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The spatiotemporal distribution pattern of the aerosol optical depth (AOD) is influenced by many environmental factors, such as
meteorological condition changes, atmospheric pollution, and topographic changes. Understanding the relationship between the
vegetation land cover and the AOD would favor the improvement of forest ecosystem services. This quantitative research
integrated remote sensing and ground survey data and used spatial statistical methods to explore the drivers that influence the
AOD of the exurban national forest park and analyze the differences between various forest types. The driver analysis was carried
out in the hot (Z>1.64) and cold (Z <-1.64) spots of AOD in 2010 and 2017. Our results showed that (1) the forest type was
proved to be the main factor contributing to the AOD pattern and (2) from 2010 to 2017, the average growth rate of broad-leaved
forest, coniferous forest, bamboo, and shrub in hot spots was significantly higher than that in cold spots, while there was no
significant difference in the mixed forest. The average growth rate of biomass densities of bamboo, coniferous forest, and mixed
forest were higher than that of the shrub and broad-leaved forest. These findings provided the guidance for the rational allocation

of tree species to increase the biomass and improve the ecosystem service values of forest parks.

1. Introduction

There are two major sources of atmospheric aerosol: natural
and human emissions, which is a system comprising at-
mospheric medium with mixed solid and liquid particles.
The composition is complex and diverse, including various
trace metals, inorganic oxides, sulfates, nitrates, and oxygen-
containing organic compounds [1-4]. The composition of
the urban atmosphere affected by the various pollution
sources changes greatly. However, the composition in the
exurbs is relatively stable, which is generally related to the
local soil composition. As a crucial natural provider of
multiple ecosystem services, the quantitative assessment and
improvement measures of exurban national forest parks are
of increasing concern to urban managers [5, 6]. Human

health and vegetative growth are inevitably affected by
aerosols. Aerosols have important effects on air quality,
visibility, acid deposition, precipitation, atmospheric radi-
ation balance, and chemical reactions in the stratosphere and
troposphere. Thus, understanding the spatiotemporal pat-
tern of the aerosol in the exurban national park and its
relationship to the forest type on the ground will be helpful
to improve ecological system services provided by the forest.

AOD is an important index of atmospheric turbidity
[7, 8]. It has been widely used in related studies to improve
air quality because of certain linear relationships with the
PM 2.5 concentration on the ground. The smaller the AOD,
the cleaner the atmosphere and vice versa. Furthermore, it is
vital to study the mechanisms influencing the distribution
pattern of aerosols. Previous studies have shown that AOD
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may overestimate aerosol concentration when the relative
humidity (RH) is higher than 40% and can better reflect dry
aerosol concentration when the RH is lower than 40% [9].
Quantitative analysis of influencing factors of aerosol
spatial distribution requires the integration of remote
sensing images and field surveys to identify influential
factors, which have strong effects in clustering regions (hot
or cold spots) differentiated by spatial statistical analyses
[10-13]. Besides the influence of human activities, the
meteorological condition, topography, soil, and forest
vegetation also have an interactive impact on aerosol
concentration. The relationship between vegetation and
aerosol is mainly reflected in the direct and indirect effects
of aerosols on plants. The manifestation of direct influence
is the aerosol coverage on plant leaves, affecting plant
respiration, stomatal conductance, and utilization rate of
sunlight. The indirect effect refers to the influences of
aerosols on precipitation and temperature of the atmo-
sphere as well as the scattering of sunlight, etc., further
resulting in the effects on the utilization of light, water, and
heat by plants [14]. Natural and anthropogenic aerosols
mixed in the atmosphere mainly have indirect effects on
plant growth, but less direct effects. The influence of
aerosols on net primary production (NPP) may be positive,
neutral, or negative [15]. Although certain concentrations
of aerosols inhibit plant growth, the light scattering caused
by aerosols disperses direct sunlight to every layer of leaves,
including the leaves under canopy. This phenomenon is
named as diffusion radiation fertilization effect, which has
positive influences on vegetation [16].

At present, the research on the relationship between
AOD and plant growth is mainly divided into two spatial
scales: the sample scale and a large regional scale [17-19].
Most of the recent studies were based on the quantitative
experiment of ground-based remote sensing and the small-
scale sample points, where the relationships between the
AOD and a particular species or some species were detected
by a statistical approach, On small-scale sample points, it has
been proved that higher AOD concentration significantly
promoted plant growth [20]. A part of the studies used
global or large-scale model simulations to measure the ef-
fects caused by AOD diffuse radiation and showed that the
diffuse radiation improved the efficiency of photosynthesis
[21, 22]. However, in order to enhance regional ecosystem
service capacity through forest management, these study
results may bias the application guidance [23, 24]. On the
one hand, sample plots may be difficult to reflect the ag-
gregation effects of different tree species in the forest park on
the spatial pattern of aerosol at the regional scale. On the
other hand, a wide range of meteorological digital model
simulations do not reflect the characteristics of vegetation
properties inside the forest park. Furthermore, the AOD
spatial resolution of existing satellite remote sensing
products are 500 m or coarser, making it difficult to fully
describe forest property details [25]. The ground forest
management planning inventory (FMPI) data required the
remote sensing images with high spatial resolution, such as
30 m, to support the mechanism analysis. In this study, we
took the exurban Siming Mountain National Forest Park of
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Ningbo City in the Yangtze River Delta as an example. To
conduct the analysis, we firstly integrated the multisource
data composed of the FMPI, Landsat remote sensing data,
road network data, meteorological data, and demographic
data. Then, we used a geographical detector to analyze the
heterogeneity of the AOD spatial-temporal distribution
pattern in 2010 and 2017 and its main influencing factors.
Finally, a statistical analysis was applied to find the re-
lationship of AOD on different types of forest canopies.
The purpose of this study is to find out the main
influencing factors of aerosol distribution in exurban forest
parks and to explore the differences in biomass growth of
different forest types in aggregation areas with different
concentrations. We tried to answer two questions: (1) in
addition to human emission sources, what are the main
ecological factors influencing exurban forest park AOD? and
(2) do the AOD concentrations cause differences in biomass
growth rates among different types of forests in the study
area? The research results can provide guidance for im-
proving the ecosystem service value of forest parks and
provide reference for the further study of mechanisms.

2. Materials and Methods

2.1. Overview. We approached this research in the following
steps: First, to create a database that integrates multiple types
of GIS and remote sensing (RS) data (including Landsat 8
OLI images, Landsat 7-ETM™ images, FMPI, MODIS data,
OpenStreetMap data, and Landscan data). Second, to pre-
process the database. There were two substeps included: (1)
replenishment of missing remote sensing pixel values,
caused by cloud occlusion, through the Kriging in-
terpolation which is a geostatistical method for predicting
missing spatial information (AOD, MODIS data) [26, 27]
and (2) inversion of the AOD by Landsat data. Third, the hot
spots and cold spots of AOD in this area were identified by
the high Z values (Z>1.64) and low Z values (Z<-1.64)
respectively, which were calculated through global Moran’s I
and Getis-Ord Gi* [28, 29]. The optimal threshold distance
was calculated using the incremental spatial autocorrelation
module. Fourth, the factor detector of the Geodetector
model was used to quantify the impact contribution of
different factors on the AOD. Lastly, we calculated and
analyzed the biomass changes of different forest types in cold
and hot spots from 2010 to 2017.

2.2.Study Area. Siming Mountain National Forest Park is in
Ningbo City, Zhejiang Province, China (Figure 1). The lo-
cation is longitude 120°59'20"E-121°25'16"E and latitude
29°31'39"N-29"59'20"N. The park is subject to the sub-
tropical monsoon climate, which is characterised by
1,277 km?, 976 m highest altitude, 77.5% forest coverage, and
yellow soil. The annual average temperature is 100C, and the
annual average rainfall is 1,800 mm.

2.3. Multisource Dataset and Preprocessing. Three types of
data in two years, which included the year 2010 and 2017,
were collected. The first type of data was the Landsat satellite
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FIGURE 1: Map of study area. The inset shows the location in China.

remote sensing data for AOD retrieval with a spatial reso-
lution of 30m. To ensure representation of the data, we
selected the two nearest meteorological stations in the China
Meteorological Data Network (http://data.cma.cn) (Nos.
58467 and 58562, respectively) to screen for wind speed and
air pressure that were within a 5% error limitation of the
mean value in both 2010 and 2017. Afterwards, we collected
eight remote sensing image data for the four seasons in 2010
and 2017 (row number 118, column number 39). The remote
sensing images and data from the four phases of the ETM
sensor and the four phases of the OLI sensor were chosen
based on the cloud cover percentage. The less cloudy ones
were selected, which were the Landsat 7 ETM images on
January 1, April 23, July 28, and December 3, 2010, and
Landsat 8 OLI image on April 2, August 24, and October 27,
2017, and January 15, 2018 (Table 1). The cloud covers were
0.01%, 6.62%, 24.63%, 0.10%, 0.37%, 0.26%, 14.27%, and
1.27%, respectively. The average wind speeds at the
two meteorological stations were (2.1 and 3.2m/s), (4.1
and 3.1 m/s), (2.1 and 4.7 m/s), (3.6 and 3.5m/s), (4.2 and
4.1m/s), (2.2 and 2.3m/s), (5.1 and 6.1 m/s), and (5.5 and
5.5 m/s) with relative humidity (75 and 77%), (88 and 86%),
(90 and 91%), (88 and 85%), (79 and 82%), (85 and 90%), (90
and 90%), and (77 and 78%) in the years 2010 and 2017,
correspondingly.

The second type of data was the FMPI, which is obtained
from in situ investigation and observation by the national
forestry bureau and its affiliations in China. These data
provide forest ground survey results on a regional scale. The
attribute database contains information on forest patch area,
diameter of breast height (DBH), height, canopy, tree
density, tree composition, origin, forest management type,
volume, forest resource distribution map, etc. The study area
includes 20,452 and 53,980 irregular forest patches with the
average of 6.499+15.847 (mean+SD) ha and 2.376+
6.784 ha in 2010 and 2017, respectively. The data selected for
this research are (1) forest attribute data (age, DBH, dom-
inant species, and species composition), (2) soil data (layer
thickness and type), and (3) topographic data (altitude, slope
degree, and slope direction). The values of the above data
were calculated by averaging values of all units in the forest
patches. The tree species of Siming Mountain National
Forest Park mainly include Pinus massoniana, Cunning-
hamia lanceolata, Pinus taiwanensis, Pinus thunbergii, Pinus
elliottii, Schima superba, Liquidambar formosana, Phyllos-
tachys heterocycla, Dendrocalamopsis oldhami, Myrica
rubra, Eriobotrya japonica, Camellia sinensis, Morus alba,
and Camellia oleifera. According to the dominant species
and tree species composition data recorded in each patch,
forest types were divided into six categories: coniferous tree,
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TaBLE 1: Information about the GIS and RS data in this study.
Type Data Time
FMPI 2010
GIS 2016
OSM 2017
LSP 2017
April 2, 2017
RS Landsat 8 OLI August 24, 2017
Row 118/path 39 October 27, 2017
January 15, 2018
January 1, 2010
Landsat 7 ETM April 23, 2010
Row 118/path 39 July 28, 2010
December 3, 2010
RS MODIS TPWV
MODIS LAI The time of MODIS data set is the same as that of
MODIS LST Landsat data set
MODIS NDVI andsat data
MODO04_3K

broad-leaved tree, mixed coniferous and broad-leaved,
bamboo, shrub, and nonforest land (Figure 2).

The third type of data was obtained from open-access
resources. It consisted of daily Moderate Resolution Imaging
Spectroradiometer (MODIS), total precipitable water vapor
(TPWV), daily leaf area index (LAI), daily land surface
temperature (LST), 16-day normalised difference vegetation
index (NDVI), MODIS Terra Aerosol 5-Min L2 Swath 3 km
(MOD04_3K) and Landscan population (LSP) data (https://
landscan.ornl.gov/) [30], and OpenStreetMap (OSM) data
(https://www.openstreetmap.org) [31]. All data were selected
in accordance with the shooting time of the Landsat satellite
imagery dataset. Due to cloud problems, some missing pixel
values of the MODIS data (TPWV, LAI, LST, and NDVI)
were filled by Kriging interpolation [32-35]. Then, the spatial
resolution of the whole dataset was resampled to 30 m [36].

2.4. Inversion of the AOD. The atmospheric top radiation
captured by satellite sensors is the result of the interaction of
electromagnetic waves and the earth’s atmospheric system.
Atmospheric aerosol remote sensing, which is sensitive to
aerosol scattering, depends on the characteristics of the short
wavelength of visible light combined with Second Simula-
tion of the Satellite Signal in the Solar Spectrum, 6S at-
mosphere transmission model, to realise the inversion
[37-39]. Assuming the earth surface to be a Lambert surface,
the atmospheric level is uniform, and the apparent atmo-
spheric reflectance (upward reflectance) observed by the
satellite is as described in the following equation:

Proa (95’ ev’ §D) =Po (95’ ew q)) +T (GS)T(QV)

1
~ p(650,9) (1
[1 ~Ps (65’ ev’ ¢) : R]
where 0, is the solar zenith angle, 0, is the satellite zenith

angle, ¢ is the azimuth of the scattered radiation from the
solar beam, p; is the path radiance, p; is the angular surface

reflectance, R is the atmospheric backscattering ratio, and
T (0,) is the normalised downward flux for zero surface
reflectance; T'(6,) represents upward total transmission into
the satellite’s field of view.

In this study, we used ENVI software and IDL language
to calculate AOD values at 550 nm. The first step was pre-
processing of the Landsat images, including masking, ra-
diation calibration, geometric correction, and the calculation
of the apparent reflectance (p_TOA) of the atmosphere. The
second step was inversion of the AOD by using the dark
pixel method because of the high vegetation cover of the
study area. The detailed processes include four substeps
[39, 40]: (1) the dark pixels, which are usually in the dense
vegetation covered areas with short wavelength and dark
surface, were identified by the NDVT; (2) since the apparent
reflectance of 2.1-2.2 ym wavelength is almost independent
of aerosol [41-43], the short infrared band was chosen to
calculate the surface reflectance; (3) the optimal AOD was
determined by matching the 6 S LookUp Table (LUT) and
apparent reflectance and the mean AOD mean values of red
and blue band were obtained; (4) the Kriging interpolation
was applied to the preliminary inversion results which were
resampled to 30 m [44]; and (5)the AOD inversion results in
this study were compared with MODO04_3K data to verify
the inversion accuracy. In our study, For this substep, we
firstly registered Landsat AOD and MOD04_3K data which
were taken at the same time (two sets of data at the same
time), then calculated the average value of the corresponding
mesh of Landsat AOD according to the mesh size of
MODO04_3K, counted the number of effective pixels, and
finally counted the linear regression equation and R*.

2.5. Statistical Method

2.5.1. Spatial Statistical Analysis. Two mean AOD spatial
distribution maps were mapped based on the calculation of
the average of each pixel of four AOD images in 2010 and
2017, respectively. The Getis-Ord G;* method effectively


https://landscan.ornl.gov/
https://landscan.ornl.gov/
https://www.openstreetmap.org

Advances in Meteorology

0153 6 9 12
e wm km

Em Bamboo
B Shrub
Nonforest land

(a)

mm Coniferous tree
Bl Broad-leaved tree
Mixed con and bro

M Coniferous tree
B Broad-leaved tree

0153 6 9 12
e km

B Bamboo
B Shrub

Mixed con and bro Nonforest land

()

FIGURE 2: Forest types of the Siming Mountain National Forest Park in (a) 2010 and (b) 2017.

identified the statistically significant aggregation areas (e.g.,
hot spots representing the position with the high AOD
concentrations (p <0.05) and cold spots representing low
AOD concentrations (p <0.05)) [40], which is popular in
spatial analysis [41, 42]. Moreover, we evaluated the AOD
autocorrelation pattern by the Moran I index. The Getis-Ord
Gi* demands optimal threshold distances for clustering.
Therefore, we used the incremental spatial autocorrelation
module to determine the optimal distance threshold, which
is required, by increasing the threshold distance from 200 to
4,000 m at the interval of 200 m until it reached its maximum
value (2,200 m) [43]. The distance was calculated using the
Euclidean distance.

2.5.2. Geodetector Model. The Geodetector is a statistical
tool for detecting spatially stratified heterogeneity and re-
vealing the contribution of factors to the heterogeneity [44].
In this study, we used the factor detector (FD) module of this
model to assess the explanation powers of the park features
(e.g., tree species and NDVI), the topography (e.g., altitude,
slope degree, and slope aspect), the soil (e.g., soil type and
thickness), the human activity (e.g., road length and pop-
ulation density), and the meteorology (e.g., temperature and
evaporation) on the AOD. The contribution power can be
expressed using the following equation:
Y Nuwob o SSW

1- , 2
N, SST )

[

q=1

where q€(0,1) is the impact power of the independent
variable on the dependent variable 1, 2, 3, .. ., L, L is a strata
of dependent or independent variables; stratum h is com-
posed of N, unit; o7 is the variance of AOD in the same
stratum; N is the number of FMPI patches; ¢? is the variance
of the AOD in the entire region; N is the number of FMPI
patches in the same stratum; SSW is the within sum of
squares; and SST is the total sum of squares. The larger the g
value is, the greater the similarity between independent
factors and AOD.

2.5.3. Statistical Analysis. The independent sample T test
was used to analyze the difference of biomass growth rate of
different forest types in cold and hot spots from 2010 to 2017.
The system clustering was used to classify the differences of
independent variables.

To ensure that the analysis of biomass growth rate is not
affected by seedling plantation or forest fire, we selected
forest patches with biomass growth from 2010 to 2017.
Moreover, we also screened the forest patches with the same
forest type in both years in order to reduce statistical errors.

2.6. Biomass Estimation. The biomass is an important in-
dicator to evaluate the quality of forest park because it is a
fundamental factor in evaluating plant growth. The Volume-
Biomass Compatibility Model (VBCM) was used to estimate
individual tree biomass by tree height, the DBH, and the



coefficients [45-48]. The forest biomass density was inferred
from the number of trees and the area of forest patches
recorded by the FMPI. Although there were errors in es-
timating regional biomass by inference, it would not sig-
nificantly influence the analysis result because the growth
rate was the ratio of the regional biomass estimates in the
two years. The formula is shown in the following equation:

; t
W = aD*H x %, (3)

where W is the biomass density (t/ha); a, k, and j are the
coeflicients; D is the DBH (cm); H is the tree height (m);
numtree is the number of patch plants; and A is the area (ha).
Dominant tree species and forest composition were recor-
ded in the FMPI using the coeflicients of the dominant tree
species (Cunninghamia lanceolate, Phyllostachys heterocycle,
Schima superba, and Camellia oleifera) [47, 49, 50] in Table 2
to calculate the biomass.

3. Results

3.1. AOD Distribution and Various Forest Types Spatial
Statistical Result in Siming Mountain National Forest Park.
As shown in Figure 3, there were 717 and 718 verification
points in the 2010 and 2017 images of Landsat AOD paired
with MODO04_3K, respectively, and R2 was 0.752 and 0.724.
These outcomes proved that the inversion results of Landsat
AQOD are reliable.

From 2010 to 2017, the annual average AOD decreased
from 0.567 to 0.292 with a change in tree species distri-
bution. Specifically, from the proportion of tree species
distribution aspect, the area proportional to broad-leaved
forest increased greatly (from 24.49% to 42.58%). The area
proportion of nonforest land, coniferous forest, mixed co-
niferous, and broad-leaved forest decreased significantly
(from 21.38%, 15.57%, and 9.06% to 16.2%, 6.29%, and
4.14%, respectively), while bamboo (from 23.01% to 23.90%)
and shrub (from 6.49 to 6.89%) showed a slight increase. The
aggregation degree of AOD distribution decreased in terms
of Moran’s I, which was 0.348 and 0.177 in the two years,
respectively (Table 3).

The average AOD of the cold and hot spots area in 2010
was significantly different from that in 2017 (Figure 4).The
cold spot area increased significantly from 18,119.64 ha to
41,924.62 ha with a decrease in the average AOD from 0.39
to 0.16. While the hot spot area decreased from 57,964.31 ha
to 26,706.11 ha with a decrease in the average AOD from
0.69 to 0.52. From the five regions marked in Figure 4, we
found the five regions with great changes, including the 1%
(north), 3rd (west), and 5" (east) regions where the cold
spots areas increased significantly. In 2017, the 2nd and the
4th regions where the hot spots areas increased as well, but
with a lower AOD than in 2010.

The 10,178 forest patches of cold spots and the 10,581
forest patches of hot spots were selected based on the
screening principle in the overlapped regions of cold and hot
spots in 2010 and 2017. The area proportion of the various
forest types in cold and hot spots area varied dramatically
(Table 4). The broad-leaved forests and bamboo accounted
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TaBLE 2: Coefficients of different dominant tree species in the
VBCM.

Tree species (dominant species) a k j

Coniferous Cunninghamia 0.0811 1.6942 0.8472
lanceolata

Bamboo Phyllostachys heterocycla 66.9197 2.5500 0.0437

Broad- Schima superba 0.2993 1.8530 0.2774

leaved

Shrub Camellia oleifera 0.1510 2.0170 0.0000

for the largest areas in the cold spots. Specifically, the
percentages of broad-leaved forests and bamboo were
18.28% and 15.15% larger than in the hot spots. In the hot
spots, the nonforest land was larger than in the cold spots.
Moreover, the proportion of the coniferous forest, shrub,
mixed forest, and nonforest land was 5.19%, 7.30%, 8.60%,
and 13.15% higher than in cold spots, respectively.

3.2. 2010 and 2017 Factor Detector Results of Geodetector
Model. The forest type played the most important role in
both cold and hot spots during the two years. In the year of
2010, temperature (0.0301 and 0.0159) and NDVT (0.0257
and 0.0354) ranked second and third in both cold and hot
spots. In the year of 2017, the second and third important
factors were the Landscan population density (0.0189) and
the OSM road length (0.0195) in hot spots and the NDVI
(0.0204) and Landscan population density (0.0201) in cold
spots. In the two-year average, the followers were the OSM
road length (0.0234) and NDVI (0.0158) in the hot spots and
the NDVI (0.0273) and slope (0.0064) in the cold spots. The
forest type and other factors were classified into two clusters
through the hierarchical cluster analysis (Table 5).

3.3. Biomass Variations and Growth Rates of Various Forest
Types in 2010 and 2017. Analysis of samples from the broad-
leaved forest, shrub, coniferous and broad-leaved mixed
forest, coniferous forest, and bamboo were in the number of
385, 214, 31, 196, and 63 patches in the hot spots and 596, 88,
22, 191, and 239 patches in the cold spots, respectively.

In 2010, there was no significant difference between the
biomass densities of different forest types in the hot and cold
spots. The average biomass densities of the broad-leaved
forest, mixed forest, coniferous forest, bamboo, and shrub in
the hot spots were 142.82t/ha, 126.57 t/ha, 102.11t/ha,
51.82 t/ha, and 38.25t/ha, and in the cold spots, 143.18 t/ha,
128.14t/ha, 100.68t/ha, 51.53t/ha, and 36.26t/ha,
respectively.

However, in 2017, the biomass density differences were
significant between the hot and cold spots (p < 0.01) for all of
the forest types except for the mixed forest. The biomass
densities of these five forest types were 187.09 t/ha, 158.21t/
ha, 152.14 t/ha, 80.8 3t/ha, and 49.34t/ha for the broad-
leaved forest, mixed forest, coniferous forest, bamboo, and
shrub in the hot spots; 181.84 t/ha, 161.45 t/ha, 141.96 t/ha,
75.23t/ha, and 43.87 t/ha of them were in the cold spots,
respectively.
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FIGURE 3: Verification results of Landsat AOD and MOD04_3K data. (a) 2010. (b) 2017. The color bars represent the counts of points. The
red solid line represents the regression line.

TaBLE 3: Results of Moran’s 1.

Year 2010 2017
Moran’s I 0.348** 0.177**
Z-score 98.157 52.983
Pattern Aggregated Aggregated

Note. **The significant value (p <0.01).
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TABLE 4: Area proportion of different forest types in the overlapped cold and hot spots in 2010 and 2017.

% Coniferous forest ~ Broad-leaved forest ~ Shrub  Nonforest =~ Bamboo  Con and bro mixed forest Total

Cold spots 3.80 50.50 3.00 1.80 39.80 1.10 100.00

Hot spots 9.09 32.22 10.30 14.95 24.75 9.70 100.00

Con and bro mixed forest = coniferous and broad-leaved mixed forest.

TaBLE 5: The results of different factors through FD and cluster analysis in 2010, 2017 and the two periods’ average.

2010 2017 Two periods’ average . )
Factors Hierarchical cluster
Hot spots Cold spots Hot spots Cold spots Hot spots Cold spots
TSY 0.1248** 0.1196** 0.1389** 0.1450** 0.1569** 0.1735** 1
NDVI 0.0257** 0.0354** 0.0146** 0.0204** 0.0158** 0.0273** 2
LST 0.0301** 0.0159** 0.0101** 0.0095** 0.0094** 0.0057** 2
TPWV 0.0009** 0.0008** 0.0011** 0.0012** 0.0005** 0.0027** 2
ST 0.0099** 0.0121** 0.0115** 0.0141** 0.0093** 0.0051** 2
SLT 0.0085** 0.0099** 0.0054** 0.0021** 0.0056** 0.0027** 2
AT 0.0114** 0.0089** 0.0021** 0.0012** 0.0078** 0.007** 2
SL 0.0088** 0.0066** 0.0025** 0.0045** 0.0098** 0.0058** 2
SD 0.0027** 0.0056** 0.0077** 0.0096** 0.0025** 0.0064** 2
LSP 0.0012** 0.0098** 0.0189** 0.0201** 0.0029** 0.0003** 2
OSM 0.0012** 0.0083** 0.0195** 0.0055** 0.0234** 0.0017** 2

Note. p values for all areas are <0.01 in 2010, 2017, and the two-year average. **High significance (p < 0.001). TSY = tree species type; ST =soil type; SLT = soil
layer thickness; AT = altitude; SL = slope; SD =slope direction; LSP = Landscan population; OSM = OSM road length.

Comparing the growth rate of biomass density in dif-
ferent forest types from 2010 to 2017 (Figure 5), the order of
average biomass growth rate was bamboo > coniferous
forest > broad-leaved forest > shrub > mixed forest in hot
spots. In cold spots, the order of average biomass growth rate
was bamboo > coniferous forest > mixed forest>broad-
leaved forest > shrub. The average ages of the broad-leaved
forest, the mixed forest, the coniferous forest, the bamboo,
and the shrub increased from 15.42+2.16 to 15.84 +2.31
(mean +SD), 14.88+2.55 to 15.27+2.78, 9.01+1.25 to
9.25+1.12, 3.18+0.97 to 3.51+0.98, and 2.11+0.88 to
2.44 +0.85, respectively. Except for the mixed forest, the
growth rate of biomass densities of the four other forest
types were significantly higher in hot spots than in cold spots
(p <0.01). The growth rate of biomass density of the mixed
forest in cold spots was higher than that in hot spots, but not
significant.

4, Discussion

The exploration of the impact factors of aerosol spatial
distribution and the influences of AOD on the canopies of
different forest types in the exurbs of cities encourage
forest managers to improve the ecosystem service level.
This study used multisource data, which included high-
resolution remote sensing images and detailed ground
investigation data to discover if the type of tree species is
the one of the main factors affecting the AOD concen-
tration difference in Siming Mountain Forest Park. We
observed the impacts of AOD concentration on the
growth of different tree species in the forest park, which
supplemented the evidence of the relationship between
AOD spatial distribution and the forest on a regional
scale.
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FIGURE 5: Biomass and biomass growth rates of different forest
types in 2010 and 2017 (age and SD in 2010). The different letters
indicate significant differences in the biomass increase rate between
forest types at p <0.05.

4.1. Relationship between Different Forest Types and AOD
Distribution in the National Park. Siming Mountain Forest
Park is located near the east coast of China, with a high forest
coverage rate far from the urban center. The variation of
AOD values may be caused by the combined action of
moisture and particulate matter. In order to minimize the
influence of water vapor, we selected eight remote sensing
images taken during good and stable weather conditions
between 10:00 and 11:00 am to avoid the condensation of
water vapor caused by low temperature in the morning,
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although the average value of AOD in the study area is low.
The AOD is the integral of the extinction coefficient of the
medium in the vertical direction, which reflects the com-
prehensive effect of atmospheric scattering and surface re-
flection. We cannot distinguish the aerosol types. Based on
the analysis of aerosol sources in four forest areas in Sichuan
Province, China, it was found that the aerosols were mainly
from local primary emission sources such as crust dust and
biomass combustion, followed by the long distance trans-
mission of aged organic aerosols (aged OOA) [51]. In ad-
dition to soil dust, meteorology, and human activities, plant
species was also an important factor for the AOD variation
in forest areas. The reactivity of plant VOCs with oxidants
(such as OH, NO; free radical, and O;) was higher than that
of artificial VOCs, resulting in the generation of secondary
organic aerosols (SOA). Zhu et al. (2017) found that the
main source of SOA at the top of the exurban Tai Mountain
in China was from an artificial source (11.6-42.6%), such as
the use of solvents, fuel combustion, and vehicle exhaust as
well as the biological source (6.5%) such as secondary ox-
idation and biomass burning [52]. However, the source of a
large proportion of SOA was not identified. Although plants
contribute to the generation of aerosols, the underlying
surface of forest cover affects the physical processes in the
atmospheric boundary layer. The high vegetation coverage
increases the friction between the air and the ground, re-
duces wind speed, and diminishes transmission of pollutants
from the ground and over long distances.

The results of the Geodetector and cluster analysis in the
cold and hot spots of this study in two years showed that the
forest type was the main factor affecting AOD distribution in
the exurban forest park, followed by NDVI and temperature.
In the cold spots, more than half of the area was broad-
leaved forest, while the percentage of broad-leaved forest
decreased and the proportion of nonforest land area aug-
mented in the hot spots. The result is similar to that of Deng
et al. [53]. The maximized dust retention ability of the
coniferous leaf for a single tree is higher than the broad-
leaved tree species. However, there are many factors that
influence the total dust retention quantity of the forest. As to
the specific forest type, in addition to the blade character-
istics, the factors influencing tree growth, such as temper-
ature, humidity, soil nutrient, precipitation, and
illumination, may affect the stand of leaf area index, thus
further modifying the function of particulate matter re-
tention. Moreover, the microstructure of the leaf surface is
conducive to the deposition of particulate matter [54]. The
forest increases the intensity of end flow in the surface at-
mosphere, thereby accelerating the deposition rate of par-
ticulate matter [55, 56]. Meanwhile, vegetation effectively
absorbs pollutants such as SO,, NO,, and Oj in the air in
favor of reducing the formation of secondary aerosols
[51, 57]. In addition, the large amount of the particle matter
in the air can be trapped on the leaf surface as compared to
the small amount trapped in the leaf epidermal wax layer
[58, 59]. The delayed particulate matter on the leaf surface is
eluted to the ground with the precipitation leading to the
recovery of its retention ability [60].

From the perspective of the impact of aerosols on plants,
the concentration threshold reversed the impact of aerosols
on photosynthesis above which the net radiation
(direct + scattering) effect of atmospheric aerosols would
reduce the photosynthetic absorption of plants [61]. Xu
quantified the AOD threshold of the impact of aerosol net
radiation effect on ecosystem NPP in different regions of
China and found that when the AOD was less than 1.5 at
550nm in the southeast region, the aerosol net radiation
effect increased NPP [16]. In this study, the average AOD
value in hot spots was much lower than the threshold, and
the results were in line with expectations. For example, the
growth rate of tree species in hot spots was generally faster
than that in cold spots. The average growth rates of the
coniferous forest, broad-leaved forest, shrubs, and bamboos
in cold spots were significantly different than in hot spots.
The reason may be the diffusion radiation fertilization effect
mentioned in the introduction, which increases the NPP and
promotes growth in hot spots. However, there was not a
significant difference in the growth rate of the coniferous
broad-leaved mixed forest. The reason may be the large age
variation between different tree species (large SD), which
induced the different effects of diffusion radiation fertil-
ization on tree species of different ages. The results of this
study were consistent with other studies and verified the
diffusion radiation fertilization effect at the regional forest
park scale.

4.2. Limits and Prospects. There are two limitations in this
study. First, the change of AOD is continuous with time.
Landsat remote sensing satellite image data (a scene every
16days) only obtains instantaneous information of the
environment. Although the average value of four specific
periods throughout the year was used as the research object
in this study, the representativeness of inversion results still
needs to be considered. At present, ground-based remote
sensing and monitoring technologies represent the distri-
bution of sample points and have the ability to obtain series
time resolution data. Statistical analyses or machine learning
algorithms could be used to obtain the relationships between
the sample plot and the surface data. The scale expansion
analysis based on multisource data fusion technology could
be a solution to explore the mechanism of the aerosol
characteristics in forest regions affected by the microclimate.
Second, the research area was in the developed area of
southeastern China. During the period of economic de-
velopment from 2010 to 2013, many local residents engaged
in the planting of flower and tree seedlings for economic
benefits, resulting in a large amount of deforestation. From
2013 to 2017, the local government invested 150 million
Yuan to restore 226,637 ha of forest area in order to restore
the forest ecological service level. Large areas of land were
affected by human disturbance in a short time, which may
affect the formation of aerosols in the air. Although rigorous
screening criteria were set up to ensure the accuracy of forest
type classification, the flow feature of aerosols cannot ex-
clude the influence of other disturbances.
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In addition, this study has additional advantages. High-
resolution AOD inversion data and detailed comprehensive
ground forest resource survey data not only accurately
depicted the spatial heterogeneity of the research objects but
also explored the impact of different forest attributes on
spatial heterogeneity. On the basis of integrating multi-
source data, the effect of diffusion radiation fertilization on
regional forest park scale was verified, and the relationship
between forest type and AOD concentration was discussed.

5. Conclusion

This study overcame the low resolution of AOD remote
sensing products and the unavailability problem of the forest
vegetation vertical structure information from the optical
remote sensing data by the use of high-resolution Landsat
and ground survey data of forest resources. We analyzed the
AQOD spatial-temporal distribution pattern and its main
influencing factors and explored the relationship of different
types of forest canopies at the regional scale. It was found
that the AOD distribution in the study area was clustered,
and the forest type was one of the main impact factors. From
2010 to 2017, the average growth rate of broad-leaved forest,
coniferous forest, bamboo, and shrub in hot spots was
significantly higher than that in cold spots, while there was
not a significant difference in mixed forests. The average
growth rate of biomass in the cold and hot spots was higher
in bamboo, coniferous forest, and mixed forest than in shrub
and broad-leaved forest. In summary, at the regional forest
park scale, the vegetation type had the closest interaction
with AOD. The research results provide the guidance for the
rational allocation of tree species to improve biomass and
ecosystem service value of the exurban forest park.

Data Availability

The meteorological observation data were supplied by the
National Meteorological Information Center (http://data.
cma.cn/) under license and so cannot be made freely
available. The ground forest management planning in-
ventory (FMPI) data which are obtained from the Forestry
Bureau of Zhejiang Province and so cannot be made freely
available. The MODIS and LandSat data are provided in the
site of USGS (https://www.usgs.gov/). Landscan population
(LSP) data are provided in the site of ORNL (https://
landscan.ornl.gov/), and OpenSstreetMap (OSM) data are
provided in the site of OSMF (https://www.openstreetmap.
org).
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