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Based on 130 climate signal indexes provided by National Climate Center of China, this paper established a decision tree
diagnostic prediction model for Spring Kuroshio Sea Surface Temperature (SST) from 1961 to 2015 (65 years) by using Chi-
Squared Automatic Interaction Detector (CHAID) algorithm in data mining and obtained �ve rule sets to determine whether
Spring Kuroshio SST is high or not. Considering the data of the 44 years from 1961 to 2004 as the training set of the model and the
other years as the test set, the training accuracy of the model can reach to 95.45% and the test accuracy can reach to 81.82%.�ree
types of Spring Kuroshio SST are di�erent in intensity and distribution. �e results show that the prediction model of Spring
Kuroshio SST based on CHAID algorithm has a high prediction accuracy, with the reasonable and e�ective model and the well-
thought-out decision rules. Moreover, based on the results of decision classi�cation, the SST anomalies correspond to di�erent
distribution characteristics of summer daily precipitation anomalies in eastern China, which can provide a new idea and method
for climate prediction of regional summer precipitation.

1. Introduction

Kuroshio is famous for its high Sea Surface Temperature
(SST), high salinity, fast current, and large �ow. Geo-
graphically, the Kuroshio is composed of the Kuroshio in
the source area, the Kuroshio in the East China Sea, and
the Kuroshio in the south of Japan. �e Kuroshio in the
source area is located to the east of Luzon Island and
Taiwan Island and to the west of 130°E [1]. Kuroshio is the
main current communicating between the Paci�c Ocean
and the East China Sea, the South China Sea, which plays a
very important role in the thermohaline current transport,
atmospheric circulation, and relevant air sea interaction
in the China Sea, and its seasonal and interannual
characteristics are also closely related to the climate in
China [2, 3]. �erefore, the research of Kuroshio has been
one of the important international and national or re-
gional research programs. In the World Climate Research
Program, the World Ocean Circulation Experiment

(WOCE) studied the characteristics of Kuroshio front and
front vortex and analyzed the variation characteristics of
Kuroshio path and great bend [4]. �e Climate Variability
and Predictability Programme (CLIVAR) focused on the
role of air sea interaction of Kuroshio extension in the
climate system. �e Argo observed the thermohaline
structure in the deep-sea area to support the study on the
Kuroshio air sea heat exchange [5]. In addition to the
above national research programs, a large number of
Kuroshio research programs have been organized in
China and the United States. China’s Kuroshio Edge
Exchange Process (KEEP) project studied the material
exchange process between Kuroshio and the continental
shelf of the East China Sea [6, 7]. �e United States
National Science Foundation (NSF) identi�ed and
quanti�ed the dynamic and thermodynamic mechanisms
of the interaction between Kuroshio extensions and
countercurrent through the Kuroshio Extension Systems
Study (KESS) project.
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SST is one of the main indicators to characterize the
thermal state of Kuroshio, and it can be used to study the air
sea interaction in Kuroshio Area, the influence of Kuroshio
variation on precipitation anomaly, the relationship between
Kuroshio and El Nino-Southern Oscillation (ENSO), global
warming, and climate change, which are the hot research
issues concerned by a large number of scientists. At present,
there have been a lot of research results. For example, in the
study of Hosoda and Kawamura [8], the short-term ab-
normal changes of Kuroshio SST were mainly affected by
atmospheric forcing. Wang et al. [9] believed that the in-
terannual variation of SST in the sea area south of Japan and
the Kuroshio extension area was mainly caused by ENSO,
while the interdecadal variation was related to Pacific De-
cadal Oscillation (PDO). Numerous research results have
shown that Kuroshio’s warm current characteristics allow it
to transport warm water from low latitude to high latitude
and release heat into the atmosphere, thus having an im-
portant impact on the climate and atmospheric circulation
in East Asia [10–15]. *erefore, the accurate prediction of
Kuroshio SST anomalies is of great significance to the study
of air sea interaction and climate anomalies in eastern China.

Some scholars have studied SST prediction using deep
learning algorithms [16, 17]. However, the algorithm of deep
learning is very complicated, which requires a lot of com-
puting resources and the computation process cannot be
well understood. In this paper, we hope to make a qualitative
prediction of Sea Surface Temperature anomalies through a
more lightweight algorithm.

With the continuous advancement of big data, cloud
computing, and artificial intelligence technology, as well as
the constant improvement in modern computer level,
machine learning technique has been widely applied in
many fields. Similarly, more and more scholars have applied
machine learning technique to meteorological scientific
research. Shi et al. [18, 19] used decision tree algorithm to
establish a relatively accurate diagnosis or prediction model
for road icing and extra strong fog disasters. Zhang et al.
[20, 21] used machine learning to establish a more accurate
classification prediction model for whether the typhoon path
turns and whether the typhoon lands. Geng et al. [22] used
the Finite Mixture Model (FMM) algorithm and the Clas-
sification and Regression Tree (CART) algorithm to predict
the path classification and frequency of tropical cyclones
landing in China and achieved good prediction results.
According to David et al. [23], Random Forest (RF) algo-
rithm was used to establish a prediction model of Mesoscale
Convective System (MCS) based on radar data, satellite data,
and model output data. However, there were no rich re-
search achievements with applying machine learning tech-
nique to the Kuroshio SST. *is paper can analyze the
statistical characteristics of Kuroshio SST and establish a
simple, scientific, and accurate diagnostic model by using the
decision tree algorithm from the perspective of nonlinear
algorithm. *rough the decision classification results, the
distribution characteristics of various types of precipitation
in East Asia are analyzed, which provides a new idea and
method for the climate prediction of SST in the Kuroshio
Area.

2. Data and Methods

2.1. Data Source. *is article will use the following three
types of data:

(1) A set of 100 climate system indices compiled by the
National Climate Center (NCC) from 1961 to 2015
(including 130 climate signal indices, including 88
atmospheric circulation indices, 26 SST indices, and
16 other indices) was used.

(2) *e global monthly mean precipitation data from
1961 to 2015 provided by the Global Precipitation
Climatology Center (hereinafter referred to as
GPCC) has a spatial horizontal resolution of
1.0° ×1.0° [24].

(3) *e Comprehensive Ocean-Atmosphere Data Set
(COADS) was used to integrate the SSTdataset from
Hadley Center, UK Met Office, with a spatial hori-
zontal resolution of 1° × 1°.

2.2. CHAID Decision Tree Algorithm. Decision tree algo-
rithm is a classical white box classification method in ma-
chine learning, suitable for dealing with complex nonlinear
problems.*is kind of algorithm usually segments the nodes
in a recursive way, determines the segmentation threshold of
the data according to the preset classification basis and
separation excellence, and forms a decision tree when the
data is segmented to the termination condition.

*e CHAID algorithm, namely, the chi-square auto-
matic cross-check algorithm, is a classification decision tree
algorithm, invented by Kass in 1980 [25], and it can segment
data according to the chi-square value. *e algorithm takes
the dependent variable as the root node and classifies dif-
ferent independent variables by calculating the chi-square
value χ2 of data classification. *e formula is shown as
follows:

χ2 � 􏽘

k

i�1

Ai − Ei( 􏼁

Ei

, i � 1, 2, . . . , k. (1)

In formula (1),Ai is the horizontal observation frequency
of i, Ei is the horizontal expected frequency of i, n is the total
frequency, and pi is the expected frequency of i, so that when
Ei � npi, k is the number of cells. When n is large, χ2 sta-
tistical features obey k − 1 free chi-square distribution.

In this algorithm, classification attributes on each node
are selected by the size of attribute chi-square, and the
samples are split according to the attribute that can bring the
largest chi-square, thus recursively splitting till the stop
condition is reached.

*e effect test of the algorithmmodel adopts the method
of setting aside, which can use part of the data to train the
model, namely, the training set, with another part of the
independent data for testing the model, namely, the test set.
*e ratio of the number of correct training samples to the
total number of training samples is the learning accuracy,
and the ratio of the number of correct testing samples to the
total number of testing samples is the testing accuracy.
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2.3. Determination of the Key Area of Kuroshio SST. �e
common methods for determining key area include corre-
lation, mean-square deviation distribution, and Empirical
Orthogonal Function (EOF) analysis. Some studies have
shown that external forcing factors, such as SST and snow
cover, often lead to abnormal atmospheric circulation and
then lead to changes in precipitation in East Asia [26]. In this
paper, mean-square analysis of Spring SST in the Northwest
Paci�c Ocean was conducted, and it was found that
(120 –130°E, 22 – 32°N) was the large mean-square value
area not only of Spring SST (as shown in Figure 1), but also
in the Kuroshio areas, so that it was selected as the key area
of Kuroshio SST (hereinafter referred to as Kuroshio Area).

3. Establishment of Diagnostic Model for
Whether Spring Kuroshio SST Is High
Based on CHAID Algorithm

3.1. Preprocessing of Experimental Data. �e CHAID algo-
rithm used in this paper is a classical labeled supervised
machine learning algorithm. �e most frequently used
modeling strategy of the algorithm is the method of setting
aside; that is, the total data sample is divided into two
mutually exclusive parts: the training sample set and the test
sample set. �e training set data is used for establishing the
decision tree model, and the test set data for testing the
generality and robustness of the model. Generally, the
training set accounts for 80% of the total sample, so that the
test set data accounts for 20% of the total sample. First of all,
we regarded the data from 1961 to 2004 as the training set of
the model (80%), and the data samples from 2005 to 2015 as
the test set (20%). In this paper, the standardized anomaly
was used to judge whether Spring SST in Kuroshio Area is
high. When the standardized SSTanomaly in Kuroshio Area
is greater than 1, it is considered that Spring SST in Kuroshio
Area is high [27]. “Whether Spring SST in Kuroshio Area is
high or not” can be abstracted into a binary classi�cation
question of yes or no. As shown in Table 1, according to the
statistics of the data samples in the training set and the test
set, there are 44 data samples in the training set, among
which 7 samples have high SST, and 11 data samples in the
test set, among which 4 samples have high SST in Kuroshio
Area.

In this paper, climate signals in spring were selected as
diagnostic factors to diagnose whether Spring SST in Kur-
oshio Area is high. By averaging the values in March, April,
and May of each of the 100 climate system indices provided
by BCC, 130 climate signal indices in spring have been
obtained.

3.2.�eClassi�cationDiagnosisModel of SpringKuroshio SST
Based on CHAID Decision Tree Algorithm. Whether Spring
Kuroshio SST is high was taken as the target variable of the
model, with the 130 indices provided by National Climate
Center (NCC) as the input variables of the model. �e
preprocessed training set was input into CHAID algorithm,
and then the decision tree could be obtained through cal-
culation (Figure 2).

�e decision tree is intuitive in form and in line with the
logical judgment thinking mode of human beings. By ob-
serving the decision tree, it can be found that the root node is
the North American polar vortex intensity index; in other
words, the most important factor for whether Spring SST in
Kuroshio Area is high is the intensity of the Polar vortex in
North America. In the decision tree model, every root node
to a leaf node (T/F) can be abstracted into a decision rule in
the form of “If... �en”. Moreover, each rule in the decision
tree can be summarized to form the decision rule set that is
convenient for people to learn and use (see Table 2).

�e rule set for judging whether Spring SST in Kuroshio
Area is high or not was abstracted through the decision tree,
and the decision tree model was established according to the
training set data. �e learning accuracy of the decision tree
model reached 95.45%. �en, the decision rules were ab-
stracted from root node to leaf node, and the learning ac-
curacy of each rule can be obtained, which is convenient for
reference with the actual situation. Finally, the generaliza-
tion ability of the decision tree model was tested with the
preprocessed test set data, with the test accuracy 81.82%. In
conclusion, as shown in Table 3, this decision tree model has
good classi�cation e�ect and strong generalization ability
and can provide a concise, understandable, and valuable
reference for diagnosing whether Spring SST in Kuroshio
Area is high.

4. Strong SST Model in Kuroshio Area

Based on the corresponding years of the three types (Type
A, B, and D) of strong Spring SST in Kuroshio Area, their
abnormal characteristics of Spring SST distribution (i.e.,
the anomaly value obtained from the average climate
reduction of the type) were analyzed, respectively, to
provide a scienti�c basis for the climate prediction of
strong Spring SST in Kuroshio Area and its impact on
precipitation in East Asia. �e Spring SST distribution of
cumulative and single anomalies of Types A, B, and D can
be shown in Figure 3. As can be seen from Figure 3(a), in
the spring of strong Kuroshio SST years, the entire
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Figure 1: Distribution of climatic mean (isoline, unit °C) and
mean-square error (colored area) of Spring SST.
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Table 1: Frequency distribution of whether Kuroshio SST is high in the total sample, training set sample, and test set sample.

Total sample (1951–2015) Training set sample (1951–2004) Test set sample (2005–2015)
High SST 11 7 4
No high SST 44 37 7

North American Polar
Vortex Intensity lndex

W-shaped Index of North
Atlantic-European Circulation

North Africa - North Atlantic -
North America Subtropical High

Area Index
T (B)

F (E)T (D)F (C)

T (A)

≤2992.602

≤2.620 > 3.803(2.620, 3.803]

≤24.333 > 24.333

> 2992.602

Figure 2: Diagnosis decision tree of whether Spring Kuroshio SST is high based on CHAID algorithm.

Table 2: Diagnostic rule set of whether Spring Kuroshio SST is high discovered by CHAID algorithm.

Decision rules Whether the
SST is high Decision attributes Learning

accuracy
Rule A: If North American polar vortex intensity
index ≤2992.602 YES North American polar vortex intensity index 2/2�100.00%

Rule B: If North American polar vortex intensity
index >2992.602 and W-shaped index of North
Atlantic-European circulation >24.333

YES
North American polar vortex intensity index,
W-shaped index of North Atlantic-European

circulation
2/3� 66.67%

Rule C: If North American polar vortex intensity
index >2992.602 and W-shaped index of North
Atlantic-European circulation ≤24.333 and north
Africa-North Atlantic-North America subtropical
high area index ≤2.62

NO

North American polar vortex intensity index,
W-shaped index of North Atlantic-European
circulation, North Africa-North Atlantic-North

America subtropical high area index

20/
20�100.00%

Rule D: If North American polar vortex intensity
index >2992.602 and W-shaped index of North
Atlantic-European circulation ≤24.333 and (North
Africa-North Atlantic-North America subtropical
high area index >2.62 and North Africa-North
Atlantic-North America subtropical high area index
≤3.803)

YES

North American polar vortex intensity index,
W-shaped index of North Atlantic-European
circulation, North Africa-North Atlantic-North

America subtropical high area index

2/2�100.00%

Rule E: If North American polar vortex intensity
index >2992.602 and W-shaped index of North
Atlantic-European circulation ≤24.333 and North
Africa-North Atlantic-North America subtropical
high area index >3.803

NO

North American polar vortex intensity index,
W-shaped index of North Atlantic-European
circulation, North Africa-North Atlantic-North

America subtropical high area index

16/
17� 94.12%

Table 3: Annual distribution of Kuroshio SST anomalies according to various rules.

Rules Years
Rule A (high SST) 1999, 2000, 2006, 2007, 2011
Rule B (high SST) 1972, 1997, 2002, 2009
Rule C (no high
SST) 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1973, 1975, 1976, 1977, 1978, 1985, 1986, 1987, 1990, 1993, 1994

Rule D (high SST) 1998, 2001
Rule E (no high
SST)

1970, 1971, 1974, 1979, 1980, 1981, 1982, 1983, 1984, 1988, 1989, 1991, 1992, 1995, 1996, 2003, 2004, 2005, 2008, 2010,
2012, 2013, 2014, 2015

Note. Underlined years are classi�ed incorrectly.
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Northwest Paci�c Region presents consistent positive SST
anomalies, and the Kuroshio Area is basically covered by
positive SST anomalies greater than or equal to 0.5°C. �e
SST anomaly center of Type A is located in the Taiwan
Strait, and its intensity reaches 0.9°C. �e SST anomaly
distribution is high in the west and low in the east in the
Northwest Paci�c Ocean, and the distribution in the
Kuroshio Area is also “high in the west and low in the
east.” �e distribution characteristics of high in the north
and low in the south are shown in the SST anomalies of
Type B in the Northwest Paci�c and Kuroshio Area. In the
area north of 20°N, the intensity of abnormally high SST
can increase with the increase of latitude, but in the area
south of 20°N, there is an anomalously low SST. �e
distribution characteristics of SST anomalies in Kuroshio
Area are similar to those in the Northwest Paci�c Ocean,
showing a pattern of “high in the north and low in the
south.” �e anomalous high SSTarea of Type D covers the
whole Northwest Paci�c Ocean. �e SST in Kuroshio Area
is abnormally higher than 0.7°C, with an SST anomaly
center of 1.7°C, presenting a “uniformly high type” dis-
tribution. �e anomalous high SST area of Type D covers
the whole Northwest Paci�c Ocean. �e SST in Kuroshio

Area is abnormally higher than 0.7°C, and there is an SST
anomaly center of 1.7°C, presenting a “uniformly high”
distribution. To sum up, in spring, the SST of Types A, B,
and D is generally strong in Kuroshio Area, but the SST
anomaly intensity and distribution characteristics of the
three types are obviously di�erent, deserving more at-
tentions in the climate prediction of the SST in Kuroshio
Area.

In order to further analyze the anomalous distribution
characteristics of summer precipitation in eastern China
when the SST in Kuroshio Area is abnormally warming, the
summer daily precipitation distribution of cumulative and
single anomalies of Type A, B, and D is shown in Figure 4. It
can be seen from Figure 4 that, in the summer of strong
Spring Kuroshio SST year, there is a negative anomaly area of
daily precipitation in China east of 110°E and north of the
Yellow River (35°N), while the south of the Yellow River is
covered by an obvious positive anomaly, indicating that, in
the summer of strong Spring Kuroshio SST years, there is less
precipitation in the north of the Yellow River in eastern China
andmore precipitation in the south of the Yellow River. It can
be seen from the anomaly distribution of Type A abnormal
precipitation that the zero line of precipitation anomaly is
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Figure 3: Distribution of Spring SST anomalies in Kuroshio Area. (a) Strong Annual Climate Mean; (b) Type A Anomaly; (c) Type B
Anomaly; (d) Type D Anomaly.
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located in the area of the Yellow River (35°N). �e area north
of the Yellow River is basically controlled by negative
anomaly, while the area south of the Yellow River is covered
by positive anomaly, indicating that, in a year of strong Spring
SST of Type A, the summer precipitation is less in the area
north of the Yellow River andmore in the area south, with the
distribution characteristics of “less in the north and more in
the south” in the precipitation anomaly. �e summer pre-
cipitation anomaly of Type B is also basically characterized by
“less in the north and more in the south,” but its zero line of
precipitation anomaly, in the south of Type A’s, is located
along the Yangtze River. �e north of the Yangtze River is a
negative anomaly area, but the south is a positive anomaly
area. It can be shown that, in a year of strong Spring SST of
Type B, the summer precipitation is less in the north of the
Yangtze River, but it is more in the south. It is worth noting
that the summer precipitation of Types A and B is consistently
more in the south of the Yangtze River, while the summer
precipitation of Type D is slightly less in that area. In con-
clusion, when the Spring SST in Kuroshio Area is abnormally
warm in the years of Types A, B, and D, the distributions of

summer precipitation can present di�erent characteristics,
providing more reference for studying the impact of the
Kuroshio SST anomalies on the precipitation in East Asia.

5. Summary and Discussion

In this paper, the CHAID algorithm is used to establish a
multitree classi�cation model to determine whether Spring
SST in Kuroshio Area is high or not, and then the rule set of
whether Spring SST in Kuroshio Area is high or not under
di�erent climatic backgrounds was obtained. According to
the three rules of high SST in Kuroshio Area, the distribution
characteristics of Kuroshio SST and the distribution of
summer precipitation anomalies in eastern China were an-
alyzed, respectively, thus drawing the following conclusions:

(1) With 130 circulation indices as input variables, the
prediction model of whether Spring SST is high in
Kuroshio Area was established by using CHAID
algorithm, and then the classi�cation rule set was
obtained. �e data of the 44 years from 1961 to 2004
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Figure 4: Distribution of summer daily precipitation anomalies in the Spring Kuroshio SST anomaly years. (a) Strong Annual Climate
Mean; (b) Type A Anomaly. (c) Type B Anomaly; (d) Type D Anomaly.
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were used as the training set of the model, and the
remaining years as the test set. *e training accuracy
of the model for whether Spring Kuroshio SST is
high reached 95.45%, and the test accuracy 81.82%.

(2) In spring, the SSTof Types A, B, and D were all high
in Kuroshio Area, but the intensity and distribution
of abnormal high SST were different in the three
types, which is worthy of attention in the diagnosis of
Spring SST in Kuroshio Area.

(3) Although the Spring Kuroshio SSTof Types A, B, and
D were all abnormally high, there were significant
differences in the distribution of summer daily
precipitation anomalies in eastern China, which can
provide more reference for studying the influence of
Kuroshio SST anomalies on precipitation in East
Asia.

With the advent of the era of big data, machine learning
technique has been well applied in many fields. *e accu-
mulation of SSTdata and climate indices can open a window
for the application of machine learning technique in pre-
cipitation prediction and provide a new way of statistical
prediction. In this paper, the Spring SSTin Kuroshio Area was
regarded as the research object, and then the climate pre-
diction of “whether SST is high or not” was carried out.
Further research and discussion will be necessary for how to
use machine learning technique to make a more refined
prediction of Spring Kuroshio SST in its timescales and scope.
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