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Vegetation growth is affected by both climate changes and human activities. In this study, we investigated the vegetation growth
response to climate change (precipitation and temperature) and human activities in nine subregions and for nine vegetation types
in China from 1982 to 2015./e normalized difference vegetation index (NDVI) and the RESTRENDmethod based on a multiple
linear regression model were employed to this end. An overall increasing trend in the NDVI was observed in recent decades, and
the fastest increases were identified in southern China (TrendNDVI �+0.0190) and evergreen broad-leaved forests
(TrendNDVI �+0.0152). For >66% of China, vegetation is more sensitive to temperature and less sensitive to precipitation based on
the regression coefficients. /e water demand for vegetative growth increased significantly from 1999 to 2015 with global
warming, especially in parts of the temperate zone. We defined a relative change in the residual trend to quantify the impact of
human activities on vegetation. RESTRENDNDVI/NDVI in two periods (P1, 1982–1998 and P2, 1999–2015) markedly increased,
indicating that human activities play a key role in the reversal of land degradation.

1. Introduction

Vegetation impacts the water cycle via various processes,
including transpiration [1, 2], canopy interception [3, 4], and
the conservation of water and soil [5–7]. In the context of
climate change, precipitation and temperature are recog-
nized as the two major climatic factors affecting the bio-
physical processes of vegetation [8, 9]. A warmer climate can
increase the length of the growing season [10] and wetter
conditions mitigate water demand stress and improve plant
productivity in arid and semiarid regions [11]. Under the
influence of both climate changes and human activities, the
changes in vegetation have become more complicated in
various climatic regions [9, 12]. With rapid economic de-
velopment, ecological systems have suffered severe damage
through overgrazing and land reclamation in China, for

example, in the Qinghai-Tibet Plateau [13] and Inner
Mongolian grasslands [14]. Moreover, rapid urbanization
and population growth limit the potential growth areas for
vegetation.

In 1999, the Grain for Green Project was initiated to
reduce the soil erosion and improve local ecological con-
ditions, including for the Loess Plateau, in the northern areas
of Shaanxi Province [15], for the upper and middle Yangtze
River in Sichuan Province [16], and the typical arid/semiarid
rainfed agricultural areas in Gansu Province [17]. /e Grain
for Green Project has led to the conversion of ∼16,000 km2 of
rainfed agriculture land in semiarid regions to grassland and
forests, resulting in an ∼25% increase in vegetation cover of
the Loess Plateau from 1999 to 2010. /e benefit of both
water resource and land-use management (e.g., conservation
of water and soil [5, 18], water-saving agriculture [19, 20],
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and returning farmland to forests [21]) and climate change
(e.g., more precipitation in arid/semiarid regions and
temperature increasing in high-latitude regions [22, 23])
affects local ecological conditions. Especially entering the
21st century, human activities have played an important role
in vegetation change [24, 25]. It is necessary to identify
effects due to climate changes and human activities at re-
gional scales. Two periods of 1982–1998 (before the Grain
for Green Project) and 1999–2015 (after) were analyzed in
this study.

With the development of remote sensing, massive
amounts of data are widely employed to investigate changes
in vegetation [26] and human activities [27, 28] at large
scales. Since the 1980s, a series of vegetation indices have
been developed using remote sensing datasets, for example,
the normalized difference vegetation index (NDVI) and
enhanced vegetation index (EVI), derived from infrared and
near-infrared spectral bands to quantify long-term changes
in vegetation growth [29, 30]. Several studies have focused
on attributing the changes in vegetation using remote
sensing means [9, 10]. A significant increase in the NDVI is
observed in some arid and semiarid regions of China, for
example, in Northwest China, due to the vegetation’s en-
hanced sensitivity to wet conditions [31]. A decreasing trend
in the EVI was detected in the Yangtze River Basin due to
urbanization [9]. Based on previous studies, there is a
positive relationship with warming in most parts of China;
however, the response sensitivity of vegetation differed with
seasons and vegetation types [32, 33].

In recent decades, a series of approaches have been
developed to quantify the impact of climate changes and
human activities on vegetation. /e most widely used ef-
fective methods can be divided into three categories [15]: (i)
regression model-based methods, (ii) biophysical model-
based methods, and (iii) residual trend-based methods. /e
regression model-based method uses regression statistics to
examine the relationship between vegetation change and
climate or human-related factors. However, it is unsuitable
to distinguish the complex interactions between vegetation
and influencing factors (climatic and anthropogenic factors)
[34]. Second, the biophysical model-based method is
common; however, several physiological and ecological
parameters need to be measured or calibrated and the effect
of equifinality for different parameters is unavoidable in a
complex system [34]. /ird, as one of the most widely used
methods for separating the impact of climate changes and
human activities on vegetation, the residual trend-based
method (RESTREND) is a robust approach./e trend in the
residuals of multiple regression between climatic factors and
vegetation indicators (e.g., NDVI, GPP, and NPP) can
quantify the impact of human activities on vegetation.

In this study, we quantify the sensitivity of climate
variables in response to vegetation growth in a warming
climate across various climatic regions and different vege-
tation types in China. To this end, MLR and the residual
trend (RESTREND) analysis method were employed to
separate the impact of climate changes and human activities.
/e rest of the article is organized as follows: in Section 2, we
describe the long-term meteorological and remote sensing

datasets and statistical methods. In Section 3, we report the
assessment and attribution results of long-term changes in
vegetation from 1982 to 2015.We present our discussion and
conclusions in Section 4 and Section 5, respectively.

2. Materials and Methods

2.1. Data Sources. GPCC datasets are recommended for
hydro-meteorological model verification and water cycle
studies owing to the high data quality and long-term time
series. In this study, we selected the monthly precipitation
GPCC datasets (0.5° × 0.5° longitude by latitude) covering
the mainland of China from 1982 to 2015. /is analysis is
based on meteorological stations established before 1900,
and GPCC datasets span the period from 1891 to 2016. In
this study, the period from 1982 to 2015 is covered. /e
coincident monthly spatial resolution (0.5° × 0.5° longitude
by latitude) and the period (1982 to 2015) air temperature
datasets, and the Hadley Centre and Climatic Research Unit
HadCRUT4 datasets including 3839 grid boxes were used in
this study.

Semimonthly, the long-term NDVI of GIMMS NDVI3g
datasets were used. GIMMS NDVI3g datasets are global
vegetation index change data provided by NASA
(https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/). /e
dataset is preprocessed by data fusion, radiometric correc-
tion, geometric correction, bias correction, and image en-
hancement. It is commonly used in the study of regional and
global vegetation change owing to the long time frame and
homogeneous series [10, 35]. In this study, we obtained
GIMMS NDVI data from January 1982 to December 2015.
To minimize the influence of clouds, atmosphere, and
monthly phenology, which is considered a possible source of
noise, the maximum value composite method was adopted
to merge the datasets from the semimonthly to monthly
scale. To ensure consistent spatial resolution for precipita-
tion, air temperature, and NDVI, we uniformly aggregated
to 0.5 using the nearest-neighbor resampling method.

/e land cover map for 2015 from the European Space
Agency Climate Change Initiative (https://maps.elie.ucl.ac.
be/CCI/) was also re-gridded to the 0.5 grid using the
nearest-neighbor method and used to classify vegetation
types. /e nine subregions of China are shown in
Figure 1(a). We reclassified the 38 land cover types into nine
categories, namely croplands—CRO, evergreen broad-
leaved forests—EBF, deciduous broad-leaved forests—DBF,
evergreen needleleaf forests—ENF, deciduous needleleaf
forests—DNF, mixed forests—MF, shrublands—SHR,
grasslands—GRA, and non-vegetation regions—NOV
(Figure 1(b)).

3. Methods

/e linear regression equation is expressed as follows:

Yt � aXt + b + ε, (1)

where Yt is the dependent variable in the year t (Y is the
annual series of NDVI for a given grid box), X is the in-
dependent variable (X is the annual series from 1982 to 2015
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for a given grid box), a and b are the slope and the intercept,
respectively, and ε is the residual for the regression equation.

/e slope of NDVI is given as follows:

slope �
Cov(X, Y)

Var(X)
. (2)

/e statistic value S of the Mann-Kendall test is defined
as follows:

S � 
t−1

i�1
i 

t

j�i+1
sign NDVIi − NDVIj , (3)

where

sign NDVIi − NDVIj  �

−1, if NDVIi − NDVIj < 0 ,

0, if NDVIi − NDVIj � 0 ,

1, if NDVIi − NDVIj > 0 .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

/e variance of S is as follows:

Var(S) �
t(t − 1)(2t + 5)

18
. (5)

/e statistic Z is defined as follows:

Z �

(S − 1)
������
Var(S)

 , S> 0,

0, S � 0,

(S + 1)
������
Var(S)

 , S< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Based on a confidence level of 0.05 using the Mann-
Kendall test, if |Z|≥ 1.96, the statistical value of the trend is
significant [36].

MLR was used to quantify the contribution of meteo-
rological variables. In this sensitivity analysis, sunshine
duration (solar radiation) was eliminated because of the
multicollinearity with precipitation [9]. To compare two
independent variables, we first normalized the annual series

of all variables (both dependent and independent) as a di-
mensionless series with a large sample size (μ� 0; σ � 1):

Xi �
xi − x( 

σ(x)
, (7)

where x is the original annual series, that is, P, T, and NDVI,
and X is the dimensionless series.

/e regression coefficient (hereafter as RC) obtained
from the MLR is an appropriate measure for identifying a
variable as being independent. /e RESTREND method
examines the change in residual differences between the
observed and predicted annual NDVI based on the MLR
model using climate variables (e.g., temperature and pre-
cipitation) as independent parameters [37]. To distinguish
this influence before or after the Chinese Grain for Green
program, the long-term climatic change was divided into
two periods (Period 1, 1982–1998 and Period 2, 1999–2015).
/e annual NDVI residual trend was calculated based on
MLR with the annual air temperature and precipitation. /e
calculation of the RESTREND method is as follows:

NDVI � a1P + a2T + ε, (8)
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Figure 1: Study area covering (a) nine large subregions (1: Northeast China, 2: Inner Mongolia, 3: Northwest China, 4: North China, 5:
Central China, 6: Southeast China, 7: South China, 8: Southwest China, and 9: Tibetan Plateau) with various vegetation types (CRO:
croplands, EBF: evergreen broad-leaved forests, DBF: deciduous broad-leaved forests, ENF: evergreen needleleaf forests, DNF: deciduous
needleleaf forests, MF: mixed forests, SHR: shrublands, GRA: grasslands, and NOV: non-vegetation regions).
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where P is the annual precipitation, T is the annual tem-
perature, and ε is the residual based on the MLR model.

/en the RESTREND can be quantified by linear
regression:

RESTREND �
cov(ε, years)

var(ε)
, (9)

where years is a given period (1982–2015, 1982–1998, or
1999–2015) corresponding to the residual of ε.

4. Results

4.1. Detecting Vegetation Trends Using the NDVI from 1982 to
2015. By analyzing the trend in the annual NDVI from 1982
to 2015 at the grid box level (Figure 2(a)), a significant
increasing trend in the vegetation (termed as “greening”)
was detected inmost regions of China (Figure 2(a) and 2(b)).
/e fastest greening region was found in Central China
(TrendNDVI �+0.0190·10a−1), followed by Southwest China
(TrendNDVI �+0.0165·10a−1), South China
(TrendNDVI �+0.0147·10a−1), most of the Tibetan Plateau
(TrendNDVI �+0.01067), and North China
(TrendNDVI �+0.0131·10a−1). A small increasing vegetation
trend (trend in the NDVI less than 0.01, decade−1) was found
in Southeast China (TrendNDVI �+0.00173·10a−1), Inner
Mongolia (TrendNDVI �+0.0013·10a−1), and Northwest
China (TrendNDVI �+0.0007). By contrast, a decrease in the
NDVI was detected at grid scales and distributed sporadi-
cally in Northeast China (TrendNDVI � –0.0087·10a−1),
Eastern Inner Mongolia, and northern Northwest China.

For different land covers (vegetation types), as shown in
Figure 2(c), the fastest greening region was found in evergreen
broad-leaved forests (TrendNDVI�+0.0152), followed by
croplands (TrendNDVI�+0.0127), mixed forests
(TrendNDVI�+0.0126), shrublands (TrendNDVI�+0.0109), and
evergreen needleleaf forests (TrendNDVI�+0.0102). A smaller
increasing trend in vegetation (trend in theNDVI less than 0.01
per decade) was found in deciduous needleleaf forests
(TrendNDVI�+0.0026), deciduous broad-leaved forests
(TrendNDVI�+0.0023), grasslands (TrendNDVI�+0.0022), and
non-vegetated areas (TrendNDVI�+0.0006).

4.2. Sensitivity Analysis for Vegetation Using MLR. To ex-
plore the sensitivity of vegetation to precipitation (indicating
water stress) and temperature, a multiple regression model
was designed using standardized NDVI (dependent vari-
able) and standardized climatic variables (precipitation and
temperature as independent variables) merged into an an-
nual time series to remove the lagged response of vegetation
within monthly periods.

To eliminate the interference factors in a non-vegetated
area, we extracted the regression coefficient of precipitation
(RCP) and temperature (RCT) to annual NDVI without
counting the grid boxes of the non-vegetated land cover type
at grid scales (Figure 3(a)). On the whole of China, 70.2% of
grid boxes indicated that the vegetation is more sensitive to
temperature (|RCP|< |RCT|). /e contribution (regression
coefficient) of precipitation to vegetation trends has a large

spatial difference at grid scales, ranging from −0.60 in the
north of Northeast China to +0.69 in Eastern Inner Mon-
golia (Figure 3(a)). /e regression coefficient of temperature
showed a different spatial pattern, ranging from −0.37 in the
south of the Tibetan Plateau to +0.79 in the north of Central
China over the same period (Figure 3(a) and 3(b)).

For the nine subregions of China, we note a significantly
positive response of vegetation to precipitation (an average
RCP over +0.1) in nonhumid regions of China, for example,
Inner Mongolia (RCP �+0.302), North China
(RCP �+0.270), and Northwest China (RCP �+0.140). /e
response of vegetation to precipitation is relatively insen-
sitive in the other subregions (the average RCP around zero,
greater than −0.1 and less than +0.1). By contrast, the sig-
nificantly positive response of vegetation to temperature (an
average RCP over +0.1) was found in all subregions of China,
especially in Central China (RCT �+0.547), North China
(RCT �+0.426), the Tibetan Plateau (RCT �+0.438), and
South China (RCT �+0.399).

Using multiple linear regression (MLR) analysis, we
obtained the regression coefficient of precipitation with
different land covers (vegetation types). On average, the
regression coefficient of precipitation ranged from −0.205 in
deciduous needleleaf forests to 0.144 in grasslands. /e
deciduous needleleaf forests, with a negative response to
precipitation, are the most sensitive land-use type
(RCP � −0.205). As shown in Figure 3(b), increased pre-
cipitation also favors vegetation increases in other individual
land-use types (e.g., evergreen broad-leaved forests,
RCP � −0.017; deciduous broad-leaved forests, RCP � −0.094;
evergreen needleleaf forests, RCP � −0.059; shrublands,
RCP � −0.143). On average, the regression coefficient of
temperature ranged from 0.149 in deciduous needleleaf
forests to 0.405 in evergreen broad-leaved forests. Compared
with the regression coefficient of precipitation, we found that
the absolute value of the regression coefficient for temper-
ature is significantly higher in most land-use types, except
for deciduous needleleaf forests (|RCP|>|RCT| in the de-
ciduous needleleaf forests in China). /is means that the
response of vegetation to precipitation is significantly
weaker than that of temperature, except for deciduous
needleleaf forests (Figure 3(b)).

4.3. Contribution of ClimateChanges andHumanActivities to
Interannual Variation of the NDVI in the Two Periods.
With dramatic global warming occurring at global and
regional scales, quantitatively determining the contribution
of climate changes and human activities to the NDVI is
essential for understanding the trends in vegetation change.
Previous studies have highlighted that vegetation growth is
relatively sensitive to climate changes (e.g., temperature and
precipitation), and the influence of human activities on
vegetation growth must not be ignored [9, 38]. /e corre-
lation coefficient of the MLR model (CC) mentioned in
Section 3.2 can indicate the impact of climate changes on
vegetation with global warming. Here, we prepared a long-
term annual temperature series spanning 1982 to 2015
(Figure 4). We noted that the annual temperature slowly
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Figure 2: Continued.
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increased in Period 1 (P1), from 1982 to 1998, with a mean
annual temperature of 6.66, followed by a dramatic increase
after 1998 and decadal warming hiatus early in the 21st
century. Period 2 (P2) from 1999 to 2015 was characterized
by a higher annual temperature (7.20°C), an intensification
of global warming. /e MLR model for quantifying the
sensitivity of vegetation to climate was also applied to P1 and
P2, and then the RESTREND method was used to quantify
the contribution of climate changes and human activities in
the periods.

/e widely used “binning method” was applied to reveal
the pattern and characteristics of the vegetation sensitivity to
climate changes in different precipitation or temperature

conditions. We stratified the annual NDVI data based on the
annual precipitation (or air temperature) in bins of 100mm,
from 100mm for arid region cases to >1700mm for humid
regions (also 2°C bins, from –6°C for sub-frigid regions to
24°C for tropical regions). Here, we focus on each bin greater
than 10 grid boxes.

First, we integrated the regression coefficient of tem-
perature (RCT) and precipitation (RCP) for each tempera-
ture and precipitation bin in P1 (Figure 5(a)–5(c)). In this
period, the vegetation growth was more than twice as
sensitive to temperature as to precipitation, especially in the
bins above 12°C or below 4°C. /e negative response to
precipitation (RCP) was found in the bins below 0°C or above

The median of NDVI trend
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Figure 2: Spatial distribution of change in the annual NDVI (a) in China. /e average change in NDVI for each subregion (b) (NEC :
Northeast China, IM : Inner Mongolia, NWC :Northwest China, NC :North China, CC : Central China, SEC : Southeast China, SC : South
China, SWC : Southwest China, and TP : Tibetan Plateau) and vegetation type (c) (DBF: deciduous broad-leaved forests, DNF: deciduous
needleleaf forests, EBF: evergreen broad-leaved forests, CRO: croplands, SHR: shrublands, ENF: evergreen needleleaf forests, MF: mixed
forests, and GRA grasslands).
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Figure 3: Average regression coefficients of climate variables (precipitation and temperature) for (a) each subregion and (b) vegetation type.
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Figure 5: Averaged regression coefficients of precipitation and temperature during the two periods in various bins of ((a) and (b)) annual
temperature and ((c) and (d)) annual precipitation.
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16°C, and a significant peak occurred between 4°C and 8°C.
In this period, RCP decreases with an increase in precipi-
tation, and the RCP is larger/less than zero in nonhumid/
humid regions (nonhumid/humid regions are the areas
where the mean annual precipitation is larger/less than
800mm). /e results indicate that more precipitation could
boost vegetation growth in nonhumid regions, whereas
excessive precipitation has a negative effect on vegetation
growth in humid regions in this period.

We also investigated both RCT and RCP for each bin in
P2 (Figure 5(b)–5(d)). During this period, there is more
sensitivity to precipitation than the temperature in arid/
semiarid regions (mean annual precipitation is below
400mm) or temperate regions (mean annual temperature is
more than 8°C and less than 12°C) (Figure 5(b)–5(d)). With
global warming, the positive response to precipitation was
found in all temperature bins (except for the –4 to –2°C bin).
Precipitation is more sensitive than temperature to vege-
tation growth in some regions, that is, where the mean
annual temperature is between 8 and 12°C.

Compared to the probability density function of the cor-
relation coefficient with the mean of 0.408 and standard de-
viation of 0.168 from 1999 to 2015 (a period of heightened
global warming), we found a significantly higher correlation
coefficient (CC) with the mean of 0.494 and standard deviation
of 0.185 from 1982 to 1998 at the grid box level (Figure 6). /e
results support that the influence of human activities on
vegetation growth became more obvious in the later period.
/e MLR model, which cannot be explained by climate
changes and is usually interpreted as the effects of human
activities, increased from1999 to 2015./erefore, it is necessary
to explore and separate the impact of human activities on
vegetation growth using the RESTREND method.

To quantify the influence of human activities on vege-
tation growth, we define a relative change in the residual
trend, which is the ratio of the change in the residual trend in
the NDVI to the Long-time average annual NDVI value
(defined as RESTRENDNDVI/NDVI, unit: (%)·10a−1). /e
value of relative change in the residual trend
(RESTRENDNDVI/NDVI � 1.84%·10a−1) indicates that hu-
man activities played a key role in the reversal of land
degradation during P1. /e spatial distribution of the re-
sidual trend showed large regional differences in P1
(Figure 7(a)) with the highest positive values in Central
China (RESTRENDNDVI/NDVI � 3.240%·10a−1) and the
lowest positive value in Inner Mongolia
(RESTRENDNDVI/NDVI � 0.787%·10a−1). Notably, human
activities have localized negative effects on vegetation
growth in western Inner Mongolia and the Tarim River
Basin in western Northwest China in P1.

For P2, the results indicate that the influence of human
activities on vegetation is more evident (Figure 7(b)). /ere
was a significant increase in the relative change in the re-
sidual trend in the NDVI of all of nine subregions (with the
highest positive values in North China,
RESTRENDNDVI/NDVI� 6.120%·10a−1), except for South-
east China which had a slight negative effect from human
activities on vegetation growth (RESTRENDNDVI/NDVI �

–0.299%·10a−1). Interestingly, the brown points

(degradation in vegetation variation) surrounded by green
are the megacities of the Pearl River Delta and Yangtze River
Delta in P1 (Figure 7(a)) and the megacities of Chengdu,
Xi’an, Zhengzhou, Beijing, Tianjin, Nanjing, Qingdao, and
Shanghai in P2 (Figure 7(b)). /is suggested that rapid
urbanization is one of the causes of vegetation degradation.

5. Discussion

5.1. Climate Changes Sensitivity during the Two Periods.
Before the Chinese Grain for Green program was imple-
mented, the vegetation in nonarid areas had a negative
response to precipitation as shown in Figures 3 and 5. A
more plausible explanation is that temperature and radiation
were the limiting factors of vegetation. Precipitation in
drought years could satisfy the basic needs for vegetation
growth in P1 in semiarid and humid regions of China,
because of lower transpiration [39, 40]. With increased
vegetation growth and the associated increase in transpi-
ration, the water demand will consequently increase.
According to the statistical results from the regression co-
efficients of multiple linear regression, the sensitivity of
vegetation to precipitation increased significantly with
vegetation increases in P2. Jiao et al. pointed out that
vegetation water constraints are associated with greening
trends, which leads to the vegetation becoming increasingly
sensitive to precipitation [41]. /is finding may explain that
the negative regression coefficients of precipitation in P1
shifted to positive coefficients with greening trends in the
most subhumid and humid regions in P2.

5.2. =e Impacts of Human Activities on Vegetation Change.
Previous studies have highlighted that vegetation on the
Qinghai-Tibet Plateau has declined significantly due to
excessive human interference. Using the RESTREND
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Figure 6: Probability density functions of correlation coefficients
using MLR in the two periods.
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method, as shown in Figure 7, we identified the vegetation
degradation in P2 [42]. More than 75% of the new cropland
has been cultivated at the expense of forest from 1980 to
2000 across the tropical regions. /e Grain for Green
program induced a considerable reduction in the cultivation
of low productivity crops, and any area taken out of culti-
vation was offset by putting at least an equal additional area
into cultivation [43]. /e rapid expansion of urbanization is
also an important factor leading to vegetation degradation
even with the GFG project. One study showed that urban
areas increased by 24.6×103 km2 (0.26% total area of China),
cropland decreased by 4.9×103 km2 (0.05% total area of
China), and the total area of forest and grassland decreased
by 16.4×103 km2 (0.17% total area of China) with urbani-
zation from 2000 to 2015 [44]. In this study, the negative
effects of urbanization are shown in Figure 7(b), which is in
agreement with previous studies [44, 45].

5.3. Limitations and Future Research Directions. Due to the
lack of meteorological observation stations in the Qinghai-
Tibet Plateau and Northwest China, the global grid mete-
orological datasets (GPCC and CRU) were used in this
study. However, Liang et al. highlighted that a large dif-
ference between observation data and global grid data could
bias results [46]. /is means that the accuracy of the results
needs to be further verified using observation datasets. /e
sensitivities of temperature and precipitation to vegetation
growth were quantified at an annual scale. Solar radiation as
the energy source of vegetation photosynthesis is also one of
the important meteorological elements. Besides, the lag of
vegetation response to climate changes should be considered
at monthly/seasonal scales [47, 48].

6. Conclusions

In this study, we focus on vegetation responses to climate
changes and human activities in various climate areas or

land types from two periods (P1, 1982–1998 and P2,
1999–2015) at the grid box level (3839 grid boxes) in China.
Nine subregions and nine categorized land covers (vege-
tation types) were defined. We analyzed the vegetation
trends using the NDVI from the whole period of 1982 to
2015. Significant greening trends were detected in most
regions, especially in Central China
(TrendNDVI �+0.0190·10a−1), Southwest China
(TrendNDVI �+0.0165·10a−1), and South China
(TrendNDVI �+0.0147·10a−1). /en, we explored the sensi-
tivity of vegetation to climate variables (precipitation and air
temperature) using the MLR model. We found that the
vegetation is more sensitive to temperature in 70.2% of the
areas, and a positive response of vegetation to precipitation
was found in nonhumid regions. A binning method was
used to reveal the characteristics of the sensitivity of vege-
tation to climate changes in various climate conditions
during the two periods. According to the regression coef-
ficient of the MLR model, the impact of precipitation on
vegetation increased significantly in P2 with the intensifi-
cation of global warming. /is indicates that the water
demand for vegetation increased significantly in P2.

To separate the impact of climate changes and human
activities into the two periods, RESTRENDNDVI/NDVI was
defined as the ratio of the change in the residual trend in the
NDVI to the long-time average annual NDVI value as an
indicator for quantifying human activities. Human activities
play a key role in the reversal of land degradation during P1
(RESTRENDNDVI/NDVI � 1.840%·10a−1 in P1). /e deg-
radation of the Tarim River Basin and eastern Inner
Mongolia due to human activities were identified by the
RESTREND method. Owing to effective land management,
vegetation conditions in most areas of China improved in P2
(RESTRENDNDVI/NDVI � 2.376%·10a−1). Vegetation deg-
radation, partly caused by overgrazing, was identified in the
southern Tibetan Plateau, and vegetation degradation due to
urbanization expansion in eight megacities of China was
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Figure 7: Spatial distribution of RESTRENDNDVI/NDVI during (a) 1982–1998 and (b) 1999–2015 in China. /e solid circle denotes a
significant (p< 0.05) change in RESTRENDNDVI/NDVI, green (brown) shading indicates an improvement (degradation) in vegetation, the
blue circles indicate vegetation degradation areas (1982–1998) in the Pearl River Delta and Yangtze River Delta, and the red circles indicate
vegetation degradation areas (1999–2015) in megacities from west to east: Chengdu, Xi’an, Zhengzhou, Beijing, Tianjin, Nanjing, Qingdao,
and Shanghai.
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distinguished. /e RESTREND method demonstrates its
effectiveness in the quantification of vegetation response to
climate changes and human activities.
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