
several faster algorithms which are more computationally
efficient than the SDP-based methods have been proposed,
such as singular value thresholding (SVT) [9], singular value
projection (SVP) [10], and inexact augmented Lagrangian
method (IALM) [11].

Unlike the interpolation method presented in [12–14],
matrix completion requires the corrupted matrix to be low
rank, and it works well for the case when a large portion of
data is lost. Taking advantage of the low rank and spa-
tiotemporal correlation of a matrix, MC can achieve good
interpolation performance. Compared with the traditional
spatial interpolation method, MC takes good use of the
correlation between the data, and it could only use a few
temperature field data to reconstruct the global temper-
ature field. +e reconstructed data quality is comparable to
the spatial interpolation. In order to obtain good re-
construction resolution, the temperature matrix needs to
be low rank based on matrix completion theory. However,
the temperature field data matrix does not have a stable
rank and the rank of matrix varies with time. So, we regard
the gridded temperature field data as a new matrix, whose
rank is more stable. Although matrix completion can
recover the incomplete temperature field data perfectly,
some information will still be lost in the process. In [15],
the data matrix was supposed to be decomposed into
a low-rank part and a sparse part, and it can be recovered
individually by solving a very convenient convex program
under some suitable assumptions. To recover the sparse
and low-rank components of a matrix efficiently, the al-
ternating direction method (ADM) has been proposed in
[16], but the sparse part of gridded temperature field data
is well suited for the application of compressed sensing
(CS) due to extensive spatiotemporal correlations that
result in sparser representations. +e combination of
compressed sensing and low-rank matrix completion
represents an attractive proposition for further improving
reconstruction.

In this paper, a method based on matrix completion and
compressed sensing [17, 18] is presented and referred to as
sparse low-rank matrix completion (SLR-MC). Different
from the method proposed in [16], the low-rank part and
sparse part of corrupted matrix were recovered by matrix
completion and compressed sensing individually. Firstly, the
temperature field data matrix is decomposed into a low-rank
or an approximately low-rank matrix and a sparse matrix.
+en, the low-rank matrix is reconstructed using the matrix
completion method, and the sparse part is recovered using
compressed sensing. +e method is tested using the gridded
incomplete temperature field data provided by ERA Interim

and the station temperature data provided by Jiangxi Me-
teorological Bureau.

+e rest of this paper is organized as follows. +e
temperature field matrix model and the proposed SLR-MC
method are described in Section 2. +e experiment data and
results are presented in Section 3, in which the performance
comparison between the MC and SLR-MC reconstruction is
also given. In Section 4, a summary of the work is provided.

2. Method

In this section, we will describe the temperature field matrix
model which is decomposed into a low-rank part and
a sparse part, then the fundamentals of matrix completion
are introduced, and finally the SLR-MCmethod is presented.

2.1. 'e Temperature Field Matrix Model. In order to
overcome the influence of rank, the gridded temperature
field data at each time can be regarded as a new low-rank
matrix. According to [19], the gridded temperature field data
T1, T2, . . ., TL collected over a period can be arranged in
rows to a large matrix T, as shown in Figure 1.

Assume that the size of each matrix is m × n, the rank of
T1 is r1, the rank of T2 is r2, . . ., and the rank of TL is rL. For
each single temperature field, the observation matrix may
not satisfy the low-rank property; therefore, the MCmethod
cannot be directly used to reconstruct missing data or lost
data. However, due to structure similarity and strong cor-
relation among the matrices T1, T2, . . ., TL, the rank R of
matrix T is smaller than max (r1, r2, . . ., rL), and a matrix can
be decomposed into two parts: a low-rank matrix TM (few
nonzero singular values) and a sparse matrix TS (few
nonzero entries):

T � TM + TS, (2)

where rank (TM) ≪ min (m, n) and sparsity (TS) ≪mn.
Figure 2 illustrates an example of the decomposition

result.

2.2. Fundamentals ofMatrixCompletion. Matrix completion
is the technique of completing missing values of a matrix
with a subset of entries selected randomly and uniformly
from a low-rank matrix or an approximately low-rank
matrix [3, 15].+e incomplete matrixM can be recovered by
solving the following rank minimization problem [3]:

minimize rank(X),

subject to PΩ(X) � PΩ(M),
(3)

where rank (X) denotes the rank of a matrix X, and the
sampling operator PΩ: Rm×n⟶ Rm×n is defined as follows:

PΩ(X) �
Xij, (i, j) ∈ Ω,

0, (i, j) ∈ Ω′.

⎧⎨

⎩ (4)

We use |Ω| to represent the cardinality ofΩ which is the
number of known entries. For example, suppose the matrix
X is

2 Advances in Meteorology



X �
1 2 3

4 5 6
􏼢 􏼣. (5)

If we have three elements known as
Ω � (1, 2), (2, 2), (2, 3){ }, we can have

XΩ �
0 2 0

0 5 6
􏼢 􏼣. (6)

However, the problem in equation (3) is NP-hard and
impossible in practice. Candès and Recht proposed a nuclear
norm minimization model to solve the following rank
minimization model:

minimize X∗
����

���� ,

subject to PΩ(X) � PΩ(M),
(7)

where the nuclear norm ‖X∗‖ is the summation of the
singular values of X.

Unfortunately, we cannot recover any low-rank matrix
(even its rank is 1) if the sampling entries in any row or
column are completely missing. Suppose a matrix is of rank
1 and we do not have samples from the second column, the
matrix cannot be recovered because no one can obtain all the
exact entries of the second column using any method. In
order to recover an unknown matrix, at least one obser-
vation in each row and column should be available. Candès
and Recht [3] proved that if Ω is sampled uniformly and
randomly among all subset of cardinalitym, we can solve the

problem (7) with high confidence where the number of
samples should obey m≥Cn6/5r log n.

In order to recover the incomplete matrix exactly, there
is a restriction on the range of rank r. +e selection of rank
has a great influence on recovering low-rank matrix, and we
use a small range of rank values and choose the value that
results in the best performance (in Section 3, the rank is
selected as 7).

2.3. Proposed Method. Considering model (2), the low-
rank part TM and sparse part TS from the corrupted
matrix T were supposed to be recovered. According to
[20], a low-rank matrix or an approximate low-rank
matrix can be reconstructed using the MC method. As
shown in [21], a sparse matrix can be recovered with
compressed sensing. +erefore, TM and TS in (2) can be
obtained through

min rank TM( 􏼁 + λ TS
����

����0,

s.t. T � TM + TS.
(8)

Problem (8) is a nonconvex optimization problem,
where ‖ · ‖0 denotes the number of nonzero value, and λ is
a tuning weight that balances the contribution of the
l0-norm term relative to the rank minimization term and
should be greater than 0. Problem (8) is extremely difficult to
calculate and NP-hard, so it can be converted to the fol-
lowing convex optimization problem:

(a) (b) (c)

Figure 2: (a) Temperature field matrix T, (b) low-rank matrix, and (c) sparse matrix.

T1 T2

T

TM

Figure 1: Temperature field matrix model.
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min TM
����

����∗ + λ TS
����

����0,

s.t. T � TM + TS,
(9)

where ‖TM‖∗ � 􏽐iσi(TM) is the nuclear norm of TM and
σi(TM) represents the ith singular value of TM (sorted in
decreasing order). Problem (9) is also known as principal
component pursuit (PCP), which can be solved by the
augmented Lagrange multiplier (ALM) algorithm given in
the following equation:

L(A, E, Y) � ‖A‖∗ + λ1‖E‖0 +〈Y, D − A − E〉

+
μ
2
‖D − A − E‖

2
F,

(10)

where μ is a positive scalar, λ1 is a positive weighting pa-
rameter, the Lagrange multiplier Y is introduced to remove
the equality constraint and A+E�D, ‖ · ‖F denotes the
Frobenius norm ‖ · ‖F �

��������
􏽐

m
i 􏽐

n
jXij

􏽱
, and 〈., .〉 represents the

inner product operator. For a given Y, A and E are de-
termined as the values that make L (A, E, Y) reach the
minimum. So, it is supposed that TM can be recovered by
problem (10). Different from the method proposed in
[15, 16], to solve the sparse and low-rank matrix de-
composition, the sparse part TS was obtained by the com-
pressed sensing method. +is method represents
a combination of augmented Lagrange multiplier used for
matrix completion and compressed sensing used for sparse
reconstruction.

3. Experimental Results

3.1. Gridded Temperature Field Data. We implemented our
algorithms inMATLAB 2016.+e experimental temperature
field data used for testing the method are provided by ERA
Interim of ECMWF (European Centre for Medium-Range
Weather Forecasts) which can be obtained from the fol-
lowing website: https://apps.ecmwf.int/datasets. +e data
were collected from Asia at 00 am, 06 am, 12 pm, and 18 pm
on January 1, 2014, at a height of 2m above the ground, and
the grid resolution was 0.75 degrees. +e region of the study
is at 20°E∼160°W and 60°S∼60°N, and the size of the region
is 200× 200.

Figure 3 shows the gridded temperature field data
selected at 06 am on January 1, 2014, which is represented
by a matrix of size 200 × 200. +e value of the temperature
is from 210 K to 320 K and the grid resolution is 0.75
degree. Figure 4 shows the sampled data of the global
temperature at 06 am on January 1, 2014 (the sampling
number is 15680), to which the reconstruction methods
are applied.

4. Results

Both the MC method and the proposed algorithm are tested
in this section. It can be seen from Figure 5(b) that the
recovered global temperature field at 06 am on January 1,
2014, using the MCmethod agrees well with the original one

(the rank of Figure 5(a) can be estimated by LMaFit [22] and
is selected as 7 in this section).

+e results at high latitudes near the North Pole and
low latitude areas near the equator are both satisfactory.
Although the recovered global temperature field from the
low-rank matrix using the MC method is good, the re-
covery results in some areas are not very satisfactory
since the local temperature data property is not con-
sidered. For example, red rectangle in Figure 3 presents
circumpolar latitude area, and its temperature varies
from 220 K to 250 K. +e corresponding recovery results
are from 230 K to 250 K. In other words, the temperature
data lower than 230 K have not been recovered suc-
cessfully. +us, the data in the red rectangle are selected
for further analysis.

Table 1 ((a) and (b)) shows the original and recovery
temperature field in the red rectangle on January 1, 2014, at
06 am, respectively. Comparison of the value at same po-
sition in Table 1 ((a) and (b)) shows that the difference is
about 5 K to 9K. +e analysis results for low latitude area in
the black rectangle shows similar performance in Figure 3.
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Figure 3: +e data of gridded temperature field (blue color in-
dicates the low temperature and red color indicates the high
temperature).
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Figure 4: Sample data of gridded temperature field.
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+e true temperature data range from 300K and 310K.
However, the recovery results using the MC method are less
than 307K, i.e., the temperature data higher than 307K have
not been recovered. From Table 2 ((a) and (b)), it can been
seen that the recovered temperature field data are all lower
than corresponding original data with an average temper-
ature difference of 4K. +e above test shows that the per-
formance of the MC method using low-rank matrix alone is
not ideal. As mentioned earlier, the SLR-MC method can
improve the reconstruction performance of global tem-
perature field. +e temperature field data collected at dif-
ferent times were used to test the proposed method. +e
original gridded temperature data (see Figure 6) at four
moments (00 am, 06 am, 12 pm, and 18 pm) on January 1,
2014, were studied. +e sampling number is 15680, and
matrix rank is 7.+e same data shown in Figure 3 (i.e., 06 am
in Figure 6) were studied first. For the high latitude region in
the red rectangle, the recovered temperature using the
proposed method varies from 225K to 250K.

+e point-to-point comparison is shown in Table 1 ((a)
and (c)). It can be seen that the temperature difference is
reduced from 7K to 3K, which is smaller than that in Table 1
(b). Using the SLR-MCmethod, the reconstruction error can
be reduced significantly, which means the recovered tem-
perature field is closer to the original one. Similarly, it is also
found that the SLR-MC method can recover temperature
field data higher than 307K (in the black rectangle).

As illustrated in Table 2 ((a) and (c)), the recovered and
original temperature field data at 06 am on January 1, 2014,
were very close to each other. +e average error was 1K and
less than that of MC. It can be concluded that the re-
construction results using SLR-MC are more accurate. For
the regions with large temperature variation, the recovery
performance is more satisfactory.

In this work, both reconstruction error (RE) and signal-
to-noise ratio (SNR) are used to evaluate the recovery
performance of the two methods. +e RE is defined as
follows:

RE �
norm T − Tr( 􏼁

norm(T)
, (11)

where T is the original temperature field data, Tr is the
reconstructed data, and norm represents the 2-norm. +e
SNR is defined as
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Figure 5: Reconstruction using the MC method. (a) Low-rank temperature field data (r� 7); (b) recovered field.

Table 1: Comparison of original data and reconstruction data in
red rectangle in Figure 3.

Latitude (N)
Longitude (E)

95.25∘ 96.00∘ 96.75∘ 97.50∘ 98.25∘ 99.00∘

(a) Original data
65.25∘ 223.1 222.0 222.0 222.0 223.4 224.8
64.50∘ 226.8 225.3 224.8 224.2 225.3 226.3
63.75∘ 232.1 231.0 230.2 229.4 229.1 228.8
63.00∘ 236.7 235.5 234.3 233.0 231.6 230.2
62.25∘ 240.5 238.9 237.4 236.1 234.9 233.3
61.50∘ 245.0 243.1 241.6 240.2 239.1 237.8
60.75∘ 250.6 248.3 246.3 244.4 242.9 241.4
60.00∘ 255.0 252.2 250.0 248.0 246.3 244.6
(b) Reconstruction results using MC
65.25∘ 230.1 230.1 232.5 227.8 230.9 219.4
64.50∘ 231.8 232.4 230.7 229.4 230.3 192.6
63.75∘ 235.8 235.3 245.0 229.0 240.1 238.4
63.00∘ 239.3 239.9 237.1 235.9 235.4 191.7
62.25∘ 244.3 244.1 246.1 238.6 241.5 224.0
61.50∘ 247.2 248.9 231.8 242.8 233.9 142.4
60.75∘ 252.9 253.6 249.0 247.0 247.0 190.3
60.00∘ 257.5 258.1 251.7 252.6 249.2 195.2
(c) Reconstruction results using SLR-MC
65.25∘ 224.9 224.3 224.3 224.8 225.1 229.3
64.50∘ 227.2 227.4 225.9 226.1 226.2 228.4
63.75∘ 230.6 231.9 231.7 232.0 227.3 232.0
63.00∘ 237.6 237.4 235.8 235.6 233.4 233.2
62.25∘ 242.2 242.1 238.4 235.9 234.6 234.4
61.50∘ 248.0 246.1 245.5 242.6 238.5 239.0
60.75∘ 253.2 250.7 248.5 246.8 242.6 238.9
60.00∘ 257.5 255.1 251.9 249.9 245.4 245.6
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Table 2: Comparison of original data and reconstruction data in black rectangle in Figure 3.

Latitude (S)
Longitude (E)

134.25∘ 135.00∘ 135.75∘ 136.50∘

(a) Original data
17.25∘ 306.9 306.5 306.5 306.2
18.00∘ 307.8 307.6 307.6 307.4
18.75∘ 309.1 309.1 308.9 308.8
19.50∘ 309.9 310.2 310.1 310.1
20.25∘ 310.3 310.7 311.1 311.5
21.00∘ 310.4 311.2 312.0 312.5
(b) Reconstruction results using MC
17.25∘ 305.2 305.8 304.7 305.6
18.00∘ 294.3 305.6 293.5 308.8
18.75∘ 310.2 306.6 325.6 305.8
19.50∘ 315.4 309.7 312.0 308.4
20.25∘ 311.9 309.9 260.5 307.7
21.00∘ 307.2 309.1 309.2 308.6
(c) Reconstruction results using SLR-MC
17.25∘ 305.8 304.3 304.7 303.9
18.00∘ 305.6 305.3 305.4 305.1
18.75∘ 306.2 309.4 308.2 308.3
19.50∘ 309.4 310.1 308.7 308.3
20.25∘ 309.7 309.7 309.7 309.6
21.00∘ 308.6 308.1 309.0 309.2
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Figure 6: +e reconstruction results of SLR-MC method.
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SNR � 10 log
p1
p2

􏼠 􏼡, (12)

where p1� 1/[length(T)∗norm(T)2] , p2� 1/[length(T)∗
norm(T − Tr)

2].
From Figures 7 and 8, it can be found that the RE and

SNR of the SLR-MC method are lower and slightly higher,
respectively, than those of the MC method for which the
details are provided in Table 3. +e average SNR for the four
moments is increased by 12.5% using the proposed method,
while the average error is 29.3% lower.

4.1. Station Temperature Data. In this section, we evaluate
the performance of the SLR-MC method on the re-
construction of station temperature data. In this experi-
ment, we have collected the temperature data at 92
national weather stations in Jiangxi, China. Figure 9 shows
the longitude and latitude of stations, where the blue
points represent the location of the national weather
stations in Jiangxi. Each station reports its temperature
data once a day to the monitoring center, and we have
downloaded the data from January 2017 to March 2017.
We put each station data into a vector and arrange the
vectors into a large matrix. +e data matrix has been set as
M � 87 (only the data from 87 stations are used) and T � 90
(which represents the length from January 2017 to March
2017).

As shown in Figure 10, the row number of the tem-
perature matrix represents the time from January 2017 to
March 2017 and the column number represents the locations
of 87 stations. Figure 11 shows the sampled temperature data
matrix which is selected randomly and uniformly (the
sampling number is 4698), and the blue dots represent the
corrupted temperature data and the red dots represent the
sampled temperature data. +e size of matrix is 87× 90, and
the value of the temperature is from 0K to 300K. +e
reconstructed temperature data are shown in Figure 12. As
shown in Figure 12, both MC and SLR-MC methods can
capture the main feature of the original temperature data
matrix.

+e recovery results of the SLR-MC method can cap-
ture the local feature of original matrix and more key
variation details, while the MC method often loses the
information. +e SLR-MC method may not have a signif-
icant improvement compared with theMCmethod because
the changed temperature values only occupy a small
portion of all temperature values in the matrix. +us, the
data in the white rectangle in Figure 12 are selected for
further analysis.

+e white rectangle in Figure 12 represents an area with
significant temperature variation from 270K to 290K. Ta-
ble 4 shows the original and reconstructed temperature data
in the white rectangle.+e white rectangle size is 8× 6, which
indicates the data matrix obtained by 8 stations (see Table 4
(a)) from time slots 30 to 35. Comparison of the value at
same position in Table 4 ((a), (b), and (c)) shows that the
difference is about 1 K to 7K, whichmeans bothMC and SLR-
MC methods can capture most information of the original

matrix. Compared to MC, the data matrix in Table 4 (c)
recovered by the SLR-MC method is closer to the original
data matrix in Table 4 (a). For example, the reconstruction
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Table 3: Comparison of the reconfiguration effect ofMC and SLR-MC.

Prerequisite Method Time RE (10− 2) SNR (dB)

Sampling� 15680
Rank� 7

MC

0 1.55 87.5
6 1.71 88.6
12 1.47 85.6
18 1.28 97.7

SLR-MC

0 0.91 106
6 1.40 88.8
12 0.67 111
18 1.27 98.4
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error (RE) between Table 4 (a) and Table 4 (b) is 1.08E (− 2)
while that between Table 4 (a) and Table 4 (c) is 9.43E (− 3).
+e above test shows that the performance of the SLR-MC
method is better than the MC method.

5. Conclusion

In this paper, the MC and SLR-MC methods were examined
to determine which technique is appropriate for retrieving
missing temperature data. Instead of using the alternating
direction method (ADM) proposed in [16] to recover
original corrupted matrix data, the SLR-MC method sepa-
rates the clean low-rank matrix from the corrupted data
effectively and applies matrix completion to fully exploit the
low-rank features of temperature field data. +e sparse
matrix is reconstructed using compressed sensing to fully
capture the sparse features of temperature field data. We
have demonstrated the better performance of the SLR-MC
method on gridded temperature field data and point tem-
perature data from corrupted observations. Experimental
results from gridded temperature field data confirm that the
average SNR is increased by 12.5% and the average error is
reduced by 29.3% using the SLR-MC method. +e SLR-MC
method can also be applied to many other meteorological
data with appropriate modification.

Data Availability

+e supplementary materials were provided by ERA Interim
of ECMWF (European Centre for Medium-Range Weather
Forecasts) and Jiangxi Meteorological Bureau. +e data
provided by ERA Interim were collected from Asia at 00 am,
06 am, 12 pm, and 18 pm on January 1, 2014, with a spatial
resolution of 0.75 degrees, and the data provided by Jiangxi
Meteorological Bureau were collected from 92 national
weather stations in Jiangxi from January 2017 toMarch 2017.
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Figure 12: Comparison of corrupted temperature data matrix reconstruction. (a) Recovered by MC method; (b) recovered by SLR-MC
method.

Table 4: Comparison of original data and reconstruction data in
white rectangle in Figure 12.

Location
Time slot

30 31 32 33 34 35
(a) Original temperature data
58503 288.05 274.65 279.95 273.55 278.95 280.15
58506 285.45 279.95 279.55 279.05 279.95 279.15
58510 288.75 279.65 279.35 279.05 280.05 278.55
58512 289.55 281.15 280.05 279.55 280.05 279.75
58514 290.55 280.05 280.35 279.25 280.45 280.05
58517 288.95 281.95 281.05 280.35 280.65 279.75
58508 290.85 281.15 280.65 280.85 280.95 280.35
58509 287.45 282.35 282.05 279.85 280.25 279.75
(b) Reconstruction results using MC
58503 282.18 271.40 273.40 272.61 276.22 278.05
58506 282.01 282.91 276.68 279.33 280.90 276.27
58510 282.84 283.01 277.00 279.36 280.32 276.36
58512 282.70 282.84 277.23 279.63 281.69 277.05
58514 284.74 281.44 277.94 278.83 281.29 276.85
58517 284.16 283.17 278.15 279.92 281.99 277.01
58508 287.34 283.05 279.62 280.15 281.09 278.19
58509 283.07 283.93 277.42 279.73 280.84 275.36
(c) Reconstruction results using SLR-MC
58503 283.68 272.23 276.00 272.41 278.98 279.46
58506 281.83 282.89 276.76 279.51 281.12 276.77
58510 286.69 282.98 276.61 279.63 280.59 276.57
58512 283.26 282.97 277.91 279.78 281.27 277.77
58514 284.90 281.13 277.45 278.57 281.73 277.22
58517 284.04 283.12 278.88 280.17 281.58 277.04
58508 287.59 282.61 279.02 280.31 281.22 278.38
58509 281.24 283.85 278.87 279.51 280.48 275.51
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