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Climate zone classi�cation promotes our understanding of the climate and provides a framework for analyzing a range of
environmental and socioeconomic data and phenomena.�e Köppen–Geiger classi�cation system is themost widely used climate
classi�cation scheme. In this study, we compared the climate zones objectively de�ned using data-driven methods with
Köppen–Geiger rule-based classi�cation. Cluster analysis was used to objectively delineate the world’s climatic regions. We
applied three clustering algorithms—k-means, ISODATA, and unsupervised random forest classi�cation—to a dataset com-
prising 10 climatic variables and elevation; we then compared the obtained results with those from the Köppen–Geiger clas-
si�cation system. Results from both the systems were similar for some climatic regions, especially extreme temperature ones such
as the tropics, deserts, and polar regions. Data-driven classi�cation identi�ed novel climatic regions that the Köppen–Geiger
classi�cation could not. Re�nements to the Köppen–Geiger classi�cation, such as precipitation-based subdivisions to existing
Köppen–Geiger climate classes like tropical rainforest (Af) and warm summer continental (Dfb), have been suggested based on
clustering results. Climatic regions objectively de�ned by data-driven methods can further the current understanding of climate
divisions. On the other hand, rule-based systems, such as the Köppen–Geiger classi�cation, have an advantage in characterizing
individual climates. In conclusion, these two approaches can complement each other to form a more objective climate clas-
si�cation system, wherein �ner details can be provided by data-driven classi�cation and supported by the intuitive structure of
rule-based classi�cation.

1. Introduction

Categorizing regions across the globe based on their climate
is bene�cial for summarizing climatological data and for
explaining and disseminating environmental and sociopo-
litical data. Climate classi�cation has been used as a basis for
regionalization at global and regional scales in various �elds,
including ecological monitoring [1, 2], hydrology [3, 4],
evolutionary anthropology [5], agriculture [6–8], and epi-
demiology [9, 10]. Many classi�cation systems have been
previously reported [11–13]. Among those, the system
proposed by Wladimir Köppen [14] is the most famous; it
classi�es global climate into 30 classes under �ve main
groups, originally intended to be representative of the dis-
tribution of �ve vegetation types described by De Candolle

according to the climate zones known to ancient Greeks [15].
�e Köppen system describes climate zones based on several
climatic variables derived from monthly temperatures and
precipitation. Subsequent re�nements and modi�cations
were made to the original Köppen system [16, 17]. In this
study, we refer to the Köppen–Geiger classi�cation system
(hereafter called “KG”), following which world maps of
climatic regions were prepared by Grieser et al. [18], Kottek
et al. [19], and Peel et al. [20] for 1951–2000; Rubel and
Kottek [21] for 1901–2100; and Beck et al. [22] for 1980–2016
and the future.

�e KG classi�cation system is a rule-based, top-down
approach to climate classi�cation. Classi�cation criteria in
KG are tuned for their original purpose of reproducing the
distribution of vegetation. �erefore, the climate zones
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produced by the KG classification system are subjective and
limited to predetermined climate types. At the same time,
the rule-based nature gives the KG classification system the
advantage of being reproducible and intuitive, which is
desirable for ease of communication and wide-scale
adoption.

KG classification has been critically evaluated by several
researchers for its ability to delineate distinct climates
around the world. Triantafyllou and Tsonis [23] evaluated
the KG classification system by classifying climate stations
into Köppen classes on an annual basis and estimating the
frequency of changes between major Köppen climate
groups. *ey found that in some regions of the world, KG is
unstable to interannual changes in climate. *ey also re-
ported that KG is either unable or slow to respond to long-
term climate change, such as global warming. *ey sug-
gested that statistical and data-driven approaches, such as
factor analysis and cluster analysis, can be the basis for a
more objective and robust classification system. Rubel and
Kottek [24], in their comments on Köppen’s original paper
and the review of KG’s subsequent developments, remarked
that in the past, climate classification was exclusively based
on human expertise; however, today, it is supported by
various statistical techniques, such as cluster analysis, which
can objectively define the global climatic regions.

In this study, we aimed at studying how a data-driven,
bottom-up approach to climate classification would produce
objectively delineated climate zones and how they could be
compared with the outcomes of KG.We present an objective
and data-driven classification of the world’s climate based on
a cluster analysis approach. Previous studies [25–28] have
used cluster analysis methods to regionalize the global cli-
mate as well as regional climates. DeGaetano [29], Russell
and Moore [30], and Unal et al. [31] applied cluster analysis
to primary station data to regionalize climates. Fovell and
Fovell [32] regionalized the climate in the United States by
clustering 344 climate divisions of the National Climatic
Data Center (NCDC) dataset. Marston and Ellis [33] and
Park et al. [34] applied cluster analysis to gridded climate
data to regionalize the climates of the United States and the
Korean peninsula, respectively. Hoffman et al. [35] used
cluster analysis of the outputs of a general circulation model
(GCM) to identify climate regimes and compare different
simulation scenarios. Kumar et al. [36] applied a parallel
processing implementation of a k-means clustering algo-
rithm on large high-dimensional datasets comprising ob-
served, remotely sensed, and simulated data to identify
ecoregions in the United States. *e choice of input data,
their preparation, and the selection of clustering algorithms
are important factors that determine the nature of the
clusters produced [26].

Our study differs from previous data-driven classifica-
tions in the selection and preparation of input data and the
setup of clustering methods. We prepared climatic variables
similar to those in the KG. While the KG criteria distinguish
climate classes using predefined thresholds in the data
variables, we intend to reveal natural groupings in the data.
Because the input climatic data were selected to be similar, a

comparison could be made between the rule-based KG
climate classes and data-driven clusters. When setting up the
clustering methods, we followed multiple approaches to-
ward two main objectives. One was to minimize subjectivity
owing to any prior information given when setting up cluster
analyses, such as the number of clusters. For this purpose, we
included ISODATA clustering in our study because it does
not require prior specification of the number of classes. With
the k-means and random forest clustering algorithms, which
require prior specification of the number of classes, we
minimized subjectivity by estimating the optimum number
of clusters. Second, to compare data-driven and rule-based
classifications, we set up cluster analyses to create the same
number of clusters as in the KG.

2. Data and Methods

2.1. Gridded Climatic Data. Reanalysis data from the Cli-
matic Research Unit gridded Time Series (CRU TS) is a
widely used global climate dataset that covers all land areas,
except Antarctica [37]. It provides 10 climatic variables at a
spatial resolution of 0.5°. For this study, the monthly mean
2m air temperature and monthly precipitation rate from the
CRU TS dataset version 4.05 were used. Because this study
was aimed at classifying the present climate, data for the 30-
year period from 1991 to 2020 were extracted.

*e GMTED2010 global digital elevation model (DEM)
was used for obtaining elevation data. It was developed based
on data derived from multiple elevation data sources and is
available at different resolutions [38].

2.2. KG Classification. *e KG classification system was
adopted following the criteria described by Peel et al. [20],
which have also been used by Kriticos et al. [39] and Beck
et al. [22]. *is classification system has been slightly
modified from the original method presented by Köppen
[14] and Geiger [16], and the differences have been discussed
by Beck et al. [22].*e KG classification criteria are included
in the Supplementary Materials (S1). *e criteria for clas-
sification in KG were defined using 11 climatic variables that
were calculated using the monthly precipitation and mean
temperature data.*ese variables were first calculated at a 1-
year time resolution. *en, the latest 30-year (1991–2020)
averages of these variables were calculated. *e updated KG
classification of the present climate was prepared by ap-
plying the classification criteria to the 30-year averaged
variables.

2.3. Data-Driven Classification. Ten climatic variables were
derived from the precipitation and temperature data for
data-driven classification: mean annual temperature (Tmean),
mean annual precipitation (Pyear), air temperature of the
coldest month in summer (Tsmin), air temperature of the
warmest month in summer (Tsmax), air temperature of the
coldest month in winter (Twmin), air temperature of the
warmest month in winter (Twmax), precipitation of the driest
month in summer (Psdry), precipitation of the wettest month
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in summer (Pswet), precipitation of the driest month in
winter (Pwdry), and precipitation of the wettest month in
winter (Pwwet). *e definition of the seasons is consistent
with that in the KG system; out of the two 6-month periods
(April–September and October–March), the warmer is
designated as summer and the colder as winter, at each grid
cell. A map of the regions that experienced summer in
April–September is presented in Figure 1.*is indicates that
the two regions are not separated along the equator. Some
April–September summer areas were enclaved within the
other region. Notably, these areas coincide with the Amazon
and Congolian rainforests. All climatic variables were pre-
pared in the form of global 0.5° grids, consistent with that in
the original CRU TS data system. *e GMTED2010 DEM
dataset [38] provides elevation data at various resolutions.
*e 0.5° resolution elevation data (ELE) were used in this
study.

*ese climatic variables were selected after performing
trial clustering exercises. Initial attempts with monthly
means of the temperature and precipitation failed to rec-
ognize similar climates in different hemispheres because
they occurred in different months. *e use of seasonal
methods allowed us to overcome this drawback. Because the
seasons were defined in the same way as in KG, results that
are more comparable to KG classes were obtained. However,
one may obtain a more objective clustering output with an
objective definition of seasons.

2.4. Principal Component Analysis. *e redundancy of in-
formation in the chosen data variables can be a source of bias
in the clustering analysis. With regard to their hierarchical
clustering analysis of the climate in the United States, Fovell
and Fovell [32] discussed the problem of information re-
dundancy. *ey used principal component analysis (PCA)
to reduce the correlation among the data, thereby attempting
to reduce redundancy. However, they noted that a certain
amount of redundancy can remain even among the principal
components (PCs) that are orthogonal to each other.

We employed PCA to reduce redundancy in the data.
Furthermore, the reduction in dimensions would help re-
duce the complexity of the computations. PCA was applied
to normalized data variables. Both PCA and normalization
have been employed in the cluster analyses of climatic data
[Fovell [40], Fovell and Fovell [32], Gómez-Zotano et al.
[41], Kozjek et al. [42]]. Netzel and Stepinski [26] high-
lighted the importance of proper normalization and re-
ported that their modified normalization method for
precipitation data performed better than uniform normal-
ization, which tends to produce clusters that are largely
influenced by temperature. In this study, we standardized
each data variable as a z-score.

*e number of PCs retained for cluster analysis was
determined by inspecting the scree plot. Selecting PCs based
on the location of the elbow in a scree plot is an accepted
stopping rule in PCA [43]. *ree PCs were selected based on
the scree plot shown in Figure 2. *ese represent 90% of the
variance in the data. *e loadings for the three PCs are listed
in Table 1.

2.5. Cluster Analysis. Cluster analysis was used in this study
as a data-driven approach to delineate climatic regions. Out
of the many available clustering algorithms, three were
considered in this study.

2.5.1. k-Means Clustering. k-means clustering is a widely
used clustering method in which the k number of partitions
is constructed by assigning each observation to the nearest
cluster in terms of the distance to the mean of the cluster
[44]. *e k-means clustering algorithm by Macqueen [45]
was implemented in the Cluster package in R version 4.1.1
[46] and used in this study. Euclidean distance was used as
the distance function. *ree selected PCs of the data vari-
ables were used for clustering.

2.5.2. ISODATA Clustering. *e iterative self-organizing
data analysis technique (ISODATA), a partitioning-type
clustering method, is a modification of the k-means clus-
tering algorithm [47]. Unlike k-means clustering, it does not
require prior specification of the number of classes. Starting
with an initial user-defined number of clusters, the ISO-
DATA algorithm alters the number of clusters by merging,
splitting, or deleting clusters based on certain heuristics to
converge to a solution with an optimum number of clusters.
In this study, ISODATA clustering was performed using the
fast implementation of the ISODATA algorithm provided in
the SAGA GIS package [48].

2.5.3. Random Forest Clustering. As a supervised learning
method, random forest classification requires training with a
labeled or classified dataset. In this study, we decided to use
synthetic training data generated by k-means clustering on a
random sample of 5000 grid cells of the dataset. *e random
forest model was trained on synthetic training data, and the
dataset was clustered using the trained model. Random
forest classification was performed using the randomForest
package in R [49].

2.5.4. Number of Clusters. Although the number of different
climate zones is not known a priori, it is a necessary input for
clustering methods, such as k-means. Some climate clus-
tering studies have adopted a top-down approach to select
the number of clusters (k) such that five and 13 cluster
solutions are derived to match the first two levels of division
in KG classification [26]. Various statistical measures, such
as the Akaike information criterion, Bayes information
criterion, information-theoretical V-measure, and Cal-
inski–Harabasz criterion, have been used to determine the
optimum number of clusters [42, 50, 51]. In this study, we
used the Calinski–Harabasz criterion, which uses the
pseudo-F statistic as a measure of cluster cohesiveness [52]
because it has been widely used to determine the optimum
number of clusters in many applications, including clima-
tological clustering studies [33, 53, 54].

To allow a closer comparison with KG classification, 30-
cluster solutions were also developed using both k-means
and random forest clustering.
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2.5.5. Comparison of Clustering Results. We used the Jaccard
similarity coefficient [55] to investigate the similarity be-
tween clusters produced by different methods and KG
classes. *e Jaccard similarity coefficient is the ratio between
the intersection and union of two sets; it has values ranging
from zero for non-intersection to one for exact similarity.

*is index is widely used in the evaluation of similarity in
clustering in addition to applications such as image rec-
ognition and text analysis [56, 57].

3. Results

3.1. Reproduction of the KG Classification. A map of the KG
classification of the present climate was prepared at a 0.5°
resolution (Figure 3). Antarctica was not classified because
the CRU TS dataset does not cover the continent. Maps of
the five main KG groups and 13 level-2 classes are presented
in Figures S2-1 and S2-2 in the Supplementary Materials.

By applying the KG classification scheme at an annual
scale for 1901–2020, the annual variation in KG classes was
investigated. Figure 4 shows the variability in the five main
Köppen climate groups. Maps of variability between indi-
vidual climate pairs are included in Supplementary Material
S3. In the case of the main KG climate groups, two types of
areas could be differentiated, as shown in Figure 4. *ere are
narrow and sharp regions that suggest that the corre-
sponding climate groups are well-defined with less ambi-
guity. *ere are also wider and fuzzy regions that suggest
that the definitions of the corresponding climate groups are
ambiguous. *e identified regions of high variability agreed
well with the findings of Triantafyllou and Tsonis [23].
Although KG is intended to be a classification of long-term
climates, its application at an annual scale allows the
identification of climates that are prone to be ambiguously
characterized.

3.2.PCA. *efirst PC, which represents 57% of the variance,
is a combination of all 10 climatic variables, with Pyear having
largest magnitude. Pyear has the largest magnitude in the
second PC too, which explains 25% of the variance. Overall,
most climatic variables had similar magnitudes in the first
two components, suggesting that variance in the original
data was shared similarly between the temperature and
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Figure 1: April–September summer regions for 1991–2020.
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Figure 2: Scree plot showing the eigenvalues for the 11 compo-
nents of the data variables. Elbow in the plot can be observed at
component 3.

Table 1: Loadings of the three principal components.

Variable PC 1 PC 2 PC 3
MAT 0.318 0.313
Tsmin 0.311 0.322
Tsmax 0.258 0.388 −0.126
Twmin 0.327 0.25 0.132
Twmax 0.316 0.316
MAP 0.474 −0.431
Psdry 0.262 −0.297
Pswet 0.303 −0.17 0.13
Pwdry 0.218 −0.327 −0.124
Pwwet 0.301 −0.271
Elevation 0.959
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precipitation and the two seasons. *e third component,
accounting for 7.6% of the variance, was dominated by
elevation.

3.3. Cluster Analysis. k-means clustering was performed on
data variables transformed into the three PCs. *e pseudo-F
statistic was calculated for clustering solutions of up to 35
clusters. An optimum number of clusters (k� 12) was se-
lected by detecting the presence of a local peak, followed by a
sharp decline in the pseudo-F statistic (Figure 5). Based on
this, a 12-cluster solution (KM12) was prepared using k-
means clustering, as shown in Figure 6. *en, a 30-cluster
solution (KM30) was prepared (Figure 7). ISODATA
clustering resulted in a 16-cluster solution (Figure 8) named
ISO16. Random forest clustering was used to develop a 30-
cluster solution (Figure 9) named RF30. All cluster maps

were visualized using the same color scale applied in the
order of the mean annual temperature of each cluster.
Cluster identification numbers were assigned in the same
order.

3.4. Jaccard Coefficient. *e Jaccard coefficient between the
KG classification and each data-driven classification was
calculated. *e Jaccard coefficient values are listed in Sup-
plementary Material S4.

4. Discussion

4.1. Discussion of Results. Visual observation revealed several
noticeable similarities and differences between the four data-
driven classifications and the KG classification. All four
clustering schemes created larger clusters with similar
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Figure 3: Köppen–Geiger classification of the present world climate. *e color scheme has been adopted from Peel et al. [20].
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boundaries in some areas of the world, such as inNorthern and
Central Africa, Eastern Americas, Northern and Central
Eurasia, and Australia. In these regions, data-driven clusters
have visual similarities to the KG climate classes. Other regions,
such as western Americas, East Africa, and East and Southeast
Asia, generally have smaller andmore fragmented clusters. For
a fair assessment, KM12 and ISO16 can be compared with the
13 level-2 KG climate classes, and KM30 and RF30 can be
compared with the full 30-class KG classification.

4.2. Cluster Similarities. In all four clustering results, there
are clusters similar to some KG climates, particularly in
groups A, B, and E, which are defined primarily by more
extreme temperatures. Similarities can be identified by
inspecting the Jaccard coefficients (Supplementary Material
S4). Further, the proportions of coverage between different
classification schemes are visualized in Figure 10.

Between the k-means 12-cluster solution and the 13
level-2 KG climate classes, the highest similarity is present
in the EF KG climate to KM12 cluster 1 and BWh KG
climate to KM12 cluster 10, with Jaccard similarity coef-
ficient values of 0.81 and 0.67, respectively. Figure 11 shows
how some of the regional boundaries are in close proximity,
signaling that KG is able to identify some of the natural
clusters in climate data. *e dissimilarity between the BW
KG class and KM12 cluster 10 is mainly due to the cold
desert regions that correspond to the BWk class and are not
included in KM12 cluster 10.

Figure 12 plots the mean values of the two main PCs
for the 13 level-2 KG climates and the KM12 clusters.
Some centers are close together indicating similar regions
in the two classification systems. At the same time, cluster
analysis has recognized some unique climatic regions that
were not seen in the KG classification results, as indicated
by the presence of several isolated cluster centers.
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Cluster 11 of the KM12 stands out in Figure 12. In
the KG, that area is shared between Af, Am, and Cf classes
with Jaccard coefficients of 0.446, 0.035, and 0.13,
respectively.

*e relative contribution of the parameters for the
clustering result can be studied based on the standard
deviation. In distance-based k-means clustering and
ISODATA clustering methods, the objective of the al-
gorithm is to minimize the distance between cluster
members and cluster mean, given by the within-cluster
sum of squares (WCSS), which is equivalent to variance.
*erefore, by calculating the standard deviation of each

variable of the cluster members (Figure 13 for KM12), the
contribution of the variables to the minimization of the
objective function of WCSS can be compared. A variable
that has high similarity, i.e., low standard deviation,
contributes more to the differentiation of the clusters.

*e contribution of the precipitation variables is sig-
nificantly high in some clusters like 2, 3, and 10 but sig-
nificantly low in clusters 11 and 12. *e influence of
temperature variables appears to be similar for all clusters.
*is distinction can be explained by the high dynamic range
of original precipitation variables. Contribution of elevation
is comparatively low across all clusters.
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4.3. Climatic Regions Discovered by Cluster Analysis.
*ere are instances wherein cluster analysis has subdivided
the Köppen classes. *e Af KG climate for tropical rain-
forests has no level-3 subdivision in KG. In the KM12

classification, the region corresponding to the Af climate was
shared mainly between two clusters, numbers 11 and 12. As
revealed by the climographs (Figure 14) of the regions, k-
means clustering distinguished different precipitation levels,
although the temperature variation was similar in all three
regions. KM12 cluster 11 has distinctly higher precipitation
than KM12 cluster 12. Noting that, in KG, the Af class is
defined byminimummonthly precipitation >60mm, we can
investigate the value of the same statistic for the KM12
clusters. *e mean of the minimummonthly precipitation is
132.84mm in KM12 cluster 11 and 48.11mm in KM12
cluster 12. *e mean annual precipitation is 3368mm in
cluster 11 and 2360mm in cluster 12. *ese statistics can be
interpreted as follows. When identifying the wettest climate,
KM12 establishes a lower threshold for precipitation that is
more than twice the value in KG. While the Af class contains
all three major rainforest regions in Central Africa, South
America, and Southeast Asia, cluster 11 is not present in the
African continent.

*e 30-cluster solutions from k-means and random
forest clustering provided further insights into refining the
KG climate classes. *e warm summer continental climate
of Dfb, which is present in Eurasia and North America, has
been placed in separate clusters in the random forest clas-
sification (Figure 15). Climographs revealed that the North
American part of the Dfb class receives distinctly higher
precipitation, suggesting that the Dfb class can be subdivided
further.

Cluster analysis has detected isolated geographical areas
with unique climates that were hidden in the KG classifi-
cation results. For instance, both 30-cluster solutions KM30
and RF30 distinguish the Tibesti mountain region in central
Sahara from the surrounding Sahara Desert.*is new cluster
is present in other arid areas of the world, such as the
mountainous regions of West Sahara, southern Africa,
Middle East, and southwestern North America. *e climate
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Figure 9: 30-cluster solution (RF30) of random forest clustering.
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Figure 10: Proportions of coverage of climate regions across k-
means 12 clusters, Köppen–Geiger level 2, and ISODATA 16-
cluster classification schemes.

8 Advances in Meteorology



in the Tibesti mountains is different from that in the rest of
the Sahara, as it receives more rainfall. Figure 16 shows that
cluster 20 of the KM30 classification, which includes the
above areas, receives substantially higher rainfall, in contrast
to cluster 27, which is more similar to the BWh—hot desert
KG climate.

4.4.ClusteringwithRandomForest. Some clusters created by
the distance-based k-means and ISODATA clustering
methods appear to be primarily sensitive to either tem-
perature or precipitation, rather than both. For instance,
Clusters 11 and 12 of KM12 (which are the two warmest
clusters), cluster 25 of KM30 (which is the sixth warmest
cluster), and cluster 14 of ISO16 (which is the third warmest)
have parts in colder regions, such as Scotland, Norway, New
Zealand, and Chile, corresponding to locations of the boreal
rainforests that receive very high precipitation. *ese re-
gions are clustered together with tropical rainforest regions,
even though the temperature regimes are considerably
different. However, forest-based clustering did not show a
similar outcome. In RF30, the same higher precipitation
regions at higher latitudes were clustered together with other
colder regions. *is highlights some advantages of machine
learning models, such as random forest and other decision
tree-based models, over distance-based clustering methods.
In particular, compared with distance-based methods, tree-
based methods are generally more robust against outliers
[58].

4.5. Suggestions for Dissemination of Data-Driven Classifi-
cation Results. Although data-driven classification offers an
objective classification scheme with superfluous details,
wider adoption of such schemes may be discouraged by
certain common drawbacks. *e climate zones produced by
data-driven methods need to be retrospectively character-
ized. Not only may it be challenging to uniquely characterize
all individual clusters, but a single definition may also not be
satisfactory for users in different disciplines. Another
problem is that the clustering results can be inconsistent. For
instance, because the k-means algorithm converges to a local
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Figure 11: Köppen classes and k-means clusters with the highest similarity. *ere are clusters in k-means 12-cluster results that closely
resemble the EF polar climate and the Bwh desert climate. Cold desert regions of the Bwh class have been excluded from the corresponding
k-means cluster.
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Cluster MAT Tsmin Tsmax Twmin Twmax MAP Psdry Pswet Pwdry Pwwet Elevation

1 0.324 0.336 0.433 0.323 0.374 0.586 0.428 0.291 0.546 0.384 0.615

2 0.243 0.329 0.477 0.288 0.312 0.211 0.149 0.164 0.140 0.129 0.404

3 0.229 0.268 0.355 0.308 0.223 0.299 0.239 0.221 0.260 0.235 0.481

4 0.355 0.331 0.357 0.420 0.365 0.568 0.445 0.621 0.176 0.340 0.930

5 0.326 0.329 0.548 0.339 0.316 0.555 0.451 0.447 0.676 0.617 0.590

6 0.278 0.216 0.354 0.394 0.280 0.418 0.338 0.388 0.262 0.369 0.282

7 0.344 0.309 0.401 0.439 0.338 0.419 0.298 0.403 0.199 0.343 0.607

8 0.237 0.221 0.247 0.307 0.239 0.480 1.003 0.765 1.046 0.684 0.506

9 0.245 0.218 0.372 0.271 0.275 0.448 0.571 0.678 0.392 0.552 0.584

10 0.242 0.248 0.347 0.248 0.267 0.318 0.145 0.453 0.091 0.234 0.394

11 0.301 0.290 0.369 0.264 0.296 1.260 1.648 1.274 1.818 1.162 0.525

12 0.257 0.251 0.290 0.258 0.251 0.640 1.375 1.071 1.459 0.991 0.404

Figure 13: Standard deviation of the normalized variables in each cluster of k-means 12-cluster solution.
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minimum, it can produce different clusters in each trial with
different initial conditions [59]. Although methods to search
for optimum initial conditions [60, 61] and reproduce a
selected clustering outcome are available, the above attri-
butes may make data-driven classifications less appealing
than the intuitive and unique results offered by rule-based
classifications.

Maps of climate zones produced by data-driven methods
are highly fragmented with complex edges in some regions.
For the ease of communication, maps of data-driven clas-
sifications can be post-processed to reduce noise and
sharpen edges. Denoising is a process employed in signal
and image processing to remove noise from analog and
digital signals and images. *ere are many different image
denoising techniques [62]. For application in climate clas-
sification maps, a suitable technique can be chosen con-
sidering the requirements that the pixel values in the
resulting filtered image must be limited to the values (cluster
identification) in the original image and that edges must be
preserved and sharpened. Rank filtering satisfies both these
requirements. It replaces a pixel value with a specified

ranking value from the sorted values of the neighborhood.
Often, the rank is specified as the median, and this process is
called a median filter [63]. Supplementary Material S5 shows
a map of the KM30 clusters post-processed using a median
filter. *e climate zones in the denoised map are less
fragmented, have sharper edges, and are generally more
discernible. *erefore, such post-processing techniques can
be used to produce maps that are better suited for the
communication of the results of data-driven classification.

5. Concluding Remarks

While the rule-based KG classification system has been well
established as the foremost climate classification system, data-
driven classifications offer an alternative with the promise of
being more objective. Our study was devised to explore
naturally emerging clusters in climate data and compare the
identified climatic regions with those obtained with the KG
classification system. Global climatic regions were objectively
delineated by conducting cluster analyses on a data matrix
comprising 10 climatic variables and elevation.

Koppan Class Bwn – Hot Desert
30

25

20

10

15

Te
m

pe
ra

tu
re

 (°
C)

5

Pr
ec

ip
ita

tio
n 

(m
m

)

100

60

20

40

80

0

J J J A S O N D

Month

F M MA

KM30 Cluster 20
20

0

10

–10

–20

–50

–30

–40

Te
m

pe
ra

tu
re

 (°
C)

–60

Pr
ec

ip
ita

tio
n 

(m
m

)

200

175

100

25

75

50

150

125

0

J J J A S O N D

Month

F M MA

KM30 Cluster 27
15

5

10

0

–5

–20

–10

–15Te
m

pe
ra

tu
re

 (°
C)

–25

Pr
ec

ip
ita

tio
n 

(m
m

)

100

80

20

60

40

0

J J J A S O N D

Month

F M MA

Elevation profile A to B

El
ea

tio
n 

(m
 M

SL
)

500

1000

1500

2000

0 5 10

Distance(Arcdegrees)

15 20 25

Figure 16: Left: Tibesti and Tassili n’Ajjer mountain regions in the Sahara. Right: Climographs of Bwh—hot desert Köppen climate and
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In the climatic regions identified by cluster analyses,
strong similarities to KG climate classes were observed in
regions with extreme temperatures. All clustering methods
delineated prominent climate regions that were similar to
the KG climate classes in groups A (tropical), B (arid), and C
(polar). Higher Jaccard coefficient values were also reported
among the above groups, confirming that the best consensus
between data-driven classifications and KG exists in these
climates. In the temperate (C) and cold (D) KG climate
groups, agreement with data-driven classifications was
limited.

Further refinements to the KG climate classes were
suggested based on the results of data-driven clustering.
Instances wherein KG climate classes could be subdivided
into distinct climates were identified, such as the subdivision
of the Af-tropical rainforest climate and the Dfb warm
summer continental climate. Unique climatic regions that
were obscured in KG were also identified, such as moun-
tainous regions within the Sahara.

In summary, our clustering results show that even
though it is a rule-based classification system, KG ap-
proximates some of the natural clusters in terms of the
global climate. Simultaneously, it obscures regions that can
be differentiated in data-driven classifications. With no
definitive measure of the performance of climate classifi-
cation systems, it is impossible to conclude that one system
is better than the other. Clustering-based climate classifi-
cations may be less appealing as a stand-alone system
because of the lack of formal definitions, whereas KG has
established a wide appeal due to its familiar definitions.
However, definitions for data-driven clusters can be for-
mulated based on climatology and geography, as demon-
strated in selected cases.

In addition, we conclude that data-driven classifica-
tions are best used to complement and refine the structure
and definition provided by the rule-based KG classifica-
tion system. To that end, we demonstrated how Köppen
classes can be refined using data-driven insights. In ad-
dition, post-processing methods, such as demonstrated
median filtering, may be suitable for developing climate
zone maps that are suitable for interpretation and
communication.

*e climate data selected in this study were limited to
monthly means of the temperatures and precipitation.*ere
is an opportunity to enrich data-driven classifications by
including more variables that are descriptive or predictive of
the climate. Further studies should focus on investigating
additional variables that could produce more insightful
clustering outputs.
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the Köppen system to delineate the general world pattern of
climates,” Geophysical Research Letters, vol. 21, no. 25,
pp. 2809–2812, 1994.

[24] F. Rubel andM. Kottek, “Comments on: “the thermal zones of
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