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Based onmeteorological observations and products of a GRAPES and an ECMWFmodel fromMarch to April 2014, some indexes
and parameters with good relevancy were selected as predictors.*rough analyzing the spatial distributions and the binary logistic
regressions of the indexes, estimated values of the predictors and severe convective weather diagnostic prediction equations were
established to get a severe weather predictor P for forecasting severe convective weather for the next 12 hours in Guangdong
province. *e equations were tested and analyzed, respectively, with the two models as well as the radiosonde data. *e results
indicated that the severe weather forecasts’ CSI by the predictor P was obviously higher than by any single index. *e TT error
between themodels and the soundings was small, while theK index of themodels wasmore discrete than the soundings.*e index
MDPIs were 1 greater than the soundings, but their trends of change were consistent with the soundings.

1. Introduction

Severe convective weather is the main severe weather in the
Guangdong Province, China, during its first flood season.
*e severe convective weather affecting Guangdong Prov-
ince mainly includes severe thunderstorm wind gusts (gusts
≥17.2m/s), hail, tornadoes, and short-time heavy rains
(hourly rainfall ≥20mm). In recent years, there have been
many researches on severe convective weather forecasting
methods in the world. *e comprehensive use of a physical
quantity index for potential forecasting is one of the im-
portant methods. Li and Jianwen [1] pointed out that the
downdraft convective available potential energy and wind
index present the downward convection and micro-down-
burst, respectively. Downward convection is closely related
with the altitude of the dry intrusive, the dryness of the air,
the instability, and the humidity of the low-level atmosphere.
A proper vertical wind shear is favorable to severe storms.
*e storm relative helicity is a predictive factor for severe
storms. *e bulk Richardson number reflects the balance
between convective energy and dynamic effect.*e energetic
helicity index reflects the combination of the buoyancy
energy and the dynamic effect.

*e binary logistic regression model [2], based on the
logistic function, is generally used to study the nature of
dependence of a dichotomous response variable (Y) on a
number of explanatory variables (X1, X2, and Xk), which are
either discrete or continuous in nature. Although used
extensively in epidemiology, the use of logistic regression in
the context of meteorology is of a recent origin. Sanchez et al.
[3] have applied this model to the short-term forecast of hail
risk in the province of Leon in the northwestern Iberian
Peninsula of Spain.

A total of 31 indexes [4] describing conditions of hu-
midity, stability, helicity, or precipitable water were used as
input to a binary logistic regressionmodel. Of the 31 indexes,
5 were selected: Showalter index (SI), wind speed at 500 hPa
(SPD500), dew point temperature at 850 hPa (Td850), rel-
ative helicity between 0 and 3 km (SREH3km), and wet bulb
zero height (WBZ). It is suggested that these results provide
a new tool that complements those previously developed for
this study area, toward improving severe storms prediction
and pinpointing these storms in space and in time. Trenton
and Labosier [5] examined drought persistence in the
Southeastern United States by identifying spatial patterns of
seasonal drought frequency and persistence, using logistic
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regression to calculate the odds and probability of drought
persisting from one season to the next, and examined the
effects of El Nino–Southern Oscillation (ENSO) drought
persistence in the southeast. Lee [6] associated geopotential
height and temperature fields to historic F2 and stronger
United States’ tornadoes days using binary logistic re-
gression. Using output data from two Global Climate
Models (GCMs), spanning five different model emissions
scenarios, this synoptic climatology of tornadoes is then
utilized in order to project the changes in the frequency and
seasonality of tornadic environments due to a changing
climate. Dasgupta and De [7] considered binary logistic
regression models for prediction of convective de-
velopments from a prior knowledge of the values of the
certain dynamic and thermodynamic parameters. Holden
and Wright [8] pointed out that tornado distribution was
shown to be significantly affected by topography and the
density of potential observers. *e binary logistic regression
was used to predict actual tornado occurrences across En-
gland, Wales, and Scotland during the 5-year study period.
Pablo et al. [9] introduced 31 stability indexes in a binary
logistic regression model, which selected the most accurate
ones for detecting hail days in the region, namely, the
Showalter index, dew point temperature at 850 hPa, and TQ
index. *e new forecast tool shows satisfactory results and
complements other studies in the same region, and it can be
a useful tool for operational forecasters in predicting hail
days and determining the spatial distribution of hailfalls.

In recent years, Pang et al. [10–13] used indexes cal-
culated with the radiosonde data as a potential forecasting
factor and made related studies on the severe convective
weather potential forecasting in the Guangdong Province.
Most of the researches were based on the real-time data,
which are of poor temporal and spatial resolutions. To
improve these resolutions, products of GRAPES, a new
numerical weather prediction model (NWP) developed in
China with a resolution of 12 km, are adopted in this study.
At the same time, ECMWF (EC) products with a resolution
of 25 km were used to compare and analyze the prediction
effects.

2. Source of Data and Procedures of Calculating

In this study, meteorological observation products of the
GRAPES and EC models from March to April, 2014, were
used. *e severe convective weather includes severe thun-
derstorm wind gusts and short-term heavy rains. *e in-
dexes were calculated by the model data such as K index TT
index, MDPI index, and IQ index. Except for the original
data of the models, no other products were used.

*e calculation process consisted of the following four
steps:

(1) Find out the severe convective weather events in
Guangdong Province over the years.

(2) *e criterion for judging whether a severe convective
weather event occurred at a model grid is as follows:
if there are three or more severe weather reports in a
square from the center of a model grid to the

adjacent grid; the grid recorded that there is severe
convective weather, otherwise none.

(3) According to the spatial and temporal distribution
characteristics of these model grid data, find out the
indexes which have good correlation with the severe
convective weather events.

(4) *e binary logistic regression model will be estab-
lished based on the indexes which determines
whether severe convective weather events occurred
and not. According to the binary logistic regression
model, the prediction factor (P) of severe convective
weather events will be calculated.

3. Correlations between Indexes and Severe
Convective Weather Events

Based on 184904 grid samples of GRAPES from March to
April, 2014, and the correlation coefficients of 16 indexes
(Table 1) and severe convective weather were analyzed
statistically. It was shown that the correlation coefficients of
K index, TT index, MDPI index, and IQ index with severe
convective weather were among the highest and passed the
significant test at 0.01 level, respectively, reaching 0.09, 0.12,
0.13, and 0.1. *e positive correlation of Q850-hPa, θse(850-hPa),
T850-hPa-500-hPa, WS850-hPa, VV850-hPa, ω925-hPa, DIV925-hPa,
Q925-hPa, θse(925-hPa), VV925-hPa, and other indexes with se-
vere convective weather were weak but passed the significant
test at 0.01 level. *e negative correlation of VFD850-hPa and
VFD925-hPa was weak and passed the significant test at 0.01
level (Table 2). Considering comprehensively, the indexes
which had higher correlations with severe convective
weather events, the K index, TT index, MDPI index, and IQ
index were selected.

4. Establishment of Binary Logistic
Regression Model

4.1. Probability Formula of Logistic Regression. Regression is
a statistical analysis method [11] that studies whether there is
a linear or nonlinear relationship between one or more
independent variables and a dependent variable. It is suitable
to analyze the relationship between the occurrence of severe
convective weather (dependent variable) and each index
(independent variable) by binary logistic regression.

*e result of a test sample under the action of a set of
independent variables is represented by the indicator vari-
able Y. *e assignment rules are as follows:

Y �
1, the result of severe convective weather occurred,

0, the result of no severe convective weather occurred,
􏼨

(1)

where P is the probability of severe convective weather
occurred, while Q is the probability of no severe convective
weather occurred. *e computational method of P, which
used the logistic regression formula, is

P �
eβ0+β1x1+β2x2+···++βmxm

1 + eβ0+β1x1+β2x2+···++βmxm

. (2)
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where β0 is the constant term unrelated to the factors xi and
β1, β2, . . ., βm are regression coefficients which are the
contributions of factor xi to P.

With formula P + Q � 1, we could get the formula to
calculate the probability of no severe convective weather
occurred:

Q �
1

1 + eβ0+β1x1+β2x2+···++βmxm

. (3)

It can be seen from the above two equations that the
probability caused by a test sample has a curvilinear re-
lationship to the related factors.

*e ratio of the two probabilities is

P

Q
� e

β0+β1x1+β2x2+···++βmxm. (4)

We call P/Q the ratio and β1, β2, . . . , βm the logistic
regression coefficients.

4.2.DerivationofLogisticRegressionCoefficients. Suppose we
have m factors such as x1, x2, . . . , xm, the value of Y is 1 or 0,
and n samples were taken:

Factors Values

x1, x2, . . . , xm Y

x11, x12, . . . , x1m Y1

x21, x22, . . . , x2m Y2

⋮ ⋮

xn1, xn2, . . . , xnm Yn

. (5)

Next, we derived the regression coefficients by the
maximum likelihood estimation [3]:

L � 􏽙
n

i�1
P

yi

i Q
1− yi

i . (6)

In the above formula, Pi � eβ0+β1xi1+β2xi2+···++βmxim /(1+

eβ0+β1xi1+β2xi2+···++βmxim ), Qi � 1/(1 + eβ0+β1xi1+β2xi2+···+ +βmxim),
i � 1, 2, . . . , n.

Take the natural logarithm of formula (6),

ln L � 􏽘

n

t�1
yi lnPi + 1 − yi( 􏼁lnQi􏼂 􏼃. (7)

Solving the equations (8), the maximum likelihood es-
timators of β0, β1, β2, . . . , βm can be obtained:

z lnL

zβ0
� 0,

⋮

z lnL

zβm

� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

5. Establishment of Severe Convective Weather
Forecasting Equation Based on Two
NWP Models

By using SPSS software, GRAPES indexes of 184904 grids
and severe convective weather reports from March to April,
2014, were analyzed on binary logistic regression. *e
outputs are given in Table 3.

In Table 3, B is the independent variable coefficient, S.E.
is the standard error, which is the average error of the es-
timated value, Wals is a statistic, which is used to test
whether the independent variable has an influence on the
dependent variable, and Sig is the significance. *e larger
Wals is, the smaller Sig it corresponds to is and the more
significant its influence is. Df is the degree of freedom. Exp
(B) is the odds ratio, also known as relative risk. It means that
the multiple of severe convective weather probability in-
creases for each additional unit of the independent variable
when exp (B) is greater than 1. Substituting the independent
coefficient into the equation, the severe convective weather
forecasting equation of the GRAPES model is obtained:

PGRAPES �
ea1

1 + ea1,

a1 � − 16.251 + 0.116∗K + 0.002∗ IQ

+ 0.603∗MDPI − 0.23∗TT,

(9)

where PGRAPES is the forecast factor of the GRAPES model,
whose value is between 0 and 1.

Similarly, the binary logistic regression results for EC
indexes of 35670 grids are given in Table 4.

Substituting the independent coefficient into the equa-
tion, the severe convective weather forecasting equation of
the EC model is obtained:

Table 1: Calculated indexes.

Index Abbreviation of
index

850 hPa vapor flux divergence VFD850-hPa
K Index K
850 hPa specific humidity Q850-hPa
Total totals TT
*e microburst-day potential index MDPI
850 hPa potential pseudoequivalent
temperature θse(850-hPa)
Temperature difference between 850 hPa and
500 hPa T850-hPa-500-hPa

850 hPa wind shear WS850-hPa
850 hPa vertical velocity VV850-hPa
925 hPa vorticity ω925-hPa
925 hPa divergence DIV925-hPa
925 hPa vapor flux divergence VFD925-hPa
925 hPa specific humidity Q925-hPa
925 hPa Potential pseudoequivalent
temperature θse(925-hPa)
925 hPa vertical velocity VV925-hPa
Integral Q IQ

Advances in Meteorology 3



PEC �
ea2

1 + ea2,

a2 � − 9.834 − 0.098∗K + 0.511∗ IQ

+ 0.067∗MDPI + 0.2∗TT,

(10)

where PEC is the forecast factor of EC model, whose value is
between 0 and 1.

6. Goodness-of-Fit Testing of
Forecasting Equation

*e regression testing is required after constructing the
logistic regression model. *ere are two methods for re-
gression testing, which are regression coefficient testing and
goodness-of-fit testing. We tested the goodness-of-fit of the
regression equation. *ere are three kinds of tests for the
goodness-of-fit, − 2 logarithm likelihood values (the logistic
regression model uses the maximum likelihood for pa-
rameter estimation, and the likelihood value is the proba-
bility of obtaining the observation under certain parameter
estimation conditions; the larger the maximum likelihood
value, the better the model fits), the Cox & Snell R Square,
and the Nagelkerke R Square (the better the effect, the closer
the value is to 1). In Table 5, it could be seen that the Cox &
Snell R Square and the Nagelkerke R Square of the two
models were not ideally fitted, and the results were 0.026,
0.151, 0.016, and 0.088. However, both the − 2 logarithm
likelihood values are large and obviously significant.

Table 6 is the verification of the GRAPE-based model.
When the observation is equal to 0, which means no
severe convection weather occurred, the forecasting

succeeded 162,033 times and failed 19,263 times,
reaching up to 89.4% accuracy. When the observation is
equal to 1, which means severe convection weather oc-
curred, the forecasting succeeded 1,485 times and failed
2,123 times, reaching up to 41.2% accuracy. *e total
verification accuracy rate is 88.4%, indicating that the
GRAPES-based model was stable.

Table 7 is the verification of the EC-based model. When
the observation is equal to 0, which means no severe con-
vection weather occurred, the forecasting succeeded 31,167
times and failed 3,758 times, reaching up to 89.2% accuracy.
When the observation is equal to 1, which means severe
convection weather occurred, the forecasting succeeded 269
times and failed 475 times, reaching up to 36.2% accuracy.
*e total verification accuracy rate is 88.1%, indicating that
the EC-based model was also stable.

*e total verification accuracy rate from Tables 6 and 7 is
the number of successful forecasting times divided by the
total number of forecasting times.

7. Severe Convective Weather Forecast
Evaluation of Forecast Equation

*ere are three indicators for severe convective weather
forecast evaluation, POD stands for probability of de-
tection, FAR stands for false alarm ratio, and CSI stands
for critical success index. *e three indicators are calcu-
lated as follows:

Table 2: Correlation coefficients between indexes and severe convective weather from March to April, 2014.

Index VFD850-hPa K Q850-hPa TT MDPI θse(850-hPa) T850-hPa-500-hPa WS850-hPa
Correlation coefficient − 0.02 0.09 0.06 0.12 0.13 0.05 0.08 0.04
Index VV850-hPa ω925-hPa DIV925-hPa VFD925-hPa Q925-hPa θse(925-hPa) VV925-hPa IQ
Correlation coefficient 0.02 0.02 − 0.04 − 0.05 0.07 0.05 0.05 0.1

Table 3: Indexes in the equation-based GRAPES model.

Index B SE Wals Df Sig. Exp (B)
K 0.116 0.12 100.168 1 0.000 1.123
IQ 0.002 0.000 751.513 1 0.000 1.002
MDPI 0.603 0.048 155.081 1 0.000 1.828
TT − 0.23 0.011 4.803 1 0.000 0.977
Constant − 16.251 0.41 1570.145 1 0.000 0.000

Table 4: Indexes in the equation-based EC model.

Index B S.E. Wals Df Sig. Exp (B)
K − 0.098 0.006 243.151 1 0.000 0.906
IQ 0.511 24.752 0.000 1 0.984 1.667
MDPI 0.067 0.169 0.155 1 0.694 1.069
TT 0.20 0.013 244.178 1 0.000 1.222
Constant − 9.834 0.356 761.342 1 0.000 0.000

Table 5: Goodness-of-fit testing of forecasting equation.

NWP
model

− 2 logarithm
likelihood values

Cox & Snell R
Square

Nagelkerke R
Square

GRAPES 30591.374a 0.026 0.151
EC 6648.102a 0.016 0.088

Table 6: *e classification table of GRAPES-based model.

Observation
Forecasting

Forecasting accuracy
0 1

0 162033 19263 89.4
1 2123 1485 41.2

Verification accuracy 88.4

Table 7: *e classification table of EC-based model.

Observation
Forecasting

Forecasting accuracy
0 1

0 31167 3758 89.2
1 475 269 36.2

Verification accuracy 88.1
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Table 8: *e evaluation of the two equations.

Model *reshold of P X Y Z POD (%) FAR (%) CSI (%)

GRAPES

0.03 2260 1348 34966 62.64 93.93 5.86
0.04 1883 1725 25660 52.19 93.16 6.43
0.05 1485 2123 19263 41.16 92.84 6.49
0.06 1115 2493 14725 30.90 92.96 6.08
0.07 881 2727 11150 24.42 92.68 5.97
0.08 669 2939 8330 18.54 92.57 5.60
0.09 511 3097 5913 14.16 92.05 5.37
0.1 391 3217 4040 10.84 91.18 5.11

EC

0.02 539 205 12740 72.45 95.94 4.00
0.03 426 318 6635 57.26 93.97 5.77
0.04 269 475 3758 36.16 93.32 5.98
0.05 185 559 2389 24.87 92.81 5.90
0.06 269 475 3758 36.16 93.32 5.98
0.07 131 613 1581 17.61 92.35 5.63
0.08 51 693 779 6.85 93.86 3.35
0.09 29 715 545 3.90 94.95 2.25
0.1 14 730 370 1.88 96.35 1.26
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Figure 1: TT indexes calculated based on the two NWP models and soundings of 4 stations.
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Figure 2: K indexes calculated based on the two NWP models and soundings of 4 stations.
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Figure 3: Continued.
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POD �
X

X + Y
,

FAR �
Z

X + Z
,

CSI �
X

X + Y + Z
.

(11)

where X is the number of successful forecasting zones, Y is
the number of missed forecasting zones, and Z is the number
of false alarm zones.

After the goodness-of-fit test of the model itself, the real-
time forecasts by the two forecast equations were evaluated
in the first flooding season of 2015 (Table 8).

As threshold of P in GRAPES went from 0.03 to 0.1,
POD had been falling from 62.64% to 10.84%, and CSI first
rose from 5.86% to 6.49% and then declined to 5.11%, while
FAR stayed above 91%. As threshold of P in EC rose from
0.02 to 0.1, POD has been falling from 72.45% to 1.88%, and
CSI first rose from 4.00% to 5.98% and then declined to
1.26%, while FAR stayed above 92%.

8. Contrast Analysis of Indexes on NWPs
and Soundings

Comparing the indexes calculated using the NWP models grid
data nearest to the radiosonde station and the indexes calculated
using soundings of the station, it was found that the errors of TT
index were small between the soundings’ and the two NWP
models’, including their initial’s and the forecasting’s in the next
12 hours (Figure 1).

*e errors of K index between the GRAPES′, including
the initial’s and the forecasting’s in the next 12 hours, and
the soundings’ were smaller than the EC’s. Meanwhile, the K
indexes of the two NWPs were relatively discrete compared
to the soundings’, and the errors of the 4 stations were all
greater than TT indexes’ (Figure 2).

*e NWP MDPI indexes of the 4 stations were greater
than the soundings’ by 1 to 1.5, their trends of change were
consistent with the soundings’ (Figure 3).

*rough the spatial distribution analysis, it was found
that severe convection weather occurred at 4% of the
grids where GRAPES K indexes were greater than 34,
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Figure 3: MDPI indexes calculated by two models data and radiosonde data of the 4 stations.
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Figure 4: Proportion of grid points where severe convection weather occurred on two models.
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Figure 5: 1-hour cumulative precipitation chart of Guangdong Province at 12:00 (UTC, the same as follows) on March 30, 2014.
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Figure 6: Continued.
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meanwhile at 1.75% for EC K index. In the same time,
severe convection weather occurred in the grid at 10.72%
and 3.31% where IQ index was greater than 4500, at 4.52%
and 7.63% where MDPI index was less than 1.5, and at
2.86% and 5.37% where TT index was greater than 40, on
GRAPES and EC, respectively (Figure 4).

In terms of overall forecasting evaluation, both models had
their advantages, and the rates of missed forecasting were low;
however, the rates of false alarm were high.

Figure 5 is the 1-hour accumulated precipitation Chart
of Guangdong Province at 12:00 on March 30, 2014.

9. Analysis of SevereConvectiveWeather Events

9.1. Analysis of Initial Field Data and Actual Precipitation.
Figure 5 shows the 1-hour cumulative precipitation of
Guangdong Province recorded at 12:00 (UTC) onMarch 30,
2014.

Figure 6 shows K index, IQ index, MDPI index, and TT
index calculated by initial field data of GRAPES, and Fig-
ure 7 shows the P index calculated by the 4 indexes.

*ere was a rather well corresponding relationship
between K index and the precipitation areas. Except for

MDPI index
0.056040246 to 0.213658989
0.213658989 to 0.357054721
0.357054721 to 0.469021252
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(c)

TT index
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47.13298933 to 48.05752474
48.05752475 to 48.86649323

48.86649324 to 49.79102864
49.79102865 to 50.83113098

(d)

Figure 6: K index (a), IQ index (b), MDPI index (c), and TT index (d) calculated by initial field data of GRAPES at 12:00 onMarch 30, 2014.
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Figure 7: P index calculated by initial field data of GRAPES at 12:00 on March 30, 2014.
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the southwest of Guangdong Province, the IQ index of
the whole province was of high values, indicating that the
water vapor in the air over Guangdong Province was
relatively high. Except for the poor correspondence be-
tween MDPI index and precipitation areas in the north of
Guangdong Province, the correspondence between the
two in other areas was good. TT index corresponded well
with precipitation areas. P index had a better fitting effect
for the nonsignificant precipitation in the southwest of
Guangdong Province but a worse fitting effect for the no
precipitation in the north. However, generally speaking,
P index could well fit the precipitation in the whole
region.

Figure 8 shows K index, IQ index, MDPI index, and TT
index calculated by initial field data of EC, and Figure 9 is the
P index calculated by the 4 indexes.

*e high value areas of K index were mainly located in the
eastern part of Guangdong Province and slightly east to the
precipitation areas; the high value areas of IQ index were
found in the western part of Guangdong Province and west to
the precipitation areas. MDPI index was a good indication for
the precipitation areas in the eastern part but failed to reflect
the precipitation in the central part.*e high value areas of TT
index were to the west of the precipitation areas. To sum up,
the high value areas of P index were to the south and west of
the precipitation areas, and false alarm of precipitation was
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Figure 8: K index (a), IQ index (b), MDPI index (c), and TT index (d) calculated by initial field data of EC at 12:00 on March 30, 2014.
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made for the northern part. In this event, the forecast effect of
GRAPES was better than that of EC.

9.2. Analysis of Forecasting Data and Actual Precipitation.
Figure 10 shows the 1-hour cumulative precipitation of
Guangdong Province recorded at 00:00 on March 31, 2014.

Figure 11 shows K index, IQ index, MDPI index, and TT
index calculated by forecasting data for the next 12 hours

(i.e., 00:00 on March 31, 2014) of GRAPES, and Figure 12
shows the P index calculated by the 4 indexes.

All 4 indexes indicated that there would be short-term
heavy precipitation in the central and eastern parts of
Guangdong Province. P index also predicted that there
would be short-term heavy precipitation in most parts of
Guangdong Province except for the southwest regions. As
shown by the actual weather, P index accurately reflected the
event that there was no short-term heavy precipitation in the

P index
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0.026434532 to 0.036953632
0.036953632 to 0.044085026

0.044085026 to 0.092555316
0.092555316 to 0.134999856

Figure 9: P index calculated by initial field data of EC at 12:00 on March 30, 2014.
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Figure 10: 1-hour cumulative precipitation chart of Guangdong province at 00:00 on March 31, 2014.
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southwest region, but false alarm of precipitation was made
for the central and eastern parts.

Figure 13 shows K index, IQ index, MDPI index, and TT
index calculated by forecasting data for the next 12 hours
(i.e., 00:00 on March 31, 2014) of EC, and Figure 14 shows
the P index calculated by the 4 indexes.

*e corresponding relation between the high value
areas of K index and the precipitation areas was poor,
located in the eastern and western parts, respectively. *e
high value areas of IQ index were to the south of the
precipitation areas. *e high value areas of MDPI index
were to the east and north of the precipitation areas. *e
distribution of the high value areas of TT index was similar

to that of IQ index. *e forecast effects of the 4 indexes
were all unsatisfactory, but the high value areas of P index
perfectly matched the precipitation areas in this event. In
this event, the forecast effect of EC was obviously better
than that of GRAPES. Although the precipitation areas
were also forecasted by GRAPES, its false alarm rate was
higher.

In general, according to one effect test of initial field and
one effect test of forecast field, GRAPES did not generate
missed alarm, while it may make false alarm. Compared with
the actual precipitation areas, the precipitation areas calculated
by EC model may have a deviation in location, resulting in
both false alarm andmissed alarm in the model test, which led
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(d)

Figure 11: K index (a), IQ index (b), MDPI index (c), and TT index (d) calculated by forecasting data for the next 12 Hours (i.e., 00:00 on
March 31, 2014) of GRAPES.
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P index
0.005735516 to 0.008113503
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Figure 12: P index calculated by forecasting data for the next 12 hours (i.e., 00:00 on March 31, 2014) of GRAPES.
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Figure 13: Continued.
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to test results of a certain event even worse than those of the
situation with only false alarm.

10. Summary and Discussion

(1) *e correlation coefficients between 16 indexes and
severe convection weather were analyzed. *e corre-
lation coefficients between K index, TT index, MDPI
index, IQ index, and severe convection weather were
better than the other indexes. *en, the 4 indexes were
selected for binary logistic regression analysis.

(2) Comparing the indexes calculated using the NWP
models grid data nearest to the radiosonde station
and the indexes calculated using soundings of the
station, it was found that the errors of TT index
were small between the soundings’ and the two
NWP models’, including their initial’s and the
forecasting’s in the next 12 hours. *e errors of K
index between the GRAPES’, including the ini-
tial’s and the forecasting’s in the next 12 hours,
and the soundings’ were smaller than the EC’s.
Meanwhile, the K indexes of the two NWPs were
relatively discrete compared to the soundings’,
and the errors of the 4 stations were all greater
than TT indexes’. *e NWPMDPI indexes of the 4
stations were greater than the soundings’ by 1 to
1.5, and their trends of change were consistent
with those of the soundings’.

(3) *rough the spatial distribution analysis, it was
found that, in terms of overall forecasting evaluation,
both models had their advantages, and the rates of
missed forecasting were low; however, the rates of
false alarm were high.

(4) According to one effect test of initial field and one
effect test of forecast field, GRAPES did not generate
missed alarm, while it may make false alarm.
Compared with the actual precipitation areas, the
precipitation areas calculated by the EC model may
have a deviation in location, resulting in both false
alarm and missed alarm in the model test, which led
to test results of a certain event even worse than those
of the situation with only false alarm.

(5) Binary logic regression is an algorithm of machine
learning, and it can improve the accuracy of the

P index
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0.043842602 to 0.060368355
0.060368355 to 0.083079949

0.083079949 to 0.150846063
0.150846063 to 0.227032527

Figure 14: P index calculated by forecasting data for the next 12
hours (i.e., 00:00 on March 31, 2014) of EC.
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Figure 13: K index (a), IQ index (b), MDPI index (c), and TT index (d) calculated by forecasting data for the next 12 hours (i.e., 00:00 on
March 31, 2014) of EC.
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model in the future by further applying machine
learning to NWP.

(6) With the development of NWP, the accuracy of the
model will be further improved. And, the accuracy of
severe convection weather forecasting will be further
improved by applying products of the models.
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