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Regional accuracy was examined using extreme gradient boosting (XGBoost) to improve frost prediction accuracy, and accuracy
di�erences by region were found. When the points were divided into two groups with weather variables, Group 1 had a coastal
climate with a high minimum temperature, humidity, and wind speed and Group 2 exhibited relatively inland climate char-
acteristics. We calculated the accuracy in the two groups and found that the precision and recall scores in coastal areas (Group 1)
were signi�cantly lower than those in the inland areas (Group 2). Geographic elements (distance from the nearest coast and
height) were added as variables to improve accuracy. In addition, considering the continuity of frost occurrence, the method of
re�ecting the frost occurrence of the previous day as a variable and the synthetic minority oversampling technique (SMOTE)
pretreatment were used to increase the learning ability.

1. Introduction

While the recent rise in global average temperatures has
accelerated the �owering of crops, sudden cold waves have
occurred due to increased temperature volatility, causing
crop damage. When a crop experiences a low temperature,
the tissue freezes, causing the cell or chloroplast membrane
to harden and be destroyed or the cells to dry and die. Frost,
which causes direct damage to crops, refers to small ice
crystals frozen on the ground or objects. When moist air
contacts a cold surface at a temperature below the dew point
of water vapor in the air, condensation occurs, and frost
begins to form if the surface temperature is below the
freezing temperature of water. Damage caused by frost has
recently occurred worldwide, and interest in frost prediction
has been increasing [1].

In July 2021, about 30% of local co�ee trees were
damaged by sudden subzero weather and frost in the Minas
Gerais state of Brazil, the world’s largest co�ee producer
(CONAB, 2021). Co�ee prices surged nearly 13% in re-
sponse to the frosts to a 6–1/2-year high. In addition, se-
verely damaged farms take three years to recover their crops,
which is expected to cause substantial long-term damage [2].

France su�ered from spring frost for the second consecutive
year, recording the coldest April ever in France in 22 years,
following April 2021. �e total damage was $2 billion due to
massive frost. About 80% of vineyards were damaged, and
wine production decreased by about 27% year-over-year in
2021 [3]. In 2022, temperatures in northern France fell to
–9°C, reproducing the �erce cold of the midwinter, which is
expected to signi�cantly in�uence grapes and fruit trees,
such as peach and apricot. As frost may have serious con-
sequences on crop production, so actions must be taken to
minimize damaging e�ects, and studies on frost occurrence
and prediction have also been published steadily.

Using Stevenson screen temperature thresholds of 2°C or
below as an indicator of frost at the ground level, Crimp et al.
[4] demonstrated that, across southern Australia, despite a
warming trend of 0.17°C per decade since 1960, the ‘frost
season’ length has increased, on average, by 26 days across
the southern portion of Australia compared with the long-
term mean from 1960 to 1990. Unlike the recent growth of
plants, which has accelerated due to unseasonably warm
weather due to global warming, large temperature �uctua-
tions, such as sudden cold waves, are causing hundreds of
thousands of hectares of damage every year in conjunction
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with the vulnerability to cold waves of plants that have
grown rapidly due to warming. (e damage caused by
temperature volatility is increasing, and frost prediction is
also becoming more difficult. Accordingly, attempts to ac-
curately predict frost occurrence are ongoing.

Ghielmi and Eccel [5] demonstrated that the multilayer
perceptron (MLP) model captures the specific features of the
climatic conditions of any site to predict frost, even if the
neural network does not represent functional relationships
with nocturnal cooling in explicit form. In addition, Sallis
et al. [6] studied the dependencies (correlation) between
temperature, humidity, wind speed, precipitation, and
barometric pressure variables using SOM. Studies have
found that the wind direction during a frost is primarily
influenced by the mountains (the Los Andes Mountains) in
the valleys of the O’Higgins region of Chile; therefore, an
analysis of the geospatial factors is necessary.

Lee et al. [7] selected the decision tree as a frost pre-
dictionmodel because it has a higher probability of detection
than the logic regression analysis with data from six ob-
servatories on the Korean Peninsula. In addition, using
autoregressive models with external input and MLP models,
Castaneda-Miranda and Castano [8] predicted the tem-
perature inside a greenhouse using the external air tem-
perature, ambient air relative humidity, wind speed, global
solar radiation flux, and internal air relative humidity var-
iables. (e R2 of MLP exhibited higher performance in
summer and winter at 0.9549 and 0.9590, respectively. In
addition, Diniz et al. [9] generated possible local-scale
predictors of frost occurrence, which included longitude,
latitude, elevation, relative altitude, relief orientation, and
Euclidean distance from hydrography. (ree machine
learning classifiers (random forest (RF), support vector
machine (SVM), and MLP) were compared in order to
determine which would most accurately predict frost oc-
currence, and RF has been found to be the most proficient
algorithm.

Zendehboudi and Li [10] predicted the frost thickness
and density on vertical and horizontal cryogenic surfaces.
(e hybrid adaptive neuro-fuzzy inference system, least-
square support vector machine (SVM) with the genetic
algorithm, radial basis function neural network with the
genetic algorithm, and MLP models were compared. In all
four cases, R2 in the MLP model was about 0.9994, 0.9997,
0.9953, and 0.9965 for the frost thickness and density on
horizontal and parallel surfaces, respectively, exhibiting the
best performance. Additionally, Diedrichs et al. [11] dem-
onstrated improved model performance by increasing the
reproducibility in the RF and logistic regression models
when the synthetic minority oversampling technique
(SMOTE) was applied.

In addition, Rostamian and Halabian [12] investigated
the probability and frequency of frost days using the Markov
chain model. Two-day continuities in all stations revealed
the minimum return period. All analyzed stations in the
studied area, except for Nehbandan, which generally does
not experience frost days, were characterized using the first-
order Markov chain, indicating that frost days depend on
past weather conditions.

Ding et al. [13] predicted the possibility of future frost
with an SVM model using the historical values of temper-
ature, humidity, and radiation. Temperature is a key factor in
frost prediction models, with humidity helping generate an
early warning for a relatively long period, such as within 2 or
3 h. Further, radiation has demonstrated improved sensi-
tivity by reflecting changes in some areas in a short period.
Finally, when predicting the next 1, 2, and 3 h of frost with
the SVM model, the reproduction rates were 100%, 99.3%,
and 99.8%, respectively.

Tamura et al. [14] compared the SVM results using the
simple moving average and exponential moving average as
the past values of the temperature and vapor pressure
variables. Models using exponential moving averages per-
form a few percentage points better than models using
simple moving averages in terms of the F1-score (the har-
monic mean of the precision or recall) measurements.

Rozante et al. [15] corrected the frost index (IG) by
correcting the weight of the variable numerically calculated
by the local weather forecast model. (e weight was ad-
justed, so that the temperature had the greatest contribution,
followed by pressure and wind, and the other variables were
determined with the constraint that the weight sum was 1.

Wassan et al. [16] predicted frost with a convolutional
neural network model. For the one-dimensional data anal-
ysis, 1D convolution was used, and the accuracy was 97.6%
for 30,000 repetitions and 98.6% for 50,000 repetitions.

In previous work [17], we compared the results of the
SVM, RF, and MLP models, which were frequently men-
tioned in other papers, and the extreme gradient boosting
(XGBoost) models, which have recently been frequently
used in various fields. Daily statistics (total, average, max-
imum, minimum, etc.) were calculated with weather factors,
such as wind speed, temperature, humidity, precipitation,
and clouds, using the frost history and ground observation
data for 20 years at 53 domestic points in Korea. Using
XGBoost, SVM, RF, and MLP models, various hyper-
parameters were applied as training data to select the best
model for each model, and the final model performance was
evaluated from the testing data using various model eval-
uation criteria, such as the accuracy, F1-score, and critical
success index (CSI). Compared to other models, XGBoost
performed best with 90.4% accuracy and 64.4% on the CSI,
followed by SVMwith 89.7% accuracy and 61.2% on the CSI.
(e RF and MLP models performed similarly with about
89% accuracy and 60% on the CSI.(emodel was compared
only as a weather variable, confirming that XGBoost had the
best performance. However, the performance varies greatly
from branch to branch. In this study, k -means clusters were
used to increase the accuracy of the frost prediction model
for each observation point. (e observation points were
clustered by k -means clustering, and we were able to find the
differences and characteristics of the clustered groups
through this. k-means clustering was conducted with
weather variables, and the characteristics were examined
according to the group, confirming that most islands were
distributed into one group. Accordingly, frost was predicted
by adding the shoreline distance and altitude, the geo-
graphical characteristics reflecting the terrain features. (e
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accuracy performance was improved from 90.4% to 90.8%,
and CSI improved from 64.5% to 65.8%.

Comparing the model only as a weather variable con-
firmed that XGBoost performed the best. In this study, to
improve the accuracy of the frost prediction model, a
multipronged approach was attempted to determine other
important variables for frost prediction.

In addition, the difference in accuracy was different
depending on the difference in the frequency of frost oc-
currence by cluster. Accordingly, SMOTE was conducted to
increase the learning rate, but there was no significant effect
on accuracy improvement. However, considering that frost
is continuous depending on the station, the accuracy in-
creased by adding geographic characteristics and a cate-
gorical variable indicating whether frost occurred the
previous day. Compared to the previous model (with added
terrain features), accuracy improved from 90.8% to 92.6%,
and CSI improved from 65.8% to 71.4%.

(is paper is organized as follows. Section 2 introduces
the various methods used in the study. Section 3 explains the
analysis data and process of adding variables by clustering,
and Section 4 concludes with a summary of the research
results.

2. Methods

(is section introduces the various methods used in the
study. (e XGBoost model, which performed best in pre-
vious studies, was used to predict frost occurrence. In ad-
dition, 53 stations were divided into Groups 1 and 2 using
the k-means clustering method to compare accuracy.

2.1. Extreme Gradient Boosting. (e XGBoost model is a
decision tree-based algorithm that improves gradient
boosting and is used in various studies [18]. Gradient
boosting is a machine learning technique that increases
predictive power by sequentially generating a model by
supplementing the predictive error of the previous tree with
the slope-lowering method using gradient descent. (rough
the repetition process of creating a new prediction model by
focusing on poorly predicted individuals, a strong model is
generated through a combination of several weak models.
(e XGBoost model consists of M decision trees, as in the
following expression, where f denotes one decision tree, and
F denotes a function of all decision trees:

Yi � 
M

m�1
fm xi( , fm ∈ F. (1)

In the regression process, the model is expressed by the
following equation:

Obj(θ) � 
n

i�1
l yi,Yi(  + 

M

m�1
Ω fm( , θ � f1,f2, . . . ,fm( e,

(2)

where l represents the loss function, and Ω indicates the
regulation to prevent overfitting. (e regulation equation is
as follows:

Ω(f) �
cT + 1

2λ
T
j�1 ω

2
j

, (3)

where Tdenotes the number of nodes in the decision tree,Ω
represents a weight vector, and c and λ are penalty elements.

2.2. K-Means Clustering. (e k-means clustering algorithm
is a method of dividing given data into several groups. In this
case, the groups are divided by minimizing the cost func-
tions, such as the distance-based intergroup dissimilarity,
where the similarity between data objects in the same group
increases, and the similarity with data objects in different
groups decreases.

Choosing the best value of k in the various k-means al-
gorithms can be difficult [19]. In this study, a silhouette score
was used to determine the k value of the k-means algorithm.
(e silhouette coefficient is calculated by considering the mean
intracluster distance a and the mean nearest-cluster distance b
for each data point [20]. (e value of the silhouette coefficient
s(i) for the ith x(i) is defined by the following equation:

s(i) �
b

(i)
− a

(i)

max a
(i)

, b
(i)

 
, (4)

where a(i) represents data cohesion in a cluster and is the
average distance from the rest of the data in the same cluster
as x(i). A smaller distance indicates higher cohesion. In
addition, b(i) represents intercluster separation and is the
average distance from x(i) and all data in the closest cluster.
To optimize the number of clusters, b(i) is large, a(i) is small,
and s(i) is close to 1.

When the k value is determined, the k-means algorithm
randomly specifies k centroids in the dataset, and each data
point is allocated as a group of nearest centroids. In the
assigned group, the process is repeated until the centroids
converge by reassigning them. (e group is classified as the
side closest to the convergent final centroids.

3. Data Processing and Results

3.1. Data Preprocessing Process. Frost occurs when the dew
point temperature of the air near the surface is below the
freezing point; thus, the occurrence of frost was predicted for
24 h (from noon of the base date to noon of the next day)
based on the continuity of the temperature. Data were
extracted from October to April between 2000 and 2021
when frost occurs due to the influence of the changing of
seasons. In addition, data from the point when no frost
occurred from October of the base year to April of the
following year were removed. During the removal process,
frost data were extracted from 53 observation points in
Korea, and weather data (temperature, wind speed, hu-
midity, cloud, precipitation, and solar radiation) were col-
lected for each observation, as listed in Table 1. (e statistics
(average, total sum, maximum, minimum, and standard
variance) were calculated from noon of the reference date to
noon of the next day, as listed in Table 2, to improve the
accuracy of the analysis and obtain meaningful information
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by combining and adjusting several variables from the raw
data. If the variable name is not followed by a specific period,
it is a 24 h weather statistic to predict frost.

Moreover, 70% of the randomly extracted data were used as
training and validation data through cross-validation, and the
remaining 30% of the data were evaluated as testing data. (e
ratio of frost occurrence and nonoccurrence in the training and
testing data is presented in Table 3 and is classified as 1 : 3.

3.2.Model Fit Results. To avoid overfitting and underfitting in
the training data, we used k-fold cross-validation. In k-fold
cross-validation, the data were first partitioned into k equal (or
nearly equal) segments or fold. Subsequently, k iterations of
training and validation were performed such that, within each
iteration, a different fold of the data was used for validation,
whereas the remaining k− 1-fold was used for learning [21]. As
depicted in Figure 1, data were divided fivefold, calculating the
average accuracy and area under the curve (AUC).

(e average accuracy and AUC were selected as
hyperparameters, and the model performance of the opti-
mized hyperparameters was comprehensively evaluated
based on various model evaluation criteria, such as the
precision, recall, F1-score, CSI, accuracy, and AUC. (e
predicted and actual observations are expressed in a con-
fusion matrix in Table 4.

Table 1: Description of weather variables.

Weather
variable Description Observation period and unit

Temperature Temperature is measured from 1.2 to 1.5 meters above the ground. Automatically
observed by a platinum resistance thermometer.

Observation period: 1 hour,
unit: °C

Wind speed
(e wind speed depends on the height from the ground, so it means the average wind
speed at a height of 10m above the ground. Automatically observed using wind speed

sensors such as optical chopper or ultrasonic.

Observation period: 1 hour,
unit: m/s

Humidity

Humidity is expressed as relative humidity. ((e ratio of the amount of water vapor
actually contained in the atmosphere to the maximum amount of water vapor that can be
contained by the temperature at that time). Automatically observed by capacitive

hygrometer.

Observation period: 1 hour,
unit: %

Cloudiness (e total cloud is the 10th fraction of the sky that all clouds cover. Visually observed
manually.

Observation period: 1 hour,
unit: 1/10

Precipitation
Precipitation is measured liquid precipitation such as rain and dew rain or or by melting
solid precipitation, such as snow or hail. Mainly automatically observed with conductive

precipitators or weight-type precipitators.

Observation period: 1 hour,
unit: mm

Solar radiation Short wave radiation or insolation of solar radiation with a wavelength of 0.29 to 3.0 μm.
Automatically observed by the Solar System

Observation period: 1 hour,
unit: MJ/m2

Frost Frost is a phenomenon in which ice crystals are attached to the ground or an object on the
ground by sublimation. Visually observed manually.

Observation period: 1 hour,
unit: 0 or 1

Table 2: Derived variables.

Period Weather factor Descriptive statistics

For 1 day (from noon the day before to noon the next day)

Temperature

Min, max, difference (max-min), mean, sum, standard
deviation

Humidity
Wind speed
Cloudiness
Precipitation

For 3 days (from 3 days prior to time of occurrence) Precipitation Mean, sum
For 7 days (from 7 days prior to time of occurrence) Precipitation Mean, sum

Table 3: Count of frost occurrence and nonoccurrence in the
dataset.

Dataset Occurrence status Count

Training and validation set Frost (O) 21769
Frost (X) 71387

Total training and validation set 93156

Testing set Frost (O) 9290
Frost (X) 30635

Total training and validation set 39925

Validation Fold Training Fold

1st Result 1

Result 2

Result 3
Final Result
=

i=1

5

5
1 Resulti

Result 4

Result 5

2nd

3rd

4th

5th

Figure 1: K-fold cross-validation process.
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(e AUC refers to the area under the receiver operating
characteristic (ROC) graph curve, revealing the performance
of the classification model at all cut-off points. Its value was
between 0.5 and 1, and a value closer to 1 indicates better
model performance [22]. Accuracy indicates how well the
model fits in the whole case. Precision is the rate of actual
frost from predicted frost, and the recall value is the rate at
which frost is predicted when actual frost is observed. (e
F1-score is a harmonized average of the precision and recall,
primarily used when the data between classifications are
severely unbalanced. (e CSI is the hit rate of frost oc-
currence classifications excluding TNs. In natural condi-
tions, far fewer frost phenomena cases occur than
nonoccurrence cases. (e CSI is considered the most im-
portant indicator because predicting frost occurrence is
more important than predicting nonoccurrence [23]. Per-
formance indicators closer to 1 indicate better performance.
(e evaluation indicators are defined in Equation (5) (except
the AUC):

Accuracy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 �
2 times Precision times Recall

Precision + Recall
,

andCSI �
TP

TP + FP + FN
.

(5)

Table 5 lists the results verified with various hyper-
parameters. Although the performance was similar for each
hyperparameter, the model adopted a maximum depth of 7
and a learning rate of 0.1, with the highest accuracy of 0.901
and an AUC of 0.944. (e variable importance in the
XGBoost model is depicted in Figure 2. (e lowest tem-
perature was the most important variable in XGBoost,
followed by the minimum wind speed, standard deviation in
temperature, maximum humidity, average wind speed, av-
erage precipitation, average cloudiness, average humidity,
sum of total solar radiation time, maximum cloudiness, and
cumulative precipitation over 3 days.

3.3. Comparison of Model Performance Evaluation Using
K-MeansClustering. (e XGBoost model was applied to the
testing data with the selected hyperparameters. When the
model performance evaluation index was calculated for each

station point, the performance greatly differed for each
point. However, some observation points had fewer than 100
cases due to randomization, so the reliability of evaluating
the model performance by branch was low. (us, the model
performance was evaluated by dividing groups using the k-
means method with weather variable characteristics.

In addition, k-means clustering was calculated with the
average value of the 24 h minimum temperature, minimum
wind speed, standard deviation in temperature, maximum
humidity, average wind speed, average precipitation, and
average cloudiness, which were important variables in
XGBoost. (e calculation of the silhouette score to deter-
mine the number of clusters is presented in Figure 3, and
accordingly, clustering was classified into two groups by the
highest silhouette value.

(e characteristics of the classified group were drawn in
a boxplot, as illustrated in Figure 4. Group 1 had a high
minimum temperature, and the standard deviation in
temperature was lower than that of Group 2. (e average
precipitation, clouds, humidity, and wind speed-related
indices were higher than those for Group 2, which seems to
be close to the coastal climate. (e visualization in
Figure 5(a) indicates that, by reducing the data dimension
using the principal component analysis (PCA), the island
belongs only to Group 1, and 75% of Group 1 is an island.
Group 1 was judged to be a coastal climate, and the distance
from each observation point to the nearest coast and the
altitude of the observation point were calculated
(Figure 5(b)). For Group 1, the observation point and
coastline were close for many points, and the altitude was
low.

(e frequency of frost occurrence (number of frost
occurrences/total cases) was also about 6.3% in Group 1 and
28.9% in Group 2, which was much higher. It was confirmed
that the distribution pattern of weather factors varies
depending on the location, and the frost incidence rate varies
accordingly. (erefore, the points with strong coastal cli-
mate characteristics were classified into Group 1, and those
with inland climate characteristics were classified into
Group 2. (e accuracy was calculated by classifying them as
existing results, as presented in Table 6.

(e accuracy results were very different depending on
the group. For Group 1, the accuracy was high, but the
precision, recall, F1-score, and CSI scores were lower than
those of Group 2. In particular, the CSI was 0.346 in Group 1
and 0.668 in Group 2, which was about twice the difference.

3.4. Comparison of Model Performance considering the Frost
Occurrence Environment. (e k-means clustering method
confirmed that the distribution pattern of the meteorological
factors was very different depending on the geographical

Table 4: Confusion matrix.

Predicted
Frost (O) Frost (X)

Actual Frost (O) True positive (TP) False negative (FN)
Frost (X) False positive (FP) True negative (TN)
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characteristics. (e distance from the observation point to
the nearest shoreline and the altitude of the observation
point were reflected as additional input variables to reflect
the geographic characteristics modeled on XGBoost.(e top

15 variables of importance are provided in Figure 6(a). (e
distance to the coastline and altitude were selected as the 9th
and 11th important variables, respectively, and wind speed
(min/average), temperature (min/average), humidity
(maximum/average), precipitation average, average cloud-
iness, and total solar radiation time were still important
variables.

(e model result is presented in Table 7. Accuracy rose
slightly compared to when only the weather variable was
considered, but the values of precision in Group 1 and the
precision and recall in Group 2 increased, and as a result, the
F1-score and CSI values in both groups increased. Overall,
geographic characteristics are valid variables in predicting
frost, considering that the values of all indicators improved.

In addition, considering that the frequency of frost
occurrence greatly differed depending on the group, this
study proposes a method to determine this information.
First, once frost occurs, frost is likely to occur the next day;
therefore, a linear correlation was examined to determine
the continuity of frost occurrence. (e linear correlation
coefficient was quite high at 0.65, with the previous day’s
frost occurrence variable and the day’s frost occurrence
variable. (e previous day’s frost occurrence was reflected as
an input variable, and the model result is presented in
Table 8. All indicators including the F1-score and CSI values
of Group 1 and Group 2 increased significantly. (e variable
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Figure 3: Calculation of the silhouette score in k-means clustering.
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Figure 2: Variable importance of weather variables in the XGBoost model.

Table 5: Optimization hyperparameter validation.

Max depth Learning rate AUC (area under the Curve) Accuracy
3 0.1 0.938 0.895
7 0.1 0.944 0.901
10 0.1 0.944 0.901
3 0.5 0.942 0.900
7 0.5 0.938 0.897
10 0.5 0.936 0.896
3 1 0.938 0.896
7 1 0.924 0.883
10 1 0.926 0.887
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Figure 4: Box plot by group: (a) minimum temperature, (b) standard deviation in temperature, (c) average precipitation, (d) average
cloudiness, (e) minimum wind speed, (f ) average wind speed, (g) average humidity, and (h) maximum humidity.

Advances in Meteorology 7



importance (top 15 variables) of the XGBoost model with
frost occurrence the previous day added as a variable is
presented in Figure 6(b). Frost from the previous day was
overwhelmingly considered the most important variable,
followed by the temperature (standard deviation), lowest
wind speed, and maximum humidity.

Second, the frequency of frost differs greatly between coastal
and inland areas; thus, it was decided to check whether learning
was particularly poor for the coastal areas.(e imbalance of the
frost generation case was oversampled with SMOTE to create
balanced data. In addition, SMOTE provides more related
minority class samples to learn from, allowing a learner to carve
broader decision regions, leading to more coverage of the
minority class [24]. In the training data, the frost rate in coastal
areas was 6.3%, and in inland areas, the rate was 28.9%;
therefore, it would be challenging to generate frost cases in
coastal areas to oversample using SMOTE. (us, coastal and
inland areas were separated from the training data and pre-
processed using SMOTE, correcting the imbalance in frost data.

In addition, SMOTE increases the rate of frost detection
(recall). (e number of frost occurrences in the training data

was adjusted to be the same as the number of nonfrost
occurrences. (en, the coastal and inland areas were
modeled separately with XGBoost using weather and geo-
graphic factors and the previous day’s frost as input vari-
ables. (e top 15 important variables are presented in
Figure 7.(e lowest temperature and whether frost occurred
the previous day are still important variables for both
groups. However, there was a ranking difference in the
variable importance between coastal and inland regions.
With coastal characteristics, Group 1 demonstrated a higher
importance of geographic variables (distance from coastline
and altitude) and variables to recognize land conditions,
such as past precipitation information (total precipitation
the previous day, total for 3 days, and total for 7 days).

(e result of the model fit is in Table 9. (e recall scores
rose for coastal and inland areas, but the accuracy, F1-score,
and CSI score fell due to a significant decrease in precision.
Increasing the frost generation case with SMOTE made it
possible to increase the number of cases predicting frost, but
the increase in FP affected other performance indicators. As
a result, when comprehensively examining the F1-score and
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Figure 5: (a) K-means clustering visualization using the principal component analysis and (b) coastal distance and altitude scatter plot by
group.

Table 6: Results by group with XGBoost using weather variables.

Group TN (true negative) FP (false positive) FN (false negative) TP (true positive) Accuracy Precision Recall F1 CSI
1 9174 144 358 266 0.950 0.649 0.426 0.515 0.346
2 19982 1335 1987 6679 0.889 0.833 0.771 0.801 0.668
Total 29156 1479 2345 6945 0.904 0.824 0.748 0.784 0.645
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Figure 6: (a) Variable importance of weather and geographic variables in the XGBoost model and (b) variable importance of weather,
geographic, and frost (a day before) variables in the XGBoost model.

Table 7: Results by group with XGBoost using weather and geographic variables.

Group TN (true negative) FP (false positive) FN (false negative) TP (true positive) Accuracy Precision Recall F1 CSI
1 9205 113 364 260 0.952 0.697 0.417 0.522 0.353
2 19959 1358 1837 6829 0.893 0.834 0.788 0.810 0.681
Total 29164 1471 2201 7089 0.908 0.828 0.763 0.794 0.659

Table 8: Results with XGBoost by group using weather, geographic, and frost (a day before) variables.

Group TN (true negative) FP (false positive) FN (false negative) TP (true positive) Accuracy Precision Recall F1 CSI
1 9204 114 296 328 0.959 0.742 0.526 0.615 0.444
2 20320 997 1562 7104 0.915 0.877 0.820 0.847 0.735
Total 29524 1111 1858 7432 0.926 0.870 0.800 0.834 0.715
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Figure 7: (a) Variable importance of XGBoost with all variables using SMOTE techniques in Group 1 and (b) variable importance of
XGBoost with all variables using SMOTE techniques in Group 2.

Table 9: Results of XGBoost by group with all variables using the SMOTE technique.

Group TN FP FN TP Accuracy Precision Recall F1 CSI
1 8995 323 225 399 0.945 0.553 0.639 0.593 0.421
2 19953 1334 1402 7264 0.909 0.845 0.838 0.842 0.726
Total 28948 1657 1627 7663 0.918 0.822 0.825 0.824 0.700

Table 10: Summary of XGBoost results by group.

Group
SMOTE X SMOTE O

Weather Weather + geographic Weather + geographic + previous day’s frost Weather + geographic + previous day’s
frost

Island

Accuracy 0.950 0.952 0.959 0.945
Precision 0.649 0.697 0.742 0.553
Recall 0.426 0.417 0.526 0.639

F1-score 0.515 0.522 0.615 0.593
CSI 0.346 0.353 0.444 0.421

Inland

Accuracy 0.889 0.893 0.915 0.909
Precision 0.833 0.834 0.877 0.845
Recall 0.771 0.788 0.820 0.838

F1-score 0.801 0.810 0.847 0.842
CSI 0.668 0.681 0.735 0.726
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the CSI index, which is sensitive to both FP and FN, SMOTE
was used to increase the learning rate, but the performance
was not significantly improved.

4. Conclusion

As displayed in Table 10, summarizing the frost prediction
results of XGBoost, the regional accuracy was significantly
different. With weather variables, the observation stations
were divided into two groups to determine the character-
istics of the group. Group 1 included 75% of the islands. In
addition, Group 1 had a coastal climate, considering that the
standard deviation in temperature was lower than that for
Group 2, and the lowest temperature, average precipitation,
cloud volume, humidity, and wind speed-related indices
were higher. As a result of separately calculating the accuracy
of regions with coastal climatic characteristics and regions
with inland climatic characteristics, it was found that the
precision and recall scores of coastal regions were much
lower than those of inland regions.

First, geographic elements were added to the weather
variables to improve accuracy. For the F1-score and CSI, the
comprehensive indices of precision and recall, the coastal
and inland areas improved.

Next, the difference in the frost occurrence rate was
supplemented. To this end, the continuity of the frost
generation was considered. Whether frost occurred the
previous day was added as an input variable, and as a result,
the scores were greatly improved in all performance indi-
cators for coastal and inland areas. In particular, the CSI
increased by about 10% in coastal areas, from 35.3% to
44.4%. Second, the SMOTE technique was used to improve
learning ability. Although more predictions of frost were
made, the precision score dropped significantly as the
prediction was often wrong. However, by fitting the models
by group in the SMOTE approach, we found that there is a
significant ranking difference of variable importance
depending on the group. (rough this, it is necessary to
understand and apply the geographical characteristics in
predicting frost occurrence.

Based on the results of various studies, it was confirmed
that the characteristics of the terrain affect the occurrence of
frost, and the contribution of frost occurrence differs for
each terrain. If specific standards for important factors for
frost occurrence are established by region, accuracy can be
improved through the reorganization of variables. In the
future, various approaches to improving frost prediction are
expected to contribute to efficient frost alarms and pre-
ventive activities.
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[9] É. S. Diniz, A. S. Lorenzon, N. L. M. de Castro et al.,
“Forecasting frost risk in forest plantations by the combi-
nation of spatial data and machine learning algorithms,”
Agricultural and Forest Meteorology, vol. 306, Article ID
108450, 2021.

[10] A. Zendehboudi and X. Li, “Robust predictive models for
estimating frost deposition on horizontal and parallel sur-
faces,” International Journal of Refrigeration, vol. 80,
pp. 225–237, 2017.

[11] A. L. Diedrichs, F. Bromberg, D. Dujovne, K. Brun-Laguna,
and T. Watteyne, “Prediction of frost events using machine
learning and IoT sensing devices,” IEEE Internet of 2ings
Journal, vol. 5, no. 6, pp. 4589–4597, 2018.

[12] M. Rostamian and A. H. Halabian, “Statistical analysis of the
frequency and stability of the frost days in southern Khorasan
Province, using Markov chain Model,” Spatial Planning,
vol. 8, no. 2, pp. 39–60, 2018.

[13] L. Ding, K. Noborio, and K. Shibuya, “Frost forecast using
machine learning-from association to causality,” Procedia
Computer Science, vol. 159, pp. 1001–1010, 2019.

[14] Y. Tamura, L. Ding, K. Noborio, and K. Shibuya, “Frost
prediction for vineyard using machine learning,” in Pro-
ceedings of the 2020 Joint 11th International Conference on Soft
Computing and Intelligent Systems and 21st International
Symposium On Advanced Intelligent Systems (SCIS-ISIS),
pp. 1–4, Hachijo Island, Japan, 2020.

[15] J. R. Rozante, E. R. Gutierrez, P. L. Silva Dias, A. Almeida
Fernandes, D. S. Alvim, and V. M. Silva, “Development of an
index for frost prediction: technique and validation,” Mete-
orological Applications, vol. 27, no. 1, Article ID e1807, 2020.

[16] S. Wassan, C. Xi, N. Z. Jhanjhi, and L. Binte-Imran, “Effect of
frost on plants, leaves, and forecast of frost events using
convolutional neural networks,” International Journal of
Distributed Sensor Networks, vol. 17, no. 10, Article ID
155014772110537, 2021.

[17] H. Kim and S. Kim, “A study on frost prediction model using
machine learning,” 2e Korean journal of applied statistics,
vol. 35, no. 4, pp. 543–552, 2022.

[18] H. Zheng and Y. Wu, “A XGBoost model with weather
similarity analysis and feature engineering for short-term
wind power forecasting,” Applied Sciences, vol. 9, no. 15,
p. 3019, 2019.

[19] E. W. Forgy, “Cluster analysis of multivariate data: efficiency
versus interpretability of classifications,” Biometrics, vol. 21,
pp. 768-769, 1965.

[20] K. R. Shahapure and C. Nicholas, “Cluster quality analysis
using silhouette score,” in Proceedings of the 2020 IEEE 7th
International Conference on Data Science and Advanced
Analytics (DSAA), pp. 747-748, Sydney, NSW, Australia,
2020.

[21] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation,”
Encyclopedia of database systems, vol. 5, pp. 532–538, 2009.

[22] M. P. Muller, G. Tomlinson, T. J. Marrie et al., “Can routine
laboratory tests discriminate between severe acute respiratory
syndrome and other causes of community-acquired pneu-
monia?” Clinical Infectious Diseases, vol. 40, no. 8,
pp. 1079–1086, 2005.

[23] I. Noh, H. W. Doh, S. O. Kim, S. H. Kim, S. Shin, and S. J. Lee,
“Machine learning-based hourly frost-prediction system
optimized for orchards using automatic weather station and
digital camera image data,” Atmosphere, vol. 12, no. 7, p. 846,
2021.

[24] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: synthetic minority over-sam-
pling technique,” Journal of Artificial Intelligence Research,
vol. 16, pp. 321–357, 2002.

12 Advances in Meteorology


