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,e possible sources of forecast errors associated with rainstorms in the South China monsoon region were investigated based on
Weather Research and Forecasting (WRF) model forecasts for 19 rainstorm cases that occurred in the past 13 years. Two datasets
were separately selected as the initial fields of WRF with the same physical parameterization schemes. By investigating the
improvement rate of the forecast when using one set of data rather than the other, the important degree of the initial conditions
with respect to the forecasts for each case has been obtained. For those initial errors are the important sources of forecast errors, we
further explored the source of the initial errors by comparing the two initial conditions. It was found that, interestingly, the
significant differences between two initial conditions are all located upstream the rainfall area, with a distance of 5° of longitude
away and an area of about 4° × 4°. Based on this, we developed a new method (which we refer to as the “guide flow method”) to
identify the sensitive area for rainstorm forecasts in the South China monsoon region and then examined the efficiency of the
sensitive areas. It was found that reducing the initial errors in the sensitive areas leads to better forecast results than doing the same
in other areas. ,us, the sensitive areas are the source areas of forecast errors for rainstorms in the South China monsoon region.

1. Introduction

South China is affected by both the tropical and subtropical
monsoon, in which the rainstorm process is closely related to
the circulation of the summer monsoon [1, 2]. Rainstorms
are one of the most serious types of natural disasters in South
China [3–5]. However, currently, most global numerical
models still carry considerable uncertainty in their fore-
casting of the location and precipitation amount of rain-
storms [6, 7]. In particular, the forecasting of rainstorms in
the South China monsoon region has always been a difficult
and challenging issue in China’s operational forecasting
sector [8–10].

In recent years, most researchers have tended to focus on
the underlying physical mechanisms of rainstorms in the

South China monsoon region. Some of these studies have
found that, during the active period of the summer mon-
soon, the South China Sea summer monsoon can extend to
the rainstorm area in the form of low-frequency oscillations,
and the rainstorm process has a good correlation with the
pulsation or strengthening period of the monsoon [2]. After
the onset of the summer monsoon, the Bay of Bengal and the
Indian Ocean contribute significantly to the quantity of
water vapor in South China [11]. Moreover, both the average
precipitation and the convection intensity in South China
have generally increased, and the convection intensity is
basically consistent with the subseasonal changes in atmo-
spheric thermodynamic conditions, which probably leads to
the occurrence of regional extreme precipitation [12, 13].
For example, two strong rainstorms in Dongguan in July
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2011 were caused by the onset of the southwest monsoon,
the northward uplift of the ITCZ, and the pressure of the
high-altitude East Asian trough [14].

In addition to the direct influence of summer monsoon
circulation on precipitation, the rainstorm process in the
South China monsoon region is also closely related to the
prevailing mesoscale system under the influence of the
summer monsoon [15]. For instance, the rainstorms on 11
May 2014, 19 May 2015, and 27 August 2018 were all caused
by one or more mesoscale convective systems [16–19]. ,e
evolution of the monsoon low-pressure intensity is syn-
chronized with the daily distribution of the rainstorm area’s
size but not completely synchronized with the maximum
daily precipitation’s day-to-day evolution [17].

To study the predictability of rainstorms in the South
China monsoon region, it is not enough just to understand
the underlying physical mechanism of the rainstorm pro-
cess; studying the forecast error of the numerical model is
also necessary [20–23]. With continuous improvement in
model accuracy, increasing the horizontal resolution of the
model may improve the effects of the precipitation forecast
[24–26]. Nevertheless, high-resolution models are still un-
able to reasonably reproduce the characteristics of the
precipitation’s distribution owing to the inherent unpre-
dictability of the atmosphere, the imperfection of the nu-
merical method in the dynamic framework of the physical
processes, and so on, meaning current numerical precipi-
tation forecasts usually carry large uncertainty [27].

In 2013, the China Meteorological Administration ini-
tiated the South China Monsoon Precipitation Experiment,
which included studies on improving models and their
initial fields [28–30]. Several researchers have found that
improving the initial value assimilation technology of wind
profile data can better describe the development of the
convective system. Additionally, improvement of the low-
level water vapor and wind field in the Weather Research
and Forecasting (WRF) model data assimilation system can
reduce the forecast error of heavy rain, thereby improving
the prediction skill [31]. With the occurrence and devel-
opment of precipitation, the evolution of errors gradually
develops from local growth to global propagation, and the
initial error in the precipitation area makes an important
contribution to the precipitation forecast error [32]. A
number of researchers have also studied the sensitivity of
physical parameters and related conditional nonlinear op-
timal disturbances in the Global/Regional Assimilation and
Prediction System for the forecasting of heavy rain in South
China [33]. For instance, Lu et al. [34] studied a case of heavy
rain in the South China monsoon region in 2015 and found
that the initial error was an important source of forecast
error, and the sensitive area could be found more accurately
by the moist energy of perturbations.

Despite the clear need to explore the sources of error in
rainfall forecasts in the South China monsoon region, there
have been relatively few studies in this regard and so further
exploration is still required. ,e present reported research
sought to address this knowledge gap by developing a guide
flow method to identify the sensitive area for rainstorm
forecasts in this region. ,e overarching aim was to

strengthen our understanding of the source areas of forecast
error and improve the forecasting ability in the South China
monsoon region.

2. Materials and Methods

2.1. Data and Study Area. Nineteen heavy rainstorm cases in
South China in the past thirteen years that were mainly a
result of the summer monsoon (rather than typhoons, etc.)
were selected. In terms of observational data, the hourly
precipitation gridded dataset (version 1.0) of the Chinese
automatic station combined with the CMORPH (Climate
Prediction Centremorphing technique) precipitation product
(https://data.cma.cn/data/detail/dataCode/SEVP_CLI_
CHN_MERGE_CMP_PRE_HOUR_GRID_0.10/keywords/
CMORPH.html) was selected (hereinafter referred to as
OBS). Besides, China Ground International Exchange Sta-
tion daily climate data (http://data.cma.cn/data/cdcdetail/
dataCode/SURF_CLI_CHN_MUL_DAY_CES_V3.0.html)
were used to assist in screening the precipitation cases. ,e
observed cumulative precipitation and distribution during
the precipitation period of these cases are given in Table 1.
From the data in Table 1, the daily mean maximum site
precipitation of the selected 19 cases is 83.35mm. Details of
the different datasets used in the present study are given
below.

NCEP_FNL (Final Global Data Assimilation System of
the National Centers for Environmental Prediction) analysis
data with a spatial resolution of 1.0° were used to generate
the input field of the WRF model. According to Huang and
Luo’s [13] analysis of the five-day precipitation forecasts in
three seasons (2013–2015) in South China, the European
Centre for Medium-Range Weather Forecasts (ECMWF)
model generally has high forecasting skill. ,erefore, it can
be assumed that both the initial field and the model of
ECMWF have high accuracy.,e ECMWF output (obtained
from the TIGGE (THORPEX Interactive Grand Global
Ensemble) dataset of the ECMWF center, hereinafter re-
ferred to as TIGGE_EC) was used as a control group with a
spatial resolution of 0.5° latitude by 0.5° longitude.,e initial
conditions of TIGGE_EC were used to generate accurate
initial conditions for the WRF forecasts.

2.2. WRF. Version 3.6.1 of WRF was employed in the
present study. Both the initial fields and boundary fields
were generated using FNL analysis data with a time interval
of six hours. ,e horizontal resolution of the forecast was
3 km, with 1100× 700 grid points, covering the entire South
China region. Moreover, there were 60 layers in the vertical
direction and the integration time step was 15 s without
nesting. ,e physical parameterizations were as follows:
,ompson scheme for the microphysical scheme; Goddard
shortwave scheme for the shortwave radiation scheme;
Rapid Radiative Transfer Model scheme for the longwave
radiation scheme; EtaMellor-Yamada-Janjic TKE (turbulent
kinetic energy) scheme for the boundary layer; and the land
surface process scheme adopted the Noah land surface
model scheme, without cumulus parameterization [16, 34].
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,e forecasts using the WRF model initialized by
NCEP_FNL data are denoted as WRF_FNL, while TIG-
GE_EC is used as a control group to be compared with
WRF_FNL and OBS. Besides, we used accurate initial
conditions (namely, the initial conditions of the TIGGE_EC
forecasts) as the input field to generate the WRF forecasts
(hereinafter referred to as WRF_EC) under the same
physical parameterization schemes as WRF_FNL.

2.3. Methods. In order to comprehensively investigate
forecast accuracy, namely, the similarity in the location and
intensity between the forecast and observed cumulative
precipitation in South China, the correlation coefficient was
calculated as follows [35]:

r(F, O) �
cov(F, O)

��������������
Var[F] + Var[O]

√ , (1)

where F is the forecast cumulative precipitation (TIG-
GE_EC, WRF_FNL or WRF_EC) in South China, O is the
observed cumulative precipitation in South China, r(F, O) is
the correlation coefficient between F and O, cov(F, O) is the
covariance of F and O, Var[F] is the variance of F, and Var
[O] is the variance of O.

Besides, the grid-to-grid threat score (TS) was calculated
to investigate the forecasting of rainstorm events for dif-
ferent levels of precipitation, namely, light rain and heavy
rain. TS was calculated as follows [36]:

TS �
NA

NA + NB + NC

, (2)

where NA represents the number of grid points where the
forecast and observed precipitation are at the same level as
light rain or (or heavy rain) and above, NB is the number of

grid points where the forecast precipitation level is light rain
(or heavy rain) and above but observed precipitation is not at
this level, and NC is the number of grid points where light
rain (or heavy rain) has not been forecast.

Since we found that improving the accuracy of the
initial conditions could significantly improve the WRF
model’s forecasts, it is interesting to further explore the
sources of initial errors. In this aspect, we compared the
differences between the two kinds of initial conditions
(FNL and EC) and calculated the vertical integration of
moist energy of the differences. ,e idea is that the area of
large moist energy will indicate where the large differences
exist, and thus it is taken as the source area of the initial
error [34, 37, 38].

,e formula of moist energy is as follows [34]:

J � 
1
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+
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⎡⎣ ⎤⎦dσ, (3)

where σ is the vertical coordinate; Cp is the specific heat at
constant pressure (� 1005.7 J kg−1·K−1); Ra is the dry air
gas constant (�287.04 J·kg−1·K−1); pr � 1000 hPa; Tr �

270K; and u0′, v0′, T0′, ps0′ , and q0′ are the differences in
meridional wind, zonal wind, temperature, surface pressure,
and water vapor mixing ratio between the EC and FNL
initial fields, respectively. Compared with a single variable,
moist energy indicates the comprehensive influence of all
variables. Lu et al. [34] found that moist energy could help
screen out the source area of the initial error, and the im-
provement of the initial conditions in that source area could
achieve the greatest benefits compared to the improvement
of initial conditions in other areas. ,us, hereafter, we refer
to this method as the “moist energy method,” and the source
area as the “sensitive area.”

Table 1: Details of the cases used, including the time period, distribution, and cumulative amount of precipitation.

Case Precipitation period Precipitation distribution Maximum site precipitation (mm) Measured cumulative
precipitation (mm)

1 2008.6.8(00 : 00)–6.9(00 : 00) Central and western south China 164.9 582967.4
2 2008.6.11(00 : 00)–6.13(00 : 00) Central and eastern south China 297.9 698194.2
3 2010.5.31(00 : 00)–6.2(00 : 00) Central south China 87.0 983323.4
4 2011.6.28(00 : 00)–6.30(00 : 00) Central and southern south China 448.5 506162
5 2011.7.15(00 : 00)–7.17(00 : 00) Eastern south China 134.2 477601.5
6 2013.5.14(00 : 00)–5.17(00 : 00) Central and eastern south China 195.3 705305.8
7 2013.7.26(00 : 00)–7.28(00 : 00) Southern south China 189.3 567458.6
8 2014.5.21(12 : 00)–5.23(12 : 00) Eastern south China 115.7 775429.6
9 2015.5.16(00 : 00)–5.17(00 : 00) Southern and eastern south China 140.3 155520.7
10 2015.5.22(00 : 00)–5.23(00 : 00) Southern south China 62.9 470785.5
11 2016.6.14(00 : 00)–6.15(00 : 00) Eastern south China 68.7 238642
12 2017.5.14(00 : 00)–5.16(00 : 00) Southeast of south China 106.5 277531.8
13 2017.6.4(00 : 00)–6.6(00 : 00) Northeast of south China 106.7 293025.2
14 2017.7.2(00 : 00)–7.4(00 : 00) Southern south China 246.2 294511.5
15 2018.4.15(00 : 00)–4.17(00 : 00) Southern and eastern south China — 45559.25
16 2018.5.7(00 : 00)–5.8(00 : 00) Southern and eastern south China 115.1 106109.9
17 2018.5.9(00 : 00)–5.10(00 : 00) Central south China 94.4 92764.41
18 2019.4.11(00 : 00)–4.12(12 : 00) Southeast of south China 87.8 82066.8
19 2019.4.23(12 : 00)–4.25(00 : 00) Central and eastern south China 43.9 86832.09
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3. Results

In 73.7% (14 cases) of the 19 cases, the correlation coefficient
between TIGGE_EC and OBS is higher than that between
WRF_FNL and OBS, and the average correlation between
TIGGE_EC and OBS of the 19 cases is 0.428, which is
significantly higher than that between WRF_FNL and OBS
(0.328). Besides, the shaded area of the correlation coeffi-
cient in Figure 1 shows the extent to which TIGGE_EC is
better than WRF_FNL.

Comparison of the cumulative precipitation distribution
of WRF_FNL, TIGGE_EC, and OBS in cases 4 and 9 shows
that WRF_FNL and TIGGE_EC differ in precipitation in-
tensity and location compared with OBS (Figure 2). How-
ever, both the intensity and location of the precipitation
forecast by TIGGE_EC are more similar than those of
WRF_FNL to OBS. TIGGE_EC has a better effect on the
forecasting of the precipitation center in southwest
Guangdong and southern Guangxi in both case 4 and case 9.
Combined with Figure 1, it can be seen that TIGGE_EC is
closer to OBS than WRF_FNL and has a better forecast
result, which is consistent with the findings of Huang and
Luo [13]. ,erefore, in these 14 cases, we assume that both
the initial field and the model (i.e., the ECMWFmodel) have
high accuracy, and we only examine these 14 cases in the
following parts.

Next, we used accurate initial conditions (namely, those
of TIGGE_EC forecasts) to generate WRF forecasts (here-
after referred to as WRF_EC) for the 14 cases in which the
forecast of TIGGE_EC was better than WRF_FNL and
quantitatively compared them with WRF_FNL. First, the
TIGGE_EC forecasts were taken as the true values to ex-
amine the improvements in forecasts when using accurate
initial conditions. It was found that the average correlation
between the cumulative precipitation in South China
forecast by WRF_EC and TIGGE_EC is 0.430, which is
higher than that between the forecasts of WRF_FNL and
TIGGE_EC (0.390).

Meanwhile, 71.4% of the 14 cases have better forecast
skill withWRF_EC than withWRF_FNL. Taking case 9 as an
example, it can be seen that both the location and the in-
tensity of the precipitation forecasted byWRF_EC are closer
to those of TIGGE_EC than WRF_FNL (Figure 2). Argu-
ably, however, although the TIGGE_EC forecasts appear to
be more accurate than the WRF_FNL forecasts, they still
contain errors. ,us, we further used OBS as the true values
to evaluate the improvements of WRF_EC compared to
WRF_FNL, and the results turned out to be similar. ,at is,
the cumulative precipitation in South China of OBS gen-
erally has higher correlation coefficients with WRF_EC than
with WRF_FNL (Table 2). In other words, WRF_EC gen-
erates precipitation patterns that are more similar to OBS
compared to WRF_FNL.

Besides, we also checked the Ts scores of WRF_EC and
WRF_FNL; here, the OBS are used as true values. From
Table 3, we can see that, of the 14 cases, there are, respec-
tively, 8 cases and 10 cases for which WRF_EC has better Ts
than WRF_FNL for “light rain and above” and “heavy rain
and above” (Table 3). ,is indicates that WRF_EC generates

precipitation amounts that are more similar to OBS than
WRF_FNL.

From the above results, it is seen that forecasts of
WRF_EC are better than those ofWRF_FNL as regards both
the precipitation patterns and precipitation amounts. In
short, the WRF_EC forecasts are better than the WRF_FNL
forecasts.

By quantitatively investigating the improvement in the
forecast, we can examine the importance of the accuracy of
the initial conditions in the forecasts and thus judge the
source of the forecast errors for summer rainstorms in South
China. ,erefore, we define the following parameters:

IM1 �
OEC − OFNL

OFNL
,

IM2 �
TEC − TFNL

TFNL
.

(4)

Here, OFNL is the correlation between the cumulative
precipitation in South China of WRF_FNL and OBS,
while OEC is the same but between WRF_EC and OBS.
Similarly, TFNL represents the correlation between
WRF_FNL and TIGGE_EC, while TEC represents the
correlation between WRF_EC and TIGGE_EC. ,en, we
define the degree of improvement with IM1 and IM2 for
each case. If IM1 (IM2) ≥ 50%, improving the initial value
can significantly improve the forecast, and therefore the
initial error is the main source of forecast errors. We
define such a degree of improvement as “significantly
improved.” In this category, there are six cases, ac-
counting for 31.6% of all cases. Likewise, if 0 < IM1 (IM2)
< 50%, then improving the initial value can slightly im-
prove the forecast (thus defined as “slightly improved”),
for which there are four cases, accounting for 21.1% of all
cases. Lastly, if IM1 (IM2) < 0, improving the initial value
can barely improve the forecast results, and so the degree
of improvement is defined as “not improved,” for which
there are also four cases. ,e IM1 and IM2 values for the
above 14 cases are shown in Table 4.
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Figure 1: Correlation with OBS of the cumulative precipitation
forecast by WRF_FNL (black) and TIGGE_EC (red).
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According to Table 4, the 14 cases can be divided into
three types: “significantly improved,” “slightly improved,”
and “not improved.” It is seen that, among the 14 cases,
the forecasts of 6 cases are significantly improved after
improving the initial field, For those slightly improved
cases, the initial errors also play some parts in the forecast
errors, so it is also meaningful to explore the source of the
initial errors for those cases. ,us, next step, we explore
the source of the initial errors for the “significantly im-
proved” group and the “slightly improved” group (a total
of 10 cases).

,e differences between two kinds of initial conditions
are explored, and the area of largest differences is taken as
the source area (also called sensitive areas hereafter) of the
initial errors. By analyzing the basic flows at 700 hPa, we
found that the sensitive areas are located in the basic flows
that are directed towards the precipitation area. ,is means

that the initial errors mainly come from upstream the
precipitation area. To quantitatively find out the relationship
between the precipitation area and the sensitive area, we
selected both their sizes as 4° × 4° (Figure 3) and found that
their distances are about 5° of longitude. Based on the above
results, we developed a method to identify the sensitive area
by combining the precipitation area and the basic state wind
(hereafter referred to as the “guide flow method”). ,e
precipitation area is centered on the maximum precipitation
point. First, we define the direction of the guide flow at
700 hPa as follows:

tan(θ) �
v

u
�

lat
lon

, (5)

where u and v are the zonal and meridional wind compo-
nents on 700 hPa, respectively; θ is the angle between the
wind direction at 700 hPa and the horizontal direction. lat is
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Figure 2: Cumulative precipitation (unit: mm) distribution of ((a) and (e)) OBS, ((b) and (f)) WRF_FNL, ((c) and (g)) TIGGE_EC, and
((d) and (h)) WRF_EC in ((a)–(d)) case 4 and ((e)–(h)) case 9.
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Table 2: Correlation coefficients of WRF_FNL and WRF_EC with both OBS and TIGGE_EC for cumulative precipitation in South China.

Table 3: TS of WRF_FNL and WRF_EC with respect to OBS in the 14 cases (TS of WRF_EC marked in red has better forecast).

Table 4: Classification of IM1 and IM2 and the degree of improvement corresponding to each case.

Case IM1 IM2 Degree of improvement

1 0.184498

−0.68094

0.906682

0.063203

−0.05646

0.092468

2.974582

0.348127

−0.07853

0.04072

0.207425

0.407161

0.851398

−0.998083

Slightly improved

Not improved

Significantly improved

Slightly improved

Not improved

Slightly improved

Significantly improved

Significantly improved

Not improved

Slightly improved

Significantly improved

Significantly improved

Significantly improved

Not improved

2

4

5

8

9

10

11

12

13

14

15

17

18

0.322713

−0.68435

0.320304

0.067061

−0.16608

0.11413

0.036548

0.80093

−0.21469

0.084644

0.536207

1.003135

0.556591

0.643097
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the latitudinal difference between the maximum precipita-
tion point and the selected maximum point of the sensitive
area; lon� 5°, which is the longitudinal difference between
the maximum precipitation point and the selected maxi-
mum point of the sensitive area. From the description above,
u, v, and lon are all known, and then lat can be derived.,us,
the sensitive area can be determined according to the pre-
cipitation area, tan(θ), and the lat and lon values.

If the guide flow in the precipitation area is relatively
straight, then u and v are the zonal and meridional wind
components of the maximum precipitation point. With lon
known and tan(θ) obtained by linear backward deduction of
the wind (u and v) in the precipitation area, lat can be
derived, so the sensitive area can be determined
(Figure 4(a)). If there are obvious troughs or cyclonic cir-
culations in the precipitation area, u and v are the average
zonal and meridional wind components of the precipitation
area. Similarly, the location of the sensitive area can be
deduced according to the average guide flow direction in the
precipitation area (Figure 4(b)). Whether the guide flow is
relatively straight or there are obvious troughs or cyclonic
circulations in the precipitation area, the sensitive area se-
lected by the guide flow method is relatively consistent with
the location of the large-value area of moist energy
(Figure 4).

Table 5 shows the locations of the sensitive areas de-
termined by the guide flow method and the moist energy
method. For 80% (8 cases) of the 10 cases, the positions of
the sensitive areas selected by the two methods are rela-
tively consistent, with the distances between them being
less than 2°. ,us, the sensitive area selected by the guide

flowmethod is similar to that identified by the moist energy
method. To confirm this point, we also use both the guide
flow method and the moist energy method to identify the
sensitive areas of those cases that belong to “not improved”
group (cases 2, 8, 12, and 18) in Table 4 and those cases
where TIGGE_EC has lower skills thanWRF_FNL (cases 3,
6, 7, 16, and 19) in Figure 1. Results showed that, for 8 out
of 9 cases, the positions of the sensitive areas selected by the
two methods are similar (Table 6). ,is confirms that the
guide flow method can be used to identify sensitive areas
associated with rainstorm forecasts. Since the guide flow
method is easy to use, it thus may be helpful for quickly
selecting perturbation areas for ensemble forecasts or
carrying out supplemental observations for adaptive
observations.

To verify the accuracy of the sensitive areas, namely, to
demonstrate that they are the source areas of the initial
errors which lead to large forecast errors, we chose three
other areas for comparison and carried out sensitivity ex-
periments. ,ese three areas had the same size as sensitive
areas, and they were, respectively, located to the west, south,
and north of the precipitation areas with distances of 10°
longitude, 5° latitude, and 5° latitude. ,en, the initial
conditions of WRF_FNL were replaced with those of
WRF_EC in the sensitive area to form new ones. Similarly,
three other sets of new initial conditions were generated by
replacing those of WRF_FNL with the initial conditions of
WRF_EC in those three areas.

Keeping the model configuration unchanged, four new
forecasts were produced with the above four sets of new
initial conditions, and these are, respectively, referred to here
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Figure 3: ((a)–(c)) Distribution of cumulative precipitation (unit: mm) in cases 1, 5, and 14, respectively (the red box is the range of the
precipitation area selected). ((d)–(f )) ,e sensitive areas selected with the moist energy (unit: 1× 105 J) method for cases 1, 5, and 14,
respectively (the red box is the range of the sensitive area selected).

Advances in Meteorology 7



as F-sens, F-north, F-west, and F-south. ,e cumulative
precipitation of these forecasts was compared with the
observed precipitation in South China, and their correlation

coefficients were calculated. It can be seen from the results
(Figure 5) that, for the 10 improved cases in Table 4, there are
9 cases where the correlations between F-sens and OBS are
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Figure 4: Sensitive area selected with the guide flow method (rectangles in panel (a) and left rectangles in panel (b)), sensitive areas
identified bymoist energy (unit: 1× 105 J the left parts of shadings in both two panels), and the precipitation area (unit: mm, the right parts of
shadings in both two panels) overlayed with the 700 hPa wind field in (a) case 4 and (b) case 5.

Table 5: Comparison of sensitive areas selected with moist energy method and guide flow method.

Case
Sensitive areas selected
with the moist energy

method

Sensitive areas selected
with guide flow method

1 (22°–26°N, 104°–108°E) (21°–25°N, 103°–107°E)
4 (16°–20°N, 107°–111°E) (16°–20°N, 106°–110°E)
5 (18°–22°N, 105°–109°E) (18°–22°N, 106°–110°E)
9 (20°–24°N, 104°–108°E) (18°–22°N, 105°–109°E)
10 (18°–22°N, 106°–110°E) (18°–22°N, 107°–111°E)
11 (12°–16°N, 102°–106°E) (21°–25°N, 102°–106°E)
13 (17°–21°N, 104°–108°E) (18°–22°N, 102°–106°E)
14 (20°–24°N, 105°–109°E) (16°–20°N, 105°–109°E)
15 (20°–24°N, 107°–111°E) (21°–25°N, 106°–110°E)
17 (20°–24°N, 106°–110°E) (19°–23°N, 105°–109°E)

Table 6: Same as Table 5 but for verifying cases.

Case
Sensitive areas selected
with the moist energy

method

Sensitive areas selected
with guide flow method

2 (17°–21°N, 103°–107°E) (20°–24°N, 103°–107°E)
3 (15°–19°N, 100°–104°E) (13°–17°N, 102°–106°E)
6 (20°–24°N, 106°–110°E) (21°–25°N, 107°–111°E)
7 (14°–18°N, 99°–103°E) (19°–23°N, 102°–106°E)
8 (20°–24°N, 105°–109°E) (18°–22°N, 106°–110°E)
12 (21°–25°N, 107°–111°E) (19°–23°N, 106°–110°E)
16 (21°–25°N, 106°–110°E) (21°–25°N, 109°–113°E)
18 (22°–26°N, 105°–109°E) (22°–26°N, 106°–110°E)
19 (24°–28°N, 105°–109°E) (23°–27°N, 104°–108°E)
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higher than other correlations (F-north andOBS, F-west and
OBS, and F-south and OBS). ,is means that improving the
initial conditions in sensitive areas can improve the forecast
to a greater extent than by improving them in other areas,
and again this verifies that the sensitive areas are the source
areas of initial errors as well as the forecast errors.

4. Conclusion

Based on the WRF model, this paper has investigated the
possible sources of forecast errors with respect to rain-
storms in the South China monsoon region. First it is
demonstrated that the initial error is the important source
of the forecast errors, and then the source area (sensitive
area) of initial errors is explored. Next, the relationship
between the sensitive area and the precipitation area is
analyzed. Based on the above results, a new method is
developed (which we call the “guide flow method”) to
identify the sensitive area. Finally, the sensitive areas were
examined through sensitivity experiments, which con-
firmed the accuracy of the sources of initial errors as well as
the forecast errors.

By investigating the improvement rate of the forecast
when using one set of data rather than the other, the
important degree of the initial conditions with respect to
the forecasts for each case has been obtained. ,e results
showed that forecasts of 6 cases have been significantly
improved (the improvement rate is larger than 0.5), which
means that, for these cases, the initial condition plays a
main role in the forecasts. While the forecasts of 4 cases
have been slightly improved, this means the initial con-
dition also has some effects on the forecasts. For these 10
cases, the initial errors are the important sources of forecast
errors; then we further explored the source of the initial
errors by comparing the two initial conditions. ,e results
showed that the initial errors mainly came from an area

located upstream of the rainfall area (about 5° of longitude
away from the maximum precipitation area) and we called
that area the sensitive area. By studying the relationship
between the sensitive area and the precipitation area, we
found out the rules behind it and then put forward a “guide
flow” method to identify the sensitive areas. ,e sensitive
areas identified by the guide flow method were found to be
generally consistent with those identified by the moist
energy method. Since the guide flow method is easy to use,
it thus may be helpful for quickly selecting perturbation
areas for ensemble forecasts or carrying out supplemental
observations for adaptive observations. Finally, sensitivity
experiments demonstrated that improving the initial
conditions in the sensitive areas leads to more benefits than
improving them in other same-sized areas. ,is verifies the
accuracy of the sensitive areas and confirms the source of
the forecast errors.

Statistically, improving the initial conditions may im-
prove the forecasting of rainstorms in the South China
monsoon region. However, there are some cases (such as the
2019.4.12 case) in which improving the initial conditions has
no benefit on the forecasts. ,us, for these cases, the model
error has an important impact on the rainstorm forecast.
Besides, there are some cases where we fail to find a better
initial condition (cases 3, 6, 7, 16, and 19); for these cases, it is
necessary to find out other ways to evaluate the importance
of the initial conditions. In a word, in order to further
improve the prediction skill for rainstorms in the South
China monsoon region, further in-depth research is still
needed.
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