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Global warming and the intensi�cation of extreme temperature events have beenmajor issues around the world in recent decades.
Understanding changes in temperature extremes is critical to assessing and responding to the risks associated with regional
temperature change. �is paper takes the Longtan watershed as the research object, and 11 extreme temperature indices were
calculated based on the meteorological observation data from 1959 to 2017. �e Mann-Kendall trend mutation test, Empirical
Orthogonal Function, and other methods were used to explore the spatial and temporal distribution characteristics of temperature
extremes. Meanwhile, the simulation e�ects of temperature were analyzed based on 11 CMIP5 climate models, and the extreme
temperature change in 2021–2050 under the high emission scenario RCP8.5 and low emission scenario RCP4.5 was estimated.�e
main results are as follows: both the warm-related indices and the extreme minimum temperature show an increasing trend. �e
cold-related frequency indices all show a decreasing trend. �e spatial distribution of most temperature extremes increases or
decreases from southwest to northeast, and the �uctuation is obvious with the alternation of positive and negative positions of the
time. In the next 30 years, compared with the reference period 1961–1990, under the RCP4.5, the multiyear average of the Extreme
Tmax and the multiyear average of the Extreme Tmin increase by 2.1°C and 0.4°C, respectively, and by 2.0°C and 0.3°C under the
RCP8.5. Overall, the frequency of extreme cold events decreases, and the frequency of extreme warm events increases. �ere is a
warming trend in temperature extremes.

1. Introduction

Since the 20th century, as the global climate continues to
warm, the frequency of extreme temperature events has
increased signi�cantly, and a series of problems caused by
climate change have aroused wide public concern. For ex-
ample, the summer heat wave that occurred in Japan in 2007
reached a maximum temperature of 40.9°C [1]. An extreme
cold surge event caused record-breaking low temperatures

in East Asia during 20–25 January 2016 [2]. From the 1960s
to the 2010s, the Diurnal temperature range (DTR) de-
creased signi�cantly in China, the warm extremes increase
signi�cantly, and the hot extremes continue the signi�cant
warming trend nationally and in climate regions of East
China, Southwest China, and the Tibetan Plateau [3–5].
Regarding Iturbide et al. [6] bias adjustment for predicted
changes in extreme heat, the results unveil a stronger and
more rapid increase of the frequency of heat extremes in the
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future than that onemay expect using the rawmodel outputs
alone. Long-term changes to Earth’s energy balance are
increasing the frequency and intensity of many extreme
events and the likelihood of compound events, with trends
being projected to accelerate under certain greenhouse gas
emissions scenarios [7]. ,e intensification of extreme
temperature events has caused serious damage to ecological
and socioeconomic environments. According to the Fifth
Assessment Report of the International Intergovernmental
Panel on Climate Change (IPCC), the global average tem-
perature increased by 0.65–1.06°C from 1880 to 2012. As
global warming increases, extreme temperature events will
occur frequently in the future [8]. ,erefore, it is important
to analyze the historical spatial and temporal variability of
temperature extremes and their future trends. Differences
between climate models tend to make the results of climate
predictions uncertain, and it is necessary to evaluate the
simulation effects of different models [9]. ,erefore, a
suitable climate model for the study basin needs to be se-
lected to provide the basis for future urban strategy devel-
opment. ,e increase in extreme temperature events can
have significant negative impacts on society, which include
changes in ecosystems, disruption in food production and
water supply, destruction of infrastructure and residential
areas, and increased morbidity and mortality [10, 11].
Analysis of temperature extremes is important in terms of
helping to carry out meteorological disaster prediction and
early warning studies and reducing the negative impacts of
extreme temperature events on local production and life.

In recent years, extreme temperature events have been
extensively studied by many scholars from different
perspectives. On a global scale, the cold days (TX10p) and
cold nights (TN10p) had decreased, and the warm days
(TX90p) and warm nights (TN90p) had increased across
Indonesia over the past 30 years, showing a clear warming
trend [12]. New Zealand [13], Nepal [14], Barbados, and
Caribbean [15] all showed trends of increasing extreme
high temperature events and decreasing extreme low
temperature events. For China, the trends of extreme
temperatures were consistent with global trends. Some
scholars [16] have studied extreme temperatures in
northwest China from 1960 to 2004 and concluded that
the spatial distribution of extreme high and extreme low
temperature events could be divided into five subregions,
namely, northern Qinghai and western Gansu, northern
Xinjiang, southern Xinjiang, eastern northwest China,
and southern Qinghai; all of these five regions showed a
significant increasing trend of extreme high temperature
events. Extreme temperatures have regional and seasonal
characteristics, with increasing trends in both autumn and
winter, and decreasing trends in both spring and summer.
,e extreme low temperature events have a significant
increasing trend in the northern basin of China, while the
extreme high temperature events have an insignificant or
even decreasing trend in the southern region of China
[17]. Zhan et al. [18] analyzed the extreme temperature
characteristics of global land regions based on coupled 37
climate model simulations of CMIP5, and the results
showed that the probability of both dry/wet and hot/cold

events will increase under both RCP4.5 and RCP8.5
emission scenarios.

Although many scholars have used different methods to
study the characteristics of the spatial and temporal dis-
tribution of temperature extremes and future trends, there
are still some urgent problems that need to be solved: (1)
Most studies have used a single or inadequate index to
analyze the spatial and temporal characteristics of temper-
ature extremes, but comprehensive analysis of extreme
temperatures is still relatively rare; (2) no single climate
model has been accepted as a global standard, and how to
select the best climate models still requires further study; and
(3) there is still lack of long-tern temperature extremes trend
analysis in Longtan watershed. ,erefore, this study aims to
comprehensively examine temporal-spatial characteristics
and future trends of temperature extremes in the watershed.
It can contribute to the response to climate change, and
reduce the negative impacts of extreme temperature events
on the ecological environment and people’s production and
life. ,e research framework mainly includes the following:
(1) analyzing the spatial and temporal characteristics of
extreme temperature changes; (2) selecting the climate
models; (3) predicting the extreme temperature changes in
the watershed from 2021 to 2050.

2. Study Area and Data

Longtan watershed is distributed at the junction of Yunnan,
Guizhou, and Guangxi provinces with a geographical lo-
cation of 102°14′E∼107°32′E, 23°11′N∼27°01′N. ,e water-
shed covers an area of 98500 km2. ,e topography of the
watershed gradually decreases from northwest to southeast.
It is located in the southeast of the Yunnan-Guizhou Plateau
and the area south of the Guizhou Plateau. ,e terrain is
rugged and complex with plateaus, mountains, hills, and
basins intermixed. ,e limestone is widely distributed, the
landform is mainly an erosion landform, and karst devel-
opment is extensive. ,e basin belongs to the subtropical
climate zone, with high temperatures and rain in summer,
and dry winters with little rain. ,e average annual tem-
perature is 20.1°C, the extreme maximum temperature is
38.9°C, and the extreme minimum temperature is −2.9°C.
,e Longtan Water Control Project was prepared for
construction in 1990s in the basin, with an installed capacity
of 6.3 million kw and an annual power generation capacity of
18.7 billion kw·h. It is a landmark project of “west-east power
transmission” and a key project of China’s Western De-
velopment Policy.

In this study, historical observations of daily maximum
and daily minimum temperatures from 15 meteorological
stations within and adjacent to the Longtan watershed were
obtained from the China Meteorological Data Center
(https://data.cma.cn/wa). ,e daily missing data of meteo-
rological stations for some years were interpolated by using
the correlation of adjacent stations. ,e distribution of
stations is shown in Figure 1. ,e temporal and spatial
characteristics of extreme temperature were analyzed based
on the 27 extreme climate indices proposed by the ETCCDI
expert group [19]. Longtan watershed belongs to the
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subtropical climate zone, and some indices show a little
temporal trend, and some indices are continuously zero,
such as the number of frost days, which is extremely rare in
the watershed. According to the situation of the study area,
11 extreme temperature indices including both cold and
warm extreme temperature were selected from a total of 27
extreme climate indices, which are shown in Table 1, in-
cluding 3 intensity indices, 6 frequency indices, and 2 du-
ration indices. All extreme temperature indices in this study
were annualized using 1961–1990 as the base period. Model
selection and analysis of future changes in extreme tem-
peratures referring to the results of Chen et al. [20] and Xiao
et al. [21] assessment of the simulation capability of CMIP5
climate models in the Chinese region, 11 CMIP5 climate
models with a daily scale were selected, and the data under
the high emission (RCP8.5) and low emission (RCP4.5)
scenarios from 2021 to 2050 were applied to study in the
Longtan Basin.,e climate models are shown in Table 2, and
the data of the climate models are obtained from the CMIP5
official website (https://esgf-node.llnl.gov/search/cmip5/).
To compare those with the station data, downscaling
methods are often used to process the model output data.
Due to the limited information available, the inverse dis-
tance weighted (IDW) method [22] was adopted to
downscale the grid data of the model information to the
sites; that is, the four grid points of the grid were interpolated
to the stations.

3. Methodology

,e main research methods applied in this study can be
divided into four parts. (1) ,e Kendall rank correlation
method [23], Spearman rank correlation method [24], and
linear trend regression method [25] were used for signifi-
cance testing, and the trends of each extreme temperature
index were analyzed by combining the three methods. ,e
M-K trend mutation test was adopted to further analyze the
variation characteristics of extreme temperature in different
years, combined with the sliding t-test to analyze the mu-
tation trend [26]. (2) ,e Empirical Orthogonal Function
(EOF) method was applied to analyze the spatial charac-
teristics of extreme temperature. ,e significance of the
decomposed modes was tested using the North criterion.
,en, the significant modes and their corresponding time
coefficients were analyzed. ,e mode that passes the sig-
nificance test maximally characterized the distribution
structure of the variability of extreme temperature in the
Longtan watershed. (3) ,e simulation effects of 11 climate
models were evaluated by composite rating metrics to select
a suitable climate model for the Longtan watershed. (4)
Based on the selected climate model, the future extreme
temperature changes in the basin under different emission
scenarios were analyzed.

3.1. M-K Trend Mutation Test. Mann-Kendall trend muta-
tion test is a widely used trend analysis method in the field of
meteorology.,e test series does not need to follow a certain
distribution. ,e method is not disturbed by outliers and is

easy to calculate [27–29]. For a sequence x1, x2,. . .,xn of n
sample sizes, construct the statistical variables:

Sk � 􏽘
k

i�1
ri k � 2, 3, . . . , n,

ri �
1, xj > xi,

0, xj ≤ xi,

⎧⎨

⎩ j � 1, 2, . . . , i,

(1)

where Sk denotes the total number of ith sample
xi >xj(1≤ i≤ j). Assuming that the Sk are randomly in-
dependent, their means and variances are calculated as
follows:

E Sk( 􏼁 �
k(k − 1)

4
,

Var Sk( 􏼁 �
k(k − 1)(2k + 5)

72
,

k � 1, 2, . . . , n.

(2)

,e standardized statistics for the one-tailed test are
formulated as

UFk �
Sk − E Sk( 􏼁( 􏼁

�������
Var Sk( 􏼁

􏽱 , (3)

where UF1 � 0. When UFk> 0, the sequence shows an
upward trend; otherwise, it shows a downward trend. At the
5% significance level, the hypothesis of no trend is rejected if
|UFk|> 1.96. ,e sequence x1, x2, ...., xn is arranged in re-
verse order, and the above calculation procedure is repeated
to obtain the statistic UBk sequence. When the intersection
of two curves (UBk and UFk) lies between the significance
levels, the intersection is the mutation point.

3.2. Empirical Orthogonal Function (EOF) Method.
Empirical Orthogonal Function (EOF) can separate the
spatial distribution structure and time-series variation of
meteorological element variable fields [30]. ,e calculation
is as follows:

(1) Perform distance leveling on the data and output the
data matrix Xm× n, where m denotes the number of
stations, and n denotes the number of years.

(2) Calculate the cross product of X and XT to obtain the
covariance matrix Cm×m.

(3) Compute the characteristic root (λ1,λ2,...,λn) and the
eigenvector Vm×m of Cm×m, satisfying

Cm×m × Vm×m � Vm×m × Em×m,

E �

λ1 0 · · · 0

0 λ2 · · · 0

· · · · · · · · · · · ·

0 0 · · · λm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(4)
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Each characteristic root corresponds to a column of
eigenvector values, which is the EOF mode, and
λ1 ≥ λ1 ≥ · · · ≥ λm ≥ 0.

(4) Project the EOF onto the original matrix and cal-
culate the time coe§cients PC corresponding to the
spatial eigenvectors.
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Figure 1: Distribution of main river systems and stations.

Table 1: De�nition of extreme temperature index.

Index Name De�nition Unit
Intensity index

1 TXx Extreme Tmax �e maximum value of daily Tmax in a year °C
2 TNn Extreme Tmin �e minimum value of daily Tmin in a year °C
3 DTR Diurnal temperature range Average di�erence between annual daily Tmax and Tmin °C

Frequency index
4 SU25 Summer days Total number of days with daily Tmax >25°C d
5 FD Frost days Total number of days with daily Tmin <0°C d
6 TX90p Warm days Annual count of daily Tmax >90% percentile value d
7 TN90p Warm nights Annual count of daily Tmin >90% percentile value d
8 TX10p Cold days Annual count of daily Tmax <10% percentile value d
9 TN10p Cold nights Annual count of daily Tmin <10% percentile value d

Duration index
10 WSDI Warm spell duration indicator Annual count of at least six consecutive days of Tmax >90% percentile value d
11 CSDI Cold spell duration indicator Annual count of at least six consecutive days of Tmin <10% percentile value d
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(5) Calculate the variance contribution of the
eigenvectors.

Rk �
λk

􏽐
m
i�1 λi

× 100%. (5)

,e cumulative variance contribution of the first p
vectors is

G �
􏽐

p

i�1 λi

􏽐
m
i�1 λi

. (6)

(6) Significance tests were using the North criterion. At
the 95% confidence level, the error rate of the ei-
genvalues is

ej � λj

��
2
n

.

􏽲

(7)

If λ satisfies, Δ � λj − λj+1 − ej ≥ 0, it means that
the modes correspond to two eigenvalues that are in-
dependent of each other and they are valuable. ,e
characteristic roots are checked in turn, and the error
range is calculated. If the error ranges of two adjacent
characteristic roots have overlapping parts, the

significance of the two characteristic roots does not differ
significantly.

3.3. Climate Model Simulation Evaluation Indicators. To
better reflect the degree of fit between the simulated and
measured values, the following statistics were chosen for this
study:

(1) Root mean square error:

RMSE �

����������������

1
n

􏽘

n

i�1
(Xoi − Xmi)

2

􏽶
􏽴

. (8)

(2) Correlation coefficient:

r �
􏽐

n
i�1(Xmi − Xm)(Xoi − Xo)

���������������

􏽐
n
i�1 (Xoi − Xo)

2
􏽱

􏽐
n
i�1 (Xmi − Xm)

2
. (9)

(3) Mean absolute error:

MAE �
1
n

􏽘

n

i�1
|Xmi − Xoi|. (10)

Table 2: CMIP5 climate model information.

Abbreviation of GCM Model name Institution/Countries Resolution (Lon× Lat)
1 BC1 BCC-CSM1.1 BCC/China 128× 64
2 BNU BNU-ESM GCESS/China 128× 64
3 CaE CanESM2 CCCMA/Canada 128× 64
4 CCS CCSM4 NCAR/USA 288×192
5 GF3 GFDL-ESM2G NOAA GFDL/USA 144× 90
6 GF4 GFDL-ESM2M NOAA GFDL/USA 144× 90
7 IP2 IPSL-CM5A-MR IPSL/France 144×143
8 MI3 MIROC-ESM MIROC/Japan 128× 64
9 MI4 MIROC-ESM-CHEM MIROC/Japan 128× 64
10 MP1 MPI-ESM-LR MPI-M/Germany 192× 96
11 NE1 NorESM1-M NCC/Norway 144× 96

Table 3: Results of the extreme temperature trend test.

Index Kendall’s rank correlation
method

Spearman rank correlation
method

Linear trend
regression

Significance
test Trend Interannual

variability °C·(10a)−1

TXx 2.99 3 2.81 Significant Increase 0.14
TNn 4.39 4.98 4.66 Significant Increase 0.37
DTR 4.58 5.29 5.97 Significant Decrease −0.12
SU25 3.42 3.61 3.56 Significant Increase 2.4
FD 4.3 4.76 4.6 Significant Decrease −1.7
TX90p 4.3 4.66 4.88 Significant Increase 1.1
TN90p 6.37 9.05 9.41 Significant Increase 2.3
TX10p 1.14 1.17 1.19 Nonsignificant Decrease −0.2
TN10p 5.29 6.25 6.52 Significant Decrease −1.0
WSDI 4.27 4.61 4.49 Significant Increase 1.9
CSDI 0.86 0.52 0.08 Nonsignificant Decrease −0.2
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Figure 2: M-K mutation trend test results.
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(4) Nash efficiency coefficient:

NSE � 1 −
􏽐

n
i�1 (Xoi − Xmi)

2

􏽐
n
i�1 (Xoi − Xo)

2 . (11)

(5) Trend error

,ere is an error between the linear trend of the sim-
ulated series and the measured series:

where Xmi is the simulated value, Xoi is the measured
value, and n is the total number of time series.

3.4. Composite Rating Metrics. Composite Rating Metrics
(MR) is a method to judge the consistency and get a com-
posite ranking based on the ranking of each rating index
[31]. In this study, multiple statistical indicators of annual
and monthly scale simulated and measured series are cal-
culated separately, and then each model is ranked according
to the merit of the fit, and the best climate model is selected
by judging the comprehensive simulation ability of each
model.

MR � 1 −
1

nm
􏽘

n

i�1
ri, (12)

where m is the number of models involved in the eval-
uation, n is the number of indexes used for the evaluation,
and ri is the overall ranking of each model (i � 1,2,...,11),
and the model with the best simulation ability has a ri
value of 1. ,e closer the MR is to 1, t the better the model
simulation is.

4. Results

4.1. Temporal Variation Characteristic

4.1.1. Variation Tendency. ,e trend test results of the
change of the mean extreme temperature indices in the basin
for the past 59 years are shown in Table 3. ,e significance
level was selected as 0.05, and the trend was obtained by
combining the three methods of testing. ,e results of the
three methods are consistent. ,erefore, they have certain
reliability. All indices passed the significance trend test at the
0.05 confidence level except for the cold days (TX10p) and
the cold spell duration indicator (CSDI). Overall, the warm-
related indices all showed an increasing trend.

To further analyze the trend changes of the extreme
temperature indices in different years, the M-K trend test
was adopted in this study and used to calculate the UF, thus
analyzing the changes of each index in different years. ,e
results of the analysis are shown in Figure 2. Most indices
tend to change significantly in trend after 2000, with large
fluctuations in the 1980s and 1990s. TXx, TNn, TX90p, and
TN90p all showed an increasing trend around 1990, while
DTR, FD, and TN10p all showed a decreasing trend and
fluctuated greatly in the 1960s. SU25 and WSDI showed a
decreasing trend at first and then an increasing trend.

4.1.2. Mutation Test. ,e results of the extreme temperature
mutation trend test are shown in Figure 2, when there were
multiple intersections in the M-K mutation test, the mu-
tation points were determined by combining the results of
the sliding t-test. ,e intersection of UF and UB curves of
TXx at the confidence interval is 2002, indicating that TXx
mutated around 2002. TNn mutated around 1986, DTR
mutated around 1981, SU25may have mutated around 2002,
and FD mutated around 1990. ,e mutation time of TX90p,
TN90p, and TX10p was 2001, 1997, and 2012, respectively.
TN10p was mutated around 1994, and WSDI was mutated
in 2002.,e trend of CSDI is not significant, and UF and UB
curves have multiple intersection points within the confi-
dence interval. Combined with the sliding t-test results, the

Table 4: Variance contribution rate and North significance test
results of the first four modes of extreme temperature index.

TXx TNn
EOF1 EOF2 EOF3 EOF4 EOF1 EOF2 EOF3 EOF4

R
(%) 42 15 12 9 54 16 8 5

G
(%) 42 57 69 78 54 70 78 84

∆ 4 0 0 0 13 2 1 0
DTR SU25

EOF1 EOF2 EOF3 EOF4 EOF1 EOF2 EOF3 EOF4
R
(%) 54 18 9 5 54 14 8 6

G
(%) 54 71 80 85 54 68 75 81

∆ 1 0 0 0 988 112 0 34
FD TX90p

V1 V2 V3 V4 V1 V2 V3 V4
R
(%) 63 17 7 5 66 11 6 5

G
(%) 63 80 87 91 66 77 83 89

∆ 187628 38288 18025 −11414 172 14 −2 6
TN90p TX10p

EOF1 EOF2 EOF3 EOF4 EOF1 EOF2 EOF3 EOF4
R
(%) 71 13 6 3 52 19 9 5

G
(%) 71 83 89 92 52 71 79 85

∆ 351 35 13 5 31 9 2 1
TN10p WSDI

EOF1 EOF2 EOF3 EOF4 EOF1 EOF2 EOF3 EOF4
R
(%) 57 12 7 6 59 12 8 6

G
(%) 57 69 76 83 59 71 78 84

∆ 73 5 −1 2 571 29 7 18
CSDI

EOF1 EOF2 EOF3 EOF4
R
(%) 33 20 13 10

G
(%) 33 52 66 76

∆ 36 15 3 18
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Figure 3: Characteristic root of extreme temperature and 95% con�dence error.
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mean value has no signi�cant jump, and there is nomutation
point. Overall, TNn and DTR had a mutation in the 1980s.
FD, TN90p, and TN10p had mutations in the 1990s. TXx,
SU25, and TX90p had mutations around 2000.

4.2. Spatial Variation characteristics. �e variance contri-
bution rate, cumulative variance contribution rate, and North
test results of the EOF for the �rst four modes decomposed
from the extreme temperature are shown in Table 4. �e �rst
three modes of TX90p and the �rst two modes of TN90p and
WSDI passed the test, and the �rst four modes of the
remaining indices passed the test. Combining the extreme
temperature characteristic roots and 95% con�dence error
(Figure 3), the �rst twomore signi�cant modes and their time
coe§cients were selected for analysis in terms of the intensity
index (TXx, TNn, and DTR), frequency index (SU25, FD,
TX90p, TN90p, TX10p, and TN10p), and duration index
(WSDI, CSDI) of the extreme temperature.

4.2.1. Intensity Indices. As shown in Figure 4, the �rst ei-
genvectors of the extreme temperature intensity indices are
all positive, indicating that the trend of extreme temperature
intensity change in the basin is basically the same, but the
high-value centers are di�erent. �e high-value center of
TXx (V1) is distributed in the mid-basin region and de-
creases in all directions, and the high-value center of TNn
(V1) is in the upper reaches of the watershed. It can be found

that the temporal coe§cients of TXx(PC1) and TNn(PC1)
increase signi�cantly from 1959 to 2017, so both extreme
maximum and extreme minimum temperatures show in-
creasing trends in the past 59 years. �e areas of high values
of DTR (V1) are distributed in the lower part of the basin,
and the amount of change in the areas of high values is
greater than the change in other areas. Combined with the
temporal coe§cients, the temporal coe§cients from 1969 to
2017 show a signi�cant decreasing trend. �erefore, the
diurnal temperature range (DTR) is signi�cantly lower. �e
second eigenvectors are all positive and negatively distrib-
uted, and the negative areas are distributed in the southwest
of the watershed. �e negative areas of TXx (V2) and DTR
(V2) are larger, and the high-value center of TXx (V2) is in
the northeast region, decreasing along the southwest. �e
high-value center of TNn (V2) is in the northern region,
decreasing along the south. �e high-value center of DTR
(V2) is negative and located in the southwest region, de-
creasing along the east. �e positive and negative distri-
bution indicated that the TXx (V2), TNn (V2), and DTR
(V2) represent two types of distribution, that is, the positive
regions with opposite trends of negative regions.

4.2.2. Frequency Indices. As shown in Figure 5, the �rst
eigenvectors of FD (V1), TX10p (V1), and TN10p (V1) are
all positive, indicating that the spatial variation trends of FD,
TX10p, and TN10p are basically the same. �e other ei-
genvectors are positive and negative, but most regions are
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Figure 4: �e �rst and second eigenvectors and their time coe§cients of extreme temperature intensity index.
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Figure 5: �e �rst and second eigenvectors and their time coe§cients of extreme temperature frequency index.
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positive, with small differences in trends. ,e component
values of FD (V1) are distributed along the south-north, with
the center of high values located in the north of the basin and
decreasing to the south. ,e center of high values of TX10p
(V1) is located in the middle part of the watershed, with the
component values decreasing along the surrounding area.
,e values of the other eigenvectors all change along the
southwest or northeast direction, but the locations of the
high-value centers are different. ,e component values of
the second eigenvector were increasing or decreasing along
the southwest-northeast direction, and all of them were
positively and negatively distributed. For example, the
component value of SU25 (V2) tends to decrease along the
southwest to northeast direction, while that of TX10p (V2)
tends to increase. ,e indices with more negative areas of
component values were SU25 (V2), TX90p (V2), and TN90p
(V2). ,e positive high-value center of TN90p (V2) is lo-
cated in the southwest, and the negative high-value center is
located in the southeast part, with an inverse distribution
pattern; that is, southwest increased, and northeast de-
creased, or southwest decreased and northeast increased
distribution pattern.

As can be seen from the time coefficients, SU25 (PC1)
and SU25 (PC2) have relatively smooth trend changes, and
both show an increasing trend after 2007. FD (PC1) has an
overall decreasing trend with four significant fluctuations,
showing an upward and then a downward trend, while FD
(PC2) has relatively stable changes from 1964 to 1996 and a
significant upward trend from 1997 to 2012. TX90p (PC1)
has a decreasing and then increasing trend with the alter-
nation point near 1984. TX90p (PC2) has a significant
fluctuation between 1986 and 1998, while it has an in-
creasing trend before 1986 and was relatively stable after
1998. TN90p (PC1) changed smoothly until 1986, showed a
clear upward trend after 1986, and gradually stabilized after
2002. TN90p (PC2) showed an upward trend after 1990 and
a downward trend after 2003. TX10p (PC1) showed a
fluctuating change, with an upward trend from 1964 to 1971.

TX10p (PC2) showed a relatively stable change until 2004
and an increasing trend after 2004. TN10p (PC1) showed a
decreasing trend, TN10p (PC2) showed two significant
fluctuations in 1965–1977 and 2000–2015, and it was rela-
tively stable in 1978–1999.

4.2.3. Duration Indices. As shown in Figure 6, the trends of
WSDI and CSDI reflected by the first eigenvector are ba-
sically the same in space. ,e center of high value of WSDI
(V1) is in the southwest of the watershed, decreasing along
the northeast, while the center of high value of CSDI (V1) is
in the northeast part, decreasing along the west. ,e time
coefficients show that WSDI (PC1) changed smoothly until
1992 and then showed a clear upward trend, and WSDI
(PC2) started to rise around 1992 and decreased after 2000.
,e second eigenvector WSDI (V2) has a positive and
negative type of distribution, with positive values in the
southwest and negative values in the northeast representing
two types of distribution; that is, there is a distribution
pattern ofWSDI in the watershed increased in the southwest
and decreased in the northeast or decreased in the southwest
and increased in the northeast in different years. While CSDI
(V2) is all positive, it showed spatial consistency overall.
WSDI (V2) and CSDI (V2) correspond to time coefficients
WSDI (PC2) and CSDI (PC2) with different change char-
acteristics. WSDI (PC2) changed smoothly before 1990 and
showed a trend of rising and then fell from 1991 to 2010.
CSDI (V2) changed relatively smoothly, with one fluctuation
in 1971–1977, and the eigenvector distribution type was
significant in 1972.

4.3. Model Selection. As stated in the study area section,
there is a Longtan Control Project built in the basin, and
preparatory construction work such as resettlement was
carried out in the 1990s, and the environment of the wa-
tershed has changed significantly due to human activities.
,e study of the temporal variation characteristics of the
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Figure 6: ,e first and second eigenvectors and their time coefficients of extreme temperature duration index.
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extreme temperature indices revealed that, in the Longtan
watershed, most of the extreme indices changed abruptly in
the 1990s and 2000s, and the 30-year time series was suf-
ficient for the simulated evaluation of climate models
[32–35]. ,erefore, the period from 1961 to 1990 with
relatively little climate change was used as the simulation
period for model evaluation in this study. Based on the
temperature observation data of the Longtan watershed
from 1961 to 1990, the root mean square error (RMSE),
correlation coefficient (R), mean absolute error (MAE),
Nash efficiency coefficient (NSE), and trend error (TE) of the
simulated maximum and minimum temperatures of each
climate model at monthly and annual scales were used as

evaluation indicators, and the simulation effects of 11 cli-
mate models were evaluated by comprehensive rating
metrics. According to the analysis of the spatial and tem-
poral characteristics of extreme temperatures in the previous
sections, most of the indices show a distribution of more in
the southwest and less in the northeast or more in the
southwest and less in the northeast. ,erefore, the Luxi
station in the southwest and Xingren station in the northeast
are chosen as the representative station for showing the
simulations of 11 climate models.,e evaluation statistics by
each climate model simulated at Luxi and Xingren stations
are shown in Table 5 and Table 6, respectively. ,e com-
posite rating results of each model are shown in Table 7.

Table 5: ,e evaluation statistics by each climate model simulated at Luxi Station.

BC1 BNU CaE CCS GF3 GF4 IP2 MI3 MI4 MP1 NE1

Annual scale

Tmax

RMSE 1.62 1.70 1.57 1.43 1.43 1.65 1.43 1.52 1.53 1.60 1.68
R 0.18 −0.04 0.03 0.29 0.23 −0.10 0.10 0.07 0.42 −0.17 −0.02

MAE 1.34 1.50 1.18 1.03 1.07 1.27 1.10 1.22 1.23 1.34 1.43
NSE −0.84 −1.03 −0.73 −0.45 −0.44 −0.91 −0.44 −0.63 −0.65 −0.79 −0.99
TE 0.12 0.18 0.08 0.36 0.28 0.00 0.18 0.41 0.28 0.03 0.03

Tmin

RMSE 2.85 2.74 2.92 3.03 2.73 2.88 2.89 2.84 2.72 3.01 3.06
R 0.21 0.18 0.24 −0.18 0.01 0.28 0.32 0.19 −0.15 0.10 0.17

MAE 2.19 2.07 2.13 2.44 2.13 2.23 2.16 2.23 2.12 2.44 2.35
NSE −0.34 −0.23 −0.40 −0.50 −0.22 −0.36 −0.37 −0.32 −0.22 −0.49 −0.54
TE 0.08 0.06 0.06 0.41 0.16 0.18 0.34 0.60 0.50 0.47 0.40

Monthly scale

Tmax

RMSE 2.77 2.76 2.73 2.76 2.73 2.75 2.71 2.77 2.81 2.77 2.77
R 0.80 0.79 0.80 0.80 0.80 0.79 0.79 0.78 0.84 0.78 0.80

MAE 2.34 2.30 2.28 2.29 2.28 2.30 2.24 2.32 2.37 2.32 2.31
NSE 0.40 0.40 0.42 0.09 0.42 0.41 0.43 0.40 0.38 0.40 0.40
TE 0.00 0.01 0.00 0.40 0.01 0.00 0.01 0.01 0.03 0.00 0.00

Tmin

RMSE 2.55 2.51 2.39 2.50 2.45 2.50 2.55 2.49 2.52 2.41 2.46
R 0.92 0.92 0.93 0.92 0.93 0.92 0.92 0.92 0.92 0.93 0.92

MAE 1.96 1.95 1.82 1.92 1.93 1.96 1.96 1.96 1.95 1.92 1.92
NSE 0.84 0.85 0.86 0.85 0.85 0.85 0.84 0.85 0.85 0.86 0.85
TE 0.02 0.01 0.02 0.03 0.02 0.02 0.01 0.02 0.00 0.03 0.01

Table 6: ,e evaluation statistics by each climate model simulated at Xingren Station.

BC1 BNU CaE CCS GF3 GF4 IP2 MI3 MI4 MP1 NE1

Annual scale

Tmax

RMSE 1.63 1.43 1.51 1.52 1.57 1.46 1.41 1.62 1.55 1.42 1.60
R 0.10 0.16 0.11 0.07 −0.09 0.19 −0.05 −0.31 0.26 0.02 −0.10

MAE 1.32 1.13 1.27 1.28 1.25 1.22 1.14 1.26 1.22 1.12 1.30
NSE −1.87 −1.21 −1.46 −1.48 −1.64 −1.31 −1.16 −1.84 −1.59 −1.17 −1.78
TE 0.09 0.06 0.16 0.16 0.20 0.06 0.14 0.12 0.03 0.08 0.12

Tmin

RMSE 1.96 1.81 1.96 1.65 1.76 2.13 1.98 2.03 2.06 1.97 1.76
R −0.06 0.10 0.03 0.30 0.10 −0.25 −0.01 −0.34 −0.11 −0.06 0.09

MAE 1.65 1.39 1.52 1.41 1.42 1.66 1.49 1.59 1.53 1.69 1.32
NSE −0.84 −0.56 −0.83 −0.30 −0.48 −1.16 −0.87 −0.96 −1.02 −0.85 −0.48
TE 0.51 0.44 0.35 0.73 0.49 0.93 0.81 1.22 0.86 0.60 0.84

Monthly scale

Tmax

RMSE 2.77 2.76 2.73 2.76 2.73 2.75 2.71 2.77 2.81 2.77 2.77
R 0.80 0.79 0.80 0.80 0.80 0.79 0.79 0.78 0.84 0.78 0.80

MAE 2.34 2.30 2.28 2.29 2.28 2.30 2.24 2.32 2.37 2.32 2.31
NSE 0.40 0.40 0.42 0.09 0.42 0.41 0.43 0.40 0.38 0.40 0.40
TE 0.00 0.01 0.00 0.40 0.01 0.00 0.01 0.01 0.03 0.00 0.00

Tmin

RMSE 2.55 2.51 2.39 2.50 2.45 2.50 2.55 2.49 2.52 2.41 2.46
R 0.92 0.92 0.93 0.92 0.93 0.92 0.92 0.92 0.92 0.93 0.92

MAE 1.96 1.95 1.82 1.92 1.93 1.96 1.96 1.96 1.95 1.92 1.92
NSE 0.84 0.85 0.86 0.85 0.85 0.85 0.84 0.85 0.85 0.86 0.85
TE 0.02 0.01 0.02 0.03 0.02 0.02 0.01 0.02 0.00 0.03 0.01
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At Luxi station, except for CCS, MP1, and NE1, most
climate models simulate annual-scale maximum and min-
imum temperatures within a root mean square error of 3.
,e mean absolute error is within 2.5°C, and the MI3 model
had the largest temperature trend error. At the monthly
scale, the root mean square error of the simulations of each
climate model is between 2.39 and 2.81, and the mean ab-
solute error is within 2.5°C. ,e variation temperature trend
of the simulated minimum temperature of CCS is opposite
to the measured trend, and the trend error is large compared
with other models. In a comprehensive evaluation, the GF3
model scored higher than other climate models at Luxi
station. At the Xingren station, the root mean square error of
each model at the annual scale ranged from 1.41 to 2.13, and
the mean absolute error was less than 2°C. On the monthly
scale, the simulation results of NE1 are mostly better than
other models. ,e comprehensive evaluation results show
that the NE1 climate model simulated the temperature of the
Xingren station best. In summary, the evaluation results are

as follows: the GF3 model performs best at Luxi station, and
NE1 simulates best at Xingren station. ,erefore, the GF3
model is selected at the Luxi station, and the NE1 model is
selected at the Xingren station to evaluate the future tem-
perature change.

4.4. Future Trends. Figures 7 and 8 show the spatial dis-
tribution of interdecadal changes in each extreme temper-
ature index predicted by the selected models for 2021–2050
under the RCP4.5 and RCP8.5, respectively. Under the
RCP4.5 scenario, the multiyear average of TXx will increase
by 2.1°C, and the multiyear average of TNn will increase by
0.4°C relative to the reference period 1961–1990. In the
basin, the TXx showed a decreasing trend in a small part of
the southwest, but with little interannual variation, and an
increasing trend in the middle and lower reaches of the basin
with relatively large interannual variation and an interan-
nual tendency rate of 0.19–1.10°C·(10a)−1.,e TNn showed a
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Figure 7: Spatial distribution of interdecadal variability of temperature extremes for 2021–2050 under the RCP4.5.

Table 7: Results of the composite rating metrics of each climate model.

Station BC1 BNU CaE CCS GF3 GF4 IP2 MI3 MI4 MP1 NE1
Luxi 0.35 0.40 0.63 0.47 0.64 0.47 0.50 0.37 0.43 0.38 0.38
Xingren 0.33 0.52 0.51 0.54 0.59 0.31 0.33 0.26 0.47 0.52 0.62
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decreasing trend in the basin, and from the interannual
variation, the interannual variation of the TNn is lower than
that of the TXx, and the interannual variation in the middle
and lower reaches is greater than that in the upper reaches.
FD changes in an opposite trend in the upstream and
downstream, and CSDI does not change significantly. ,e
other warm-related indices (SU25, TX90p, TN90p, and
WSDI) showed an increasing trend in most areas of the
basin, and the cold-related indices (TX10p, TN10p) all
showed a decreasing trend. Under the RCP8.5 scenario, the
TXx will increase by 2.0°C, and the TNn will increase by
0.3°C relative to the base period 1961–1990. In the basin, the
TXx showed an increasing trend, and the interannual var-
iation is greater in the downstream area than in the upstream
area. ,e TNn showed an increasing trend except for some
areas in the northeast, which showed a decreasing trend.
CSDI does not change significantly. All other warm-related
indices showed increasing trends, and all cold-related in-
dices showed decreasing trends. ,e comparison of the two
scenarios revealed that the TXx showed an increasing trend
in most regions, but there were differences in the spatial
distribution of interannual variation, and the interannual
variation of the TXx was larger in most regions under the
RCP4.5 scenario than under the RCP8.5 scenario. ,e TNn
showed a decreasing trend under the RCP4.5 scenario and
an increasing trend in most regions under the RCP8.5

scenario, and there is a large interannual variation under the
RCP8.5 scenario. In summary, the extreme temperature in
the watershed may show a warming trend in 2021–2050.

Figures 9 and 10 show the spatial distribution of the
multiyear averages of each extreme temperature index in the
watershed predicted by the selected models for 2021–2050
under the RCP4.5 and RCP8.5, respectively. Under the
RCP4.5 scenario, TXx, SU25, TN90p, TX10p, and CSDI
showed a spatial characteristic of high northeast and low
southwest, while the other indices showed a distribution of
low northeast and high southwest. ,e spatial distributions
of TXx and TNn indices under the two scenarios are slightly
different. ,e region of TXx greater than 33.7°C is larger in
RCP8.5 than in RCP4.5, and the TXx reaches 34.4°C under
RCP8.5, while the maximum value of TXx is 33.9°C under
RCP4.5. Most areas of TNn under RCP4.5 are above −3.6°C.
And the spatial distribution of TNn under the RCP8.5
scenario did not differ significantly, all above −3.6°C. ,e
prediction results reveal that there is a warming trend of the
extreme temperature in the next 30 years, and the risk of
extreme high temperature may exist in the downstream
areas of the basin in the future. Under the RCP4.5 scenario,
the TXx index increases interannually in the downstream
region, increasing the risk of extreme high temperature. ,e
interannual variation of the extreme low temperature in the
northeastern part of the watershed weakens, and the risk of
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Figure 8: Spatial distribution of interdecadal variability of temperature extremes for 2021–2050 under the RCP8.5.
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extreme low temperatures may decrease. Under the RCP8.5
scenario, the interannual variability of TXx increases in the
northeastern region, and the extreme high-temperature risk
likewise increases.

5. Discussion

In this study, the trends of extreme temperature in the
Longtan watershed from 1959 to 2017 were comprehensively
analyzed by using several extreme temperature indices, and
the results of the study showed that the extreme temperature
changes showed a warming trend, which is generally con-
sistent with similar studies in other regions. For example, the
results of Supari et al. [12] showed that the cold days
(TX10p) and cold nights (TN10p) both showed decreasing
trends in Indonesia, the warm days (TX90p) and warm
nights (TN90p) both showed increasing trends, and all other
extreme temperature indices showed warming trends. In
Malaysia, most of the extreme warm indices increased
significantly, and the warm night (TN90p) increased sig-
nificantly at more than 75% of the stations [36]. Similar
studies have been learned in Korea [37], New Zealand [13],
and globally [38], where extreme temperature indices in-
dicate a warming trend in extreme temperature changes.
However, the extreme temperature indices change at dif-
ferent rates in different regions. Shen et al. [4] found that the

annual Tmax increased by 0.28°C·(10a)−1 in North Central
China, while this study found that the TXx increased by
0.14°C·(10a)−1 in the Longtan watershed, which increased
slowly compared with North Central China. ,erefore, it is
necessary to study the temperature extremes in different
regions. In addition, the extreme temperature indices with
significant trends all changed abruptly and mainly occurred
in the 1980s, 1990s, and after the 2000s, which was generally
consistent with the findings of Wang et al. [39]. Empirical
orthogonal function (EOF) analysis is a common spatio-
temporal analysis method in atmospheric science. Jia [40]
used this method to study the characteristics of spatio-
temporal distribution of high and low-temperature climate
variables in Liaoning Province, and the results showed that
the first mode reflected a good spatial consistency of extreme
temperature variation patterns in Liaoning Province. In
Chongqing, Guo et al. [41] found from the EOF decom-
position results that the first mode was the main type of
spatial variation of extreme maximum temperature in
Chongqing in summer, and the spatial distribution of ex-
treme maximum temperature had a good consistency. ,ese
results are all similar to the conclusion that the first ei-
genvectors of all indices in this study reflect the general
consistency of the trends in the spatial variation of each
index, indicating a good spatial consistency of the extreme
temperature variation across locations. In summary, the

26°N

24°N

22°N

102°E 104°E 106°E 108°E

N

33.53 33.62 33.70 33.77 33.82 33.88

0 40 80 km
TXx (RCP4.5)

(a)

26°N

24°N

22°N

102°E 104°E 106°E 108°E

-3.68 -3.63 -3.56 -3.50 -3.45 -3.39

N

0 40 80 km

TNn (RCP4.5)

(b)

26°N

24°N

22°N

102°E 104°E 106°E 108°E

8.45 9.02 9.58 10.15 10.72 11.29

N

0 40 80 km

DTR (RCP4.5)

(c)

26°N

24°N

22°N

102°E 104°E 106°E 108°E

141.13 141.25 141.36 141.47 141.59 141.70

N

0 40 80 km

SU25 (RCP4.5)

(d)

26°N

24°N

22°N

102°E 104°E 106°E 108°E

10.57 10.85 11.13 11.41 11.69 11.97

N

0 40 80 km

FD (RCP4.5)

(e)

26°N

24°N

22°N

102°E 104°E 106°E 108°E

18.85 19.11 19.37 19.63 19.89 20.16

N

0 40 80 km

TX90p (RCP4.5)

(f )

26°N

24°N

22°N

102°E 104°E 106°E 108°E

19.52 19.65 19.78 19.91 20.04 20.17

N

0 40 80 km

TN90p (RCP4.5)

(g)

26°N

24°N

22°N

102°E 104°E 106°E 108°E

4.09 4.37 4.65 4.92 5.20 5.48

N

0 40 80 km

TX10p (RCP4.5)

(h)

26°N

24°N

22°N

102°E 104°E 106°E 108°E

5.53 5.99 6.45 6.91 7.37 7.83

N

0 40 80 km

TN10p (RCP4.5)

(i)

26°N

24°N

22°N

102°E 104°E 106°E 108°E

8.07 8.25 8.44 8.63 8.81 9.00

N

0 40 80 km

WSDI (RCP4.5)

(j)

26°N

24°N

22°N

102°E 104°E 106°E 108°E

0.43 0.65 0.86 1.07 1.29 1.50

N

0 40 80 km

CSDI (RCP4.5)

(k)

Figure 9: Spatial distribution of temperature extremes for 2021–2050 under RCP4.5.
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trend of extreme temperature in the Longtan watershed is
consistent with the trend of extreme temperature in other
regions, and the spatial distributions all have good spatial
consistency.

,e results of the climate model evaluation found that
the climate models selected by the comprehensive rating
metrics for the simulation effect were different at different
stations in the basin, which may be due to the different
geographical characteristics among the different stations,
GF3 fitted the temperature at Luxi station best and NE1
simulation at Xingren station the best. Under the RCP4.5
and RCP8.5 emission scenarios, an increasing trend of the
extreme warm index and a decreasing trend of the extreme
cold index are predicted for Shanghai from 2021 to 2030
[42]. ,is result is generally consistent with the predicted
warming trend of extreme temperatures in the Longtan
watershed for the next 30 years in this study. However, due
to the different geographical characteristics of the region, the
rate of change of extreme temperature indices and their
trends may differ in different areas, and the results show that
there may be a risk of extreme high temperature in the
downstream area. Xiao et al. [43] found that the TXn index
increases most significantly in the eastern part of the Han
River basin in the next 40 years under the RCP4.5 emission
scenario. ,erefore, further attention to the influence of

regional characteristics on future temperature extremes is
needed.

,ere is evidence that extreme temperature events may
hurt human life. For example, extreme heat and cold
temperatures are positively associated with respiratory
mortality in China [44]. Global warming and extreme
temperature events may also have adverse ecological im-
pacts; for example, increased temperature extremes may
cause the uneven distribution of water resources spatially
and seasonally [42]. In addition, Haile et al. [45] found that
temperature extremes may hurt the production of crops
such as rice and corn. ,e contribution of urbanization to
temperature warming trends cannot be ignored, there was a
significant urbanization impact on the occurrences of ex-
tremely warm and cold nights, and the effect of urbanization
contributed about 12.7% to the increasing trend of warm
nights and 29% to the decreasing trend of cold nights in
Beijing [46]. Nowadays, China’s urbanization process is
accelerating, and related departments should pay attention
to the impact of urbanization on temperature extremes in
the process of urbanization, so that the extreme tempera-
tures will not cause harm to people’s production and life. It
also recommended that policymakers and managers in the
watershed fully consider the negative impacts of extreme
temperature increases in future urban construction, increase
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Figure 10: Spatial distribution of temperature extremes for 2021–2050 under RCP8.5.
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urban greenery coverage, and establish safe public drinking
water areas to reduce the hazards associated with the oc-
currence of extreme heat events.

,e innovation of this study is to use more extreme
temperature indices and more mathematical methods to
study the extreme temperature variation characteristics of
the Longtan basin, so that the research results are clearer and
can reflect the extreme temperature variation characteristics
of the Longtan watershed more comprehensively. One of the
advantages of the proposed framework is that this study does
not only study the spatial and temporal distribution char-
acteristics of regional extreme temperatures, but also
combine the historical spatial and temporal characteristics of
extreme temperatures and use representative stations to
further study the future extreme temperature changes, which
can better provide data support for the prevention of various
extreme temperature disasters in the future.

However, there are still some shortcomings to be
addressed. Due to the differences in the results obtained by
different mutation testing methods, the M-K mutation test
in this study was only used to preliminarily obtain the year of
possible mutation, and a more systematic mutation analysis
needs further study. In addition, there are differences be-
tween seasonal and monthly temperature extremes, and the
selection of indices can be further improved. ,is study
failed to make a quantitative assessment and analysis of the
disaster risk results of each extreme temperature index. In
the future, based on the analysis of the spatial and temporal
characteristics of extreme temperature and the results of
future change prediction, combined with social, economic,
and environmental indicators of the basin, a comprehensive
risk evaluation of meteorological disasters should be studied.

6. Conclusion

To explore the simulation and early warning assessment of
extreme temperatures, quantitatively evaluate and describe
extreme events, and reduce the adverse effects of frequent
extreme events on the ecological environment, social
economy, and human production, the temporal-spatial
characteristics and future change trends of extreme tem-
perature were studied in the Longtan watershed. It is ex-
pected to provide a reference for the establishment of
extreme climate event early warning systems, the formu-
lation of disaster prevention and mitigation plans, and the
operation andmanagement of water conservancy projects. It
was found that (1) from 1959 to 2017, the extreme tem-
perature in the Longtan watershed changed significantly and
showed a warming trend. ,e extreme temperature indices
with significant trends all showed abrupt changes, mainly
occurring in the 1980s, 1990s, and after 2000. (2) ,e spatial
distribution of extreme temperature indices is generally
increasing or decreasing from southwest to northeast, with
alternating positive and negative phases over time and
obvious fluctuations. Most of the indices have the following
spatial variation characteristics: ① spatial variation con-
sistency;② southwest more northeast less or southwest less
northeast more distribution. (3) ,e analysis of the future
trend of extreme temperature indices from 2021 to 2050

using the GF3 model at Luxi station and NE1 model at
Xingren station found that the high-temperature area above
33.7°C increased with the increase of emission concentra-
tion. ,e temperature in the basin shows a warming trend,
and the risk of extreme high temperatures may exist in the
downstream area in the future. In response to the warming
trend of extreme temperature, it is recommended that the
management in the watershed should pay more attention to
extreme temperature events and take measures such as
establishing safe public drinking water areas to reduce the
hazards of extreme heat events. In addition, this study failed
to quantitatively analyze the disaster risk results of each
extreme temperature index, and future studies should be
based on this study to combine various socioeconomic in-
dicators to conduct a comprehensive risk evaluation of
extreme temperature disasters.
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