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,is study investigated the effects of climatic changes on temperature, rainfall, and runoff in the Doroudzan catchment in the
northeast of Fars province, Iran. Temperature and rainfall changes in three periods including 2011–2030, 2046–2065, and
2080–2099 were downscaled and studied using 15 Coupled Model Intercomparison Project, Phase 3 (CMIP3) climatic models,
under three scenarios of greenhouse gas emissions A2, B1, and A1B, from the database of the LARS-WGmodel. ,e difference in
the amount of changes in temperature and rainfall in these three periods and the observational amounts under the 15 models
indicated the uncertainty of the changes values. To reduce this uncertainty and limit the results to the management and planning
of water resources, ensemble approach was considered. For the preparation of the ensemble approach, the parameters from the
files of the 15-model scenarios were averaged so that a climatic ensemble model could be obtained for each period. ,en, the
runoffs of the next three periods, under the second approach and three emission scenarios, were produced using the feedforwad
neural network. ,e results indicated an increase in the average monthly maximum temperature and the minimum temperature
in all three periods under the three scenarios. ,e results also showed a decrease in the rainfall in the early months of the year as
well as an increase in the rainfall in the spring in most scenarios. Generally, the average annual rainfall in all these three periods
under the climatic ensemble model, and three emission scenarios showed a reduction in the average annual rainfall in the three
periods. ,e maximum amount of reduction was in 2080–2099 (101mm) under the scenario B1. Besides, a reduction occurred in
the average runoff of the catchment under three ensemble models and the emission scenario in all three periods, as compared to
the average of the long-term observational values in most years.

1. Introduction

Climatic changes and management of the existing water
resources have recently been a serious challenge worldwide.
Climatic changes caused by the increase of greenhouse
gasses in the earth’s atmosphere result in the rise of

temperature and reduction of rainfall along with drought
and devastating floods in many parts of the world including
Iran. Increased temperature leads to the enhanced surface
water evaporation and water consumption; this, concomi-
tant with the reduction of rainfall and surface water re-
sources, can cause many problems for human societies. ,e
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increased production of greenhouse gasses, especially car-
bon dioxide, together with overpopulation and further uses
of fossil fuels due to the expansion of industries, has resulted
in the rise of the earth’s temperature. ,e wide range in the
temperature increase has been predicted to be between 1.4
and 5.8 degrees in centigrade depending on the selected
scenario and the AOGCM (Atmospheric-Ocean General
Circulation Model) till 2100 [1]. Among the negative effects
of the increased generation of greenhouse gasses, we can
mention the drying up of lagoons, lakes and rivers, for-
mation of aerosol centers, numerous environmental prob-
lems, and the adverse effects on industry, agriculture, health,
and other climate-dependent systems [2]. Moreover, ex-
pansion of arid deserts and the resulting unwanted mi-
grations and local strife are among the consequences of the
climatic changes. ,erefore, it is of great importance to
consider climatic changes and analyze their effects on the
temperature, rainfall, and runoff. To address these problems,
it is necessary to investigate and analyze different possible
scenarios to offer a proper solution. Consequently, planning
for the proper management of surface water and un-
derground water resources and organizing the rivers and
flood warning systems require the estimation of the rivers’
runoff and discharge by considering the climatic change
effects. Among the valid and important measures used for
the investigation of the effects of climatic changes on hy-
drologic and meteorological variables, one can refer to the
simulation of climatic variables using AOGCM. Although
these models can simplify climatic processes by simulating
atmosphere-oceanic parameters for long periods of time and
have a coarse special resolution, the downscaling of their
output has to be done. Downscaling methods are divided
into statistical and dynamic methods. Statistical methods
include regression and weather generators. In order to
correct the first deficiency of the general circulation models
(GCMs), dynamic downscaling methods are employed. In
these methods, the governing equations are solved via nu-
merical analyses using a more scaled-down network, as
compared to GCMs.

,e statistical methods of downscaling are faster and less
expensive than the dynamic ones [3], and the LARS-WG is a
statistical model [4]. It is worth noting that a goal of the
research was to study various scenarios and models of cli-
mate change on the basin. ,erefore, the LARS-WG5.5
model used as the substitute contains 15 available models
of the CMIP3 series, implementing under SRES emission
scenarios like A1B, B1, and A2. However, while the CMIP5
series climate models are applying newer emission scenarios
like RCP26, RCP45, RCP65, and RCP85, only the input data
from one CMIP5 model (CANESM2) under SDSMmodel is
available in Iran. ,e characteristics of the 15 AOGCM
models presented in Table 1 [5–7].

Since runoff is the result of rainfall in each catchment
area, it is very important to develop rainfall-runoff models.
,is relation is one of the most complex hydrologic pro-
cesses affected by different physical and hydrologic pa-
rameters. ,erefore, prediction of the catchment runoff is
regarded as one of the most important issues in hydrology
[8]. Due to the complex nonlinear relation between rainfall

and runoff and the large number of its influential param-
eters, intelligent methods such as the neural network have
been increasingly used in the development of rainfall-runoff
models [9, 10]. ,erefore, after downscaling, the GCMs
output, rainfall, and temperature under different climatic
models have been used as the input for the simulation of the
runoffs of the future periods. Hassanzadeh et al., for in-
stance, predicted the effect of climatic changes on river
runoffs in the basin of Lake Urmia for the 2010–2100 period.
To this end, they used HADCM3 (Hadley Centre Coupled
Model, version 3) parameters. Besides, they calibrated and
downscaled the temperature and rainfall data using LARS-
WG and observational data. ,ey also used the artificial
neural network (ANN) to simulate the rainfall-runoffmodel.
According to their results, the outputs of most models
showed an increase in the temperature and a decrease in the
rainfall in the next period [11]. Bahri et al. used the LARS-
WG model for downscaling HADCM3 outputs under the
scenario A2 for the period 2011–2030.,eir results indicated
a 2.7% increase in the annual rainfall, where the most re-
duction was in April and the most increase occurred in
March. ,e average of minimum temperature was found to
be a 3.0 to 6.1°C increase; the maximum rise of maximum
temperature was estimated to be 6.1°C in May, whereas its
minimum rise would be as high as 3.0°C in February [12].
Al-Safi and Sarukkalige studied the climate change effects on
the hydrological response of the Richmond River catchment
in New South Wales (NSW), Australia, using the Hydro-
logiska Byrans Vattenbalansavdelning (HBV) model. ,ey
used the monthly rainfall, temperature, runoff, evaporation,
and perspiration for the long-term period of 1972–2014 to
calibrate and verify the HBVmodel before runoff prediction.
,ey simulated the future rainfall and runoff by a multiple
ensemble model extracted from 7 GCMs through the subset
of Coupled Model Intercomparison Project, Phase 3
(CMIP3), under the greenhouse gasses emission scenarios
A2, A1, B, and B1. ,e mentioned future rainfall and runoff
were used to simulate the runoffs of the three periods of the
future near (2016–2043), the future middle (2044–2071), and
the future far (2072–2099). In the present period, under all
scenarios, a 1%–24% reduction in the annual runoff of the
future periods was observed, as compared to the observa-
tional annual mean. Moreover, a reduction from 30% to
44.4% in the runoff of the future periods could be predicted,
as compared to the observational values, which would help
in the sustainable management and the correct use of future
water resources of the Richmond catchment [13]. Kashani
et al. integrated the Volterra model and the neural network
(IVANN) to simulate the rainfall-runoff relation in the
catchments of the northern Iran. ,e IVANN model was
prepared using the hourly data of the runoff and rainfall with
respect to 13 storms for the investigation of the short-term
response of a forested catchment in the northern Iran. ,e
catchment behavior was studied using IANN and Volterra
models. ,e Volterra model was also used as a nonlinear
model (a Second-Order Volterra (SOV) model) and solved
by the Ordinary Least Squares (OLS) method. Models’
performance was evaluated using five criteria: efficiency
factor, the error of the mean squared error, total volume
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error, the relative error of the maximum error, and the time
error to arrive at the peak. ,e results showed that IVANN
could well use the semidistributed and distributed models
for simulating the rainfall trend. Compared to the integrated
models, the distributed SOVmodel has a lower precision for
the rainfall trend simulation [14]. Li et al. also explored the
impacts of climatic changes on the water resources of the
Grand River catchment in Ontario, Canada, by developing
the two-phase model of Providing Regional Climates for
Impacts Studies (PRECIS) and Hydrological Inference
Model (HIM). ,ey simulated future rainfall and runoff
(2071–2100) under the two emission scenarios A2 and B2
using the PRECIS model. ,eir results showed that although
the annual rainfall of the future period did not considerably
change, as compared to the observational values, a change
occurred in the trend of the annual rainfall. Rainfall was
found to increase in winter and decrease in summer.
,erefore, for the proper conformity to the new conditions,
some changes were required for planning and managing the
water resources [15]. Mislan et al. also employed Back-
propagation Neural Network (BPNN) for the monthly
prediction of the rainfall in Tenggarong Station, Indonesia.
,ey used the architectures of [2-50-10-1, epoch 500] and
[2-50-20-1, with the epochs 1000 and 1500]. According to
their results, [2-50-20-1, with the epochs 1000] had the best
performance in the prediction of the monthly rainfall based
on the mean squared error (MSE) [16]. Farajzadeh et al. also
predicted the runoff of the Urmia Lake Basin using the
neural network. Climatic changes, construction of causeway
over the lake, establishment of several dams, and overuse of
water resources for agricultural purposes led to the sharp
drop of the lake level and creation of acres of salt marsh.
,erefore, due to the importance of predicting the basin
runoff, they used the feedforward neural network and time
series analysis [17]. Further, Asadi et al. used a hybrid in-
telligent model to predict runoff. ,eir suggested model was
a combination of data preprocessing, genetic algorithm, and
Levenberg Marquard (LM) learning algorithm for learning
the feedforward neural networks. In fact, by using the ge-
netic algorithm, the original weights of the neural network
were developed for regulation with the LM algorithm. Be-
sides, they used data preprocessing approaches such as data
transfer, selection of input variables, and data clustering to
improve the model precision. ,ey also examined the model
capability for the prediction of runoff in the Aghchai
catchment. According to them, their model could predict
runoff more exactly in comparison to ANN and ANFIS
models [18]. Solaimani compared three different learning
algorithms of gradient descent (GDX), conjugate gradient
(CG), and LM for the rainfall-runoff prediction based on the
artificial neural network. Monthly hydrometric data and
weather information were used to develop the artificial
neural network. By combining the computational efficiency
with the input parameters characterizing meteorological
information, ANN prediction performance could be im-
proved. Based on their results, GDX learning algorithm was
found to have the highest precision and convergence speed,
but the LM algorithm had the lowest speed [19–21].

2. Materials and Methods

2.1. Simulation of Climatic Changes. ,e Doroudzan
catchment is situated in the northeast of Fars province, Iran
(Figure 1).

,e dam constructed on this catchment satisfies a major
part of water requirements for industry, agriculture and
fresh water applications in downstream cities including
Shiraz. First, the climatic change effects on the rainfall,
temperature and sunny hours of the catchment were ex-
amined using LARS-WG. Here, 15 climatic models of
CMIP3 series existing in the LARS-WGmodel database [22]
under the greenhouse gas emission scenarios B1, A2, and
A1B were utilized to provide the data related to three future
periods including 2011–2030, 2046–2065, and 2080–2099
for all the stations of the Doroudzan catchment.

15 climatic models from the LARS-WGmodel database
under the three greenhouse gas emission scenarios B1, A2,
and A1B for the three future periods of 2011–2030,
2046–2065, and 2080–2099 were implemented on six
meteorology stations according to Tables 2 and 3. In other
words, 15 models were used for each station, with a
maximum of three emission scenarios for each model in the
mentioned three periods. In order to verify the LARS-WG
results, the data quality was first controlled by the model
itself; then the statistics of the simulated data, such as
average, standard deviation, and length of wet and dry
periods (in terms of rainfall), were calculated. In the next
stage, the model simulated and produced the meteoro-
logical data (e.g., temperature, rainfall, and sunny hours)
for the same time period, generating the corresponding
statistics of the observational data. In order to verify and
ensure model precision, t (Table 4), F (Table 5), and K-S
(Tables 6 and 7) tests were performed; then, the average,
standard deviation, and goodness of fit of the two data
series were compared. By ensuring model precision for any
meteorology station, the corresponding data related to
rainfall, temperature, and sunny hours in the mentioned
three future periods under 15 climatic models and three
greenhouse gas emission scenarios were simulated. As an
example, here, the verification results of the LARS-WGmodel
of the Doroudzan station have been summarized. ,e t-test
was used to compare the averages of the two data series. If
the P-Value takes greater than 0.05, then no significant
difference would be observed between the averages of them.
,e assessment value specifies by the amount of P-Value.
Approaching it to 1 means to the higher the assessment
value. In any case, if P-Values take more than 0.05 means to
the result, it is acceptable (O.K), and the averages of the
monthly observational and simulated data by the model are
close enough [23]. If P-Value takes less than 0.05, means to
the assessment is poor, and the result is not acceptable
(N.G).

As can be clearly seen from Table 6, the model could well
simulate the length of wet and dry periods for different
seasons; hence, the probabilistic distributions of the two
series of observational and simulated data for the basic
period were found to be quite similar.
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Figure 1: Position of the stations under study.

Table 2: Features of the stations under study.

Station River UTMY (m) UTMX (m) Height (m) Weight (%)
Doroudzan Kor 3342946 638943 1652 19.00
Choobkhale Choobkhale 3379456 585762 2040 8.59
Kemehr Kor 3368805 584103 2377 9.18
AbbasAbad Kor 3354465 620649 1713 24.63
Jamalbeig Shirin 3386581 591422 2020 19.00
Chamriz Kor 3370902 605703 1850 19.59
UTMX and UTMY refer to the position of each station in the Universal Transverse Mercator geographical coordinate system (UTM-zone 39N).

Table 3: ,e annual and monthly average of the precipitation of the Doroudzan catchment stations (mm).

Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
Kemehr 193.88 175.33 191.58 110.08 17.88 0.50 1.63 0.83 1.96 12.63 132.92 168.33 1007.54
Jamalbeig 107.11 88.81 93.04 57.71 18.28 0.71 0.59 0.57 0.05 6.36 41.00 112.35 526.57
Doroudzan 130.94 107.27 82.29 40.09 5.76 0.42 1.11 0.41 0.04 3.88 34.73 109.81 516.74
Choubkhale 161.08 152.76 153.88 103.00 29.38 1.80 1.83 1.20 0.50 10.86 70.24 172.75 859.29
Chamriz 97.04 66.75 73.00 35.92 8.13 0.00 0.83 0.21 0.00 3.04 59.46 75.54 419.92
Abbasabad 96.97 76.34 69.19 35.46 6.77 0.08 0.08 0.85 0.00 3.04 61.54 74.65 424.98
Average 119.8 98.35 95.46 53.3 12 0.4 0.8 0.6 0.2 5.38 59.43 105.7 551.47

Table 4: Results of the t-test, comparison of the average monthly observational and LARS-WG simulated rainfalls of the Doroudzan station.

Item/Month J F M A M J J A S O N D
Observational rainfall 112 94.72 75.1 39.95 6.25 0.32 0.74 0.26 0.09 5.45 46.4 87.06
Simulated rainfall 128 97.66 85.5 38.35 6.52 0.31 1.6 0.24 0.38 6.29 39.8 84.17
t-test −0.9 −0.183 −0.8 0.198 −0.1 0.043 −0.98 0.098 −1.61 −0.378 0.499 0.17
P-value 0.37 0.855 0.43 0.844 0.921 0.966 0.33 0.922 0.113 0.707 0.62 0.866
Assessment Good Prefect Good Prefect Prefect Prefect Good Prefect Good Very good Very good Prefect
Result O.K O.K O.K O.K O.K O.K O.K O.K O.K O.K O.K O.K

Table 5: Results of the F-test, standard deviation comparison of observational and simulated data by the model of the Doroudzan station.

Item/month J F M A M J J A S O N D
sd_obs 69.28 69.31 51.91 35.02 10.96 0.88 2.63 1.13 0.36 9.19 51.72 81.80
sd_gen 76.48 61.91 53.82 31.34 11.28 1.00 4.07 0.89 0.93 8.94 55.12 58.97
F-test 1.22 1.25 1.08 1.25 1.06 1.29 2.39 1.64 6.62 1.06 1.14 1.92
P-value 0.60 0.51 0.86 0.52 0.89 0.49 0.02 0.16 0.00 0.86 0.74 0.06
Assessment Very good Good Prefect Good Prefect Good Poor Good Poor Prefect Very good Good
Result O.K O.K O.K O.K O.K O.K N.G O.K N.G O.K O.K O.K
sd_obs and sd_gen are standard divisions of observational and produced data by the model, respectively.

Advances in Meteorology 5



Note that t, F, and K-S tests were conducted on rainfall,
Tmin (minimum daily temperature), and Tmax (maximum
daily temperature) of all stations. After ensuring model
precision, it generated time series of them in three periods of
future near, middle, and far different stations under 15
CMIP3 models and three emission scenarios.

After model verification, data related to rainfall, tem-
perature, and sunny hours in three future periods and under
three emission scenarios for 15 climate models in all stations
were generated and the results were averaged. ,en, they
were compared with the observational data. By comparing
the results of different models under themain three emission
scenarios, it could be observed that there were some dif-
ferences in the results, which could be due to the uncertainty
of emission scenarios, different dimensions of the cells in
different models, boundary conditions, and the solution
method of the governing equations by each climatic model
and the existing errors in the simulation and production of
the model data. ,erefore, there was a wide range of climate
models for the future predictions. In order to limit the
predictions to a few models that could be used for the in-
vestigation of climatic change effects, three approaches were
considered: extreme (min/max), ensemble approach, and
validation approach. ,e min/max approach was the best
way for planning in a wide range of considerations; it in-
volves plans for both maximum and minimum changes.
Ensemble approach suggests that it is better to plan for the
average changes of all models. ,is approach uses a unique

average or mean for all (or most) of the models for reducing
uncertainty. ,e individual model of validation approach
suggests that the chronologically appropriate models should
be used for planning in the meteorological observations.
,ese observations compare a chronological (over-thirty-
year) global dataset (e.g., National Center Environment
Prediction (NCEP)) with all models to determine to which
models the dataset best conforms. After that, only the four or
five models having the most conformity are used. In the
present study, the Ensenble approach was employed [22, 24].

In order to develop the ensemble approach, the following
steps were taken. First, values of columns 2 to 7 of the
scenario file of each of the 15 models were extracted and
averaged. ,e average was then introduced as a climatic
scenario file called ensemble into the LARS-WG model, and
the future data scenario for three future periods under the
said emission scenario was created. ,erefore, an ensemble
climatic model was added to the previous 15 models. In what
follows, figures of Tmin and Tmax and daily rainfall changes
using 15 CMIP3 models and ensemble approach under three
emission scenarios for the three future periods are repre-
sented (Figures 2 to 4).

It is clear from row 1 of Figure 2 that the maximum
increases of Tmin for the future near period under the
scenarios A1B, A2, and B1 could be expected to be in July
with the temperature of 3.96°C under the HADGEM model,
3.78°C under HADGEM and HADCM3 models, and 3.86°C
under the IPCM4 model, respectively.

Moreover, the maximum decrease of Tmin was in
January under the HADCM3 model with the amount of
0.43, 0.25, and 0.54°C. Except for some models in January, a
rise was observed for all models in the other months of the
year. Row 2 of Figure 2 shows that the maximum increase of
the Tmin for the future middle period under scenarios A1B,
A2, and B1 were in May under the GFCM2 (3.41°C), and in
September under GFCM2 (3.1°C), and MIHR (2.96°C)
models, respectively. Besides, the minimum rise was in
January under CSMK3 (2°C), NCPCM (1.8°C), and BCM2
(−0.03°C) models, respectively. Clearly, all of the models
predicted a rise in the future middle time under all three
scenarios. Clearly, in the third row, themaximum increase of
the Tmin in the future far period expected would be in May
under the MIHR model (6.0°C). Obviously, it predicted to
rise with 100% certainty under all scenarios.

Row 1 of Figure 3 shows that the maximum increase of
the Tmax for the future near period under the scenarios A1B,
A2, and B1 was expected in July with 1.8°C under the CGMR,
at 1.7°C under the NCCCSM, and at 1.17°C under NCCCSM
and INCM3 models, respectively. Moreover, the maximum
decrease of Tmax was estimated to be in January under the
HADCM3 with the rise of 0.9°C and February under
NCPCM, FGOALS, and CSMK3 models, 0.8°C. Except for
some models in January and February, a rise was observed
for all the models in the other months of the year. It is clear
from second-row figures that the highest increase in the Tmax
(future middle period) was in July under the climatic model
of MIHR under the scenario A1B, whereas the least increase
was in January under the CSMK3 model under the scenario

Table 6: Results of the K-S test: goodness of fit comparison between
two time series of observational rainfall data and the simulation of
the Doroudzan station.

Season Wet/dry N K-S P value Assessment
DJF Wet 12 0.34 0.1097 Good fit
DJF Dry 12 0.052 1 Perfect fit
MAM Wet 12 0.081 1 Perfect fit
MAM Dry 12 0.188 0.7665 Very good fit
JJA Wet 12 0 1 Perfect fit
JJA Dry 12 0.174 0.8416 Very good fit
SON Wet 12 0.287 0.2522 Good fit
SON dry 12 0.171 0.8563 Very good fit

Table 7: Results of the K-S test for the daily rainfall.

Month N K-S P value Assessment
J 12 0.037 1 Perfect fit
F 12 0.055 1 Perfect fit
M 12 0.059 1 Perfect fit
A 12 0.112 0.9975 Perfect fit
M 12 0.139 0.9685 Perfect fit
J 12 0.174 0.8416 Very good fit
J 12 0.348 0.0955 Good fit
A 12 0.609 0.0002 Proof fit
S 12 0.435 0.0173 Proof fit
O 12 0.237 0.4809 Good fit
N 12 0.044 1 Perfect fit
D 12 0.053 1 Perfect fit
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A1B (0.49°C). Also, for each climatic parameter such as
rainfall and temperature, a total of 35 models and scenarios
were investigated monthly, and 420 cases were considered
for 12months. �ere were only 26 cases of temperature
drop. In other words, in 94% of the cases, the Tmax would be
increased. Further, the third-row �gures show that the most
and the least amounts of increase in the future far period
expected would be 6.31°C and −0.095°C, respectively. Also,
the area has a desert climate. Consequently, the large
�uctuation of the monthly Tmax is due to climatic condi-
tions, especially the type of weather situation.

According to row 1 of Figure 4, in the future near period,
a decrease could occur in the amount of rainfall in most
models in January and February, while it might increase in
March, April, May, October, November, and December,
indicating a change in the annual rainfall pattern. In order to
tackle this problem, environmental planning and manage-
ment of water resources will be required. Figures in the
second row show that the trend of changes in the annual
rainfall in the future middle period is similar to that of the
near one. �e highest increase in the monthly rainfall was
observed under the MPEH5 model in the scenario B1
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Figure 2: Tmin changes under di�erent GCMs and ensemble approach versus observational values for the three future period under
scenarios (a) A1B, (b) A2, and (c) B1.
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(53mm), and the least decrease in the monthly rainfall was
under the GFCM2 model in the scenario A2 (44mm) in
February. Patterns of changes in the annual precipitation in
the future far period (row 3) were similar to those in the two
other periods. In this period, the maximum increase of the
annual rainfall was predicted to be 79.2mm in December
under IPCM4 model in the scenarios A1B and B1. Besides,
the maximum decrease was expected to be 57.2mm in
February under MPEH5 and the scenario A2.

In the above �gures, ∆Tand ∆P, respectively, are average
of the monthly changes of daily temperature (minimum and
maximum) in centigrade and monthly precipitation (rain-
fall) in millimeter versus the observational values. In what
follows, the range of changes of the monthly rainfall and
temperature in the three future periods under all available
models and the three emission scenarios (35 states) and their
probabilities (i.e., increases) versus the observational values
are given (Figures 5–10).
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Figure 3: Tmax changes under di�erent GCMs and ensemble approach versus the observational values for the three future periods under
scenarios (a) A1B, (b) A2, and (c) B1.
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Due to the fact that precipitation decreases in the early
months of the future years and increases in the last months
of the future years, as compared to the observational values,
the annual future precipitation and the average of obser-
vational values have been compared and diagramed here.

Based on the results, a reduction occurred in pre-
cipitation in most years of each period versus the average
annual observational values of the basic period. Further-
more, based on Figure 11, the average of the annual rainfall

in each period decreased as compared to the average of the
annual observational precipitation (AAOP).

Figure 12 shows that the average annual precipitation
changes in all three future periods, as compared to the
observational value, which would decrease. Based on this
figure, the maximum reduction could be in the far future
period under the scenario B1, and the minimum one would
be in the near future period under the scenario A2, which
could be as great as 0mm.
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Figure 4: Monthly rainfall changes under different GCMS, ensemble approach versus observational values in the tree future period for the
three future period under scenarios (a) A1B, (b) A2, and (c) B1.
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2.2. Application ofNeuralNetwork in theDetermination of the
Future Discharge of the Doroudzan Dam. In order to de-
termine the input discharge (runo�) entering into the

Doroudzan dam in the three future periods, it was required
to model the rainfall-runo� relation. To this end, the neural
network has been employed. After measuring rainfall and
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Figure 6: Range of changes in the monthly average of minimum daily temperature in the future near period under all the models and three
emission scenarios and their probabilities.
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Figure 5: Range of changes in the monthly rainfall in the future near period under all the models and the three emission scenarios and their
probabilities.
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Figure 7: Range of changes in the monthly average of the maximum daily temperature in the future near period under all the models and
three emission scenarios and their probabilities.

10 Advances in Meteorology



temperature in the future periods based on di�erent models
and scenarios, due to their wide range of variations under all
the models, the results of the ensemble model (rainfall and

temperature) were used for simulating the future runo�.
First, by considering di�erent combinations of rainfall,
temperature, and runo� time series of the last few days as the

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Max
Min
∆P < 0

–60

–40

–20

0

20

40

60

Ra
in

fa
ll 

ch
an

ge
s (

m
m

)

0

20

40

60

80

100

D
ec

re
as

e p
ro

ba
bi

lit
y 

(%
)

Figure 8: Range of changes in the monthly rainfall in the future middle period under all models and three emission scenarios and their
probabilities.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Max
Min
∆P > 0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Te
m

pe
ra

tu
re

 ch
an

ge
s (

°C
)

0
10
20
30
40
50
60
70
80
90
100

In
cr

ea
se

 p
ro

ba
bi

lit
y 

(%
)

Figure 9: Range of changes in the monthly average of the minimum daily temperature in the future middle period under all models and
three emission scenarios and their probabilities.
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Figure 10: Range of changes in themonthly average of themaximum daily temperature in the futuremiddle period under all themodels and
three emission scenarios and their probabilities.
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input and runoff as the output, the best architecture and type
of the neural network with the least errors and the highest
correlation coefficient were defined; then the future-period
runoff entering the catchment was determined.

To model the rainfall-runoff relation of the catchment
using the artificial neural network, different neural networks,
learning algorithms, numbers of hidden layers, available
neurons in the hidden layers, activation function, etc., were
selected and tested. Among them, the best neural network
and architecture were chosen. Note that first, the daily and
then the monthly data were utilized. Due to the fact that the
daily rainfall data, as one of the most important input data in
the rainfall-runoff model, involve many zeros, it involves
more errors than the rainfall-runoff model using the
monthly data. In other words, it is difficult and less likely to
arrive at a proper neural network model by using daily data
including the rainfall data. However, in rainy areas, the
learning of the rainfall-runoff model is perhaps easier due to
the high number of the daily rainfall nonzero data. In what

follows, different kinds of neural networks are studied and
their performances are summarized (Table 8).

In the above table, generalized feedforward (GFF) neural
network was chosen due to its performance and compared to
some other neural networks such as multilayer perceptron
(MLP) and radial basis function (RBF). By comparing the LM
and Conjugate Gradient (CG) [25, 26], it was found that CG
had a better performance in the neural network learning. GFF
neural network is an artificial neural network in which the
connection of its constituent units does not form a cycle. In
fact, this network is different from the recurrent neural
network. In addition, the feedforward neural network is the
first and the simplest kind of the artificial neural network. In
this network, the information moves only in a forward di-
rection. In fact, it moves from the input nodes (neurons)
through the innate layers (if any) to the output nodes [25, 26].
Activation functions, namely, TANGENT HYPERBOLIC
(TANH), LINEAR TANGENT HYPERBOLIC (LTANH),
and LINEAR SIGMOID (LSIG), were also tested and used.
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Figure 11: Changes in the averages of the annual rainfall in the future periods under ensemble model and three emission scenarios versus
the observational values: (a) near future, (b) middle future, and (c) far future.
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f(x) � TANH(x) �
ex − e−x

ex + e−x
,

f(x) � LTANH(x) �

−1, if xlin
i <−1,

1, if xlin
i > 1,

xlin
i , else,
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i > 1,

xlin
i , else,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where xlin
i � βxi is the scaled and offset activity inherited

from the Linear Axon. ,e LinearSigmoidAxon substitutes
the intermediate portion of the sigmoid by a line of slope β,
making it a piecewise linear approximation of the sigmoid.
Performance of each neural network was assessed using the
Root Mean Square Error (RMSE) and the Pearson Corre-
lation Coefficient (r).

RMSE �

����������


n
I Oi − Si( 

n
,



r �


n
i Oi −O( 

n
i Si − S( 

��������������������


n
i Oi −O( 

2


n
i Si − S( 

2
 ,

(2)

where O is the observational data, S is the simulated data, O

and S are their averages, and n is the total number of the data.
Perhaps, since normalized values were used for learning

and validation, RMSE values were smaller than 1; however,
the data in the test step are not normalized; so RMSE values
did not need to be lower than 1. Performance of the selected
neural network in the test step is shown in Figure 13, in-
dicating the selected network’s precision.

Table 9 shows the performance of the selected neural
network at the test step. After the determination of the
proper neural network, the runoff data for the future periods
were generated.,e output of the ensemble model under the
three emission scenarios (monthly rainfall) was used as the
input of the neural network. Figure 14 shows runoffs in the
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Figure 12: Comparison of the average annual observational value and the three future periods under three emission scenarios.

Table 8: Performances of different neural networks concerning the monthly rainfall-runoff model for the Doroudzan catchment.

Ann
type Input Output Learning

algorithm
Network

architecture

Transfer
function Data percentage RMSE

r
First Second Learning Validation Test Learning Validation Test

GFF

Tave,P,E Q CG 3-4-4-1 TANH LTANH 65 15 25 0.15 0.32 19.13 0.840
Tave,P,E Q CG 3-15-8-1 TANH LTANH 65 15 25 0.15 0.23 38.66 0.719
Tave,P,E Q CG 3-4-4-1 TANH LTANH 65 15 25 0.12 0.65 35.69 0.586
Tave,P,E Q CG 3-4-4-1 TANH LTANH 80 10 10 0.10 1.18 34.99 0.600
Tave,P,E Q CG 3-4-4-1 TANH LTANH 70 10 20 0.19 0.20 44.98 0.597

P,E Q CG 2-4-4-1 TANH LTANH 70 10 20 0.15 0.28 27.18 0.670
P,Tave Q CG 2-4-4-1 TANH LTANH 70 10 20 0.15 0.28 34.18 0.61
P-3,P-
2,P-1,P Q CG 4-4-4-1 TANH LTANH 75 10 15 0.0080785 0.02670124 17.50 0.726

P-3,P-
2,P-1,P Q CG 4-14-10-1 TANH LTANH 75 10 15 0.00249497 0.00467218 46.12 0.238

P-3,P-
2,P-1,P Q CG 4-4-4-1 TANH LTANH 75 10 15 0.00268782 0.00762632 20.11 0.911

P-2,P-
1,P Q CG 3-4-4-1 TANH LTANH 75 10 15 0.0176 0.0232 54.23 0.530

P-1,P Q CG 2-4-4-1 TANH LTANH 75 10 15 0.0324 0.02670124 17.5 0.48

Advances in Meteorology 13



three future periods under the ensemble model and the three
emission scenarios.

In the above figures, R_OBS_MIN and R_OBS_AVE refer
to the minimum and the average of a 28-year runoff input
entering into the dam. As shown by the results, approximately

in the entire durations of the three periods, a reduction occurred
in the runoff input of the dam (Figures 14–16). ,is produced
noticeable effects on the region’s environment and water re-
sources and needed a comprehensive planning for adjustment
to the new conditions to tackle the resulting challenges.
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Figure 13: Observational runoff—monthly simulation of the Doroudzan dam in the neural network test step. R � the observational runoff;
R � output the runoff simulated by the neural network.

Table 9: Performance of the neural network for the monthly rainfall-runoff in the Doroudzan dam in the test step.

Performance Test step
MSE 404.3462945
RMSE 20.10836379
MAE 16.850975
r 0.911308447
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Figure 14: Comparison of the minimum and average observational runoff and the future near period under the ensemble model and the
three emission scenarios.
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3. Conclusion

15 climatic models of CMIP3 series outputs available in
LARS-WG database under three main greenhouse gas
emission scenarios including B1, A2, and A1B were used to
downscale and evaluate the climatic change effects on the
meteorological and hydrological parameters in the Dor-
oudzan dam catchment during three future periods. After
the evaluation of the model precision for all stations, rainfall
and temperature of the three future periods were simulated.
Due to the various uncertainties of GCMs and emission
scenarios, observational data, the distinctive resolution of
any single model, the solution methods of governing
equations, and boundary conditions and other sources of
uncertainty, different outputs were obtained for the models.
However, under most models and scenarios, an increase in
the minimum and maximum daily temperatures and a
decrease in the annual rainfall were observed. A shift was
also observed in the annual pattern of rainfall (i.e., rainfall
with a year). In other words, precipitation in the early
months of the year was reduced while there was an increase

in some of the other months. In this context, in order to
mitigate the effects of this phenomenon on water resources
and to avoid environmental problems such as decreased
surface and underground water resources and the increased
evaporation and perspiration and drying up of lakes and
lagoons, and the formation of aerosol centers, it is required
to do some long-term managerial planning to face and
handle these challenges. In spite of the numerous models
and the vast range of changes in the meteorological pa-
rameters in all the future periods, ensemble approach has
chosen to reduce the uncertainties of outcomes of models for
better planning.,e scenario file of this ensemble model was
produced by averaging the scenario files’ parameters of 15
GCMs, and the meteorological parameters of the ensemble
model under all three considered emission scenarios in all
three future periods were simulated. ,e output of the
ensemble model was used as the input for the creation of the
rainfall-runoffmodel using the neural network. Based on the
results, the GFF neural network with the CG learning al-
gorithm and an architecture of 4-4-4-1 showed the best
performance. After that, the runoffs of the three future
periods under the suggested model and the three main
emission scenarios were simulated. ,e results showed that
the patterns of runoff changes inside and outside a year were
in agreement with those of the rainfall changes, indicating its
reduction with respect to the long-term annual observa-
tional average value.
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,e data used to support the findings of this study are
available from the corresponding author upon request.
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