Hindawi

Advances in Meteorology

Volume 2022, Article ID 7995761, 11 pages
https://doi.org/10.1155/2022/7995761

Research Article

@ Hindawi

Statistics of the Performance of Gridded Precipitation

Datasets in Indonesia

Trinah Wati ®,"> Tri W. Hadi ®,! Ardhasena Sopaheluwakan ,2and Lambok M. Hutasoit!

'Graduate Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung,

Bandung 40132, Indonesia

*Indonesian Agency for Meteorology Climatology and Geophysics, Jakarta 10720, Indonesia

Correspondence should be addressed to Trinah Wati; trinah.watil9@students.itb.ac.id

Received 17 September 2021; Revised 4 March 2022; Accepted 4 April 2022; Published 9 May 2022

Academic Editor: Roberto Coscarelli

Copyright © 2022 Trinah Wati et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Gridded precipitation datasets have been used as alternatives to rain gauge observations, but their applicability for a specific region
should be thoroughly evaluated. This article aims at finding the most appropriate one for climatological and hydrological
applications in Indonesia, by evaluating the statistics of the performance of eight different datasets (research products) having
horizontal resolutions between 0.1 and 0.25 and with a time span of data availability from 2003 to 2015. The datasets are compared
against the observed daily rainfall at 133 stations using 13 statistical metrics that can be classified into three groups with different
characteristics of measurements, namely distribution, time sequence, and extreme value representations. By applying summation
of rank (SR), it is found that MSWEP and TMPA 3B42 are the top two datasets that outperformed based on distribution and time
sequence performance metric groups. The extreme performances for all datasets are still good in 75™ percentiles; however, the
performances decrease at more than 75th percentiles indicating still a poorly representation of daily extreme rainfall for all gridded
datasets. Results of this study suggest that MSWEP (v2) is presently the best gridded precipitation datasets available for cli-

matological and hydrological applications in Indonesia.

1. Introduction

Climate variability at subseasonal, seasonal, interannual, and
interdecadal timescales has potential societal impacts across
the globe. In terms of agricultural production, for example,
roughly one-third of the observed variations in global yield is
caused by climate variability [1]. Furthermore, climate change
is causing extreme weather events and climate anomalies to
increase in both frequency and intensity [2], leading to greater
risks for natural and human systems [3]. The risks are even
higher for countries like Indonesia that are prone to natural
disasters. During 1900 to 2011, 56% of the disasters that killed
almost 241,000 people affected about 28 million population at
a cost of around US$ 24 billion are of hydrometeorological
(climate-related) type [4]. Therefore, accurate estimation of
hazards and risks due to historical and projected climate
anomalies is essential to make development and business
plans more climate proof and adaptive to climate change.

High impacts of hydrometeorological disasters (drought,
wildfire, flood, and landslide) in Indonesia are associated
with the excess or deficit of rainfall and more prevalent than
other types of climatological disasters such as heat wave [5].
While climate change analyses using the top-down approach
have been facilitated by downscaling of projected future
precipitation under the WCRP CORDEX (the Program
Coordinated Regional Downscaling Experiment sponsored
by World Climate Research Program) for the Southeast Asia
region [6], the feasibility of further quantitative impact
studies depends on the availability of observational data to
calibrate the model output. In this context, the availability
and quality of baseline climate data are crucial to carry out
both bottom-up and top-down climate change studies [7] at
regional scales. However, long-term continuous rainfall
observations in Indonesia are only available at a very limited
number of locations. Jakarta, for example, is an exceptional
location where 130-year records, from 1983 to 2012, of
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rainfall and temperature data are available [8, 9]. Other than
that, rainfall data vary in length, network density, quality,
and consistency for different regions, making it difficult to
assess climate hazards and risks associated with extreme
events, even for regions with important sociopolitical
contexts.

In recent decades, there have been efforts to develop
globally gridded precipitation datasets by various research
groups and institutions. Those datasets vary in terms of
purpose, data origin, area coverage, record length, as well as
spatial and temporal resolution [10]. In any case, the
availability of such precipitation datasets is potentially
helpful for coping with the lack of rain gauge observations.
In fact, gridded datasets such as Tropical Rainfall Measuring
Mission (TRMM)-based precipitation products have been
extensively used in various studies with main concerns on
large-scale climatic features [11]. However, prior to their
application to study climate impacts at regional scales, global
precipitation datasets need to be evaluated to understand
their advantages, limitations, and uncertainties [10, 12].
Moreover, Indonesia’s archipelago constitutes the largest
part of the Maritime Continent (MC) where spatial varia-
tions of rainfall climatology are prominent due to complex
land-sea distribution, topography, and strong influence of
Asian-Australian monsoons [13].

Intercomparisons of global precipitation datasets have
been conducted for monsoon and MC regions involving
reanalysis and TRMM precipitation products [14-16]. These
studies used EOF analysis, correlation coefficient, and bias in
comparing the datasets with observations, except [16] that
focused on the relative differences among the products.
There are also studies focusing on Indonesian regions and
the validation of specific datasets such as TRMM [17] and
GSMaP [18, 19] using rain gauge data. An intercomparison
of four precipitation datasets, that is, SA-OBS, APHRO-
DITE, CMORPH, and TRMM, has also been conducted for
performance evaluation against rain gauge data [20]. An-
other study focused on performance evaluation for a specific
purpose to detect low rainfall for drought monitoring on
three datasets, that is, TMPA 3B42RT, PERSIANN, and
CMORPH [21], and another one for a specific region of Bali
Island on three other different datasets, that is, GSMaP,
IMERG, and CHIRPS [22]. These studies have compared
different, but still limited, number of datasets. Moreover,
only a few performance metrics such as bias and correlation
are used, except Liu et al. [22] who used more diverse metrics
of continuous, categorical, and volumetric types. None of the
studies compared the statistical distribution between pre-
cipitation datasets and observed data.

In this work, we performed a more comprehensive
evaluation on eight precipitation products that are derived
from rain gauges, satellite-based estimates, and their com-
binations (see Table 1). This study aims to find the most
robust precipitation dataset for climatological and meteo-
rological research and applications in Indonesia. We pro-
pose a multimetric approach [34, 35] with a total of 13
metrics that can be classified into three groups of statistical
measures against observations. The first group is for
assessing data distribution: (1) mean (g), (2) standard
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deviation (SC), (3) coefficient of variance (CV), (4) PDF skill
scores (SS), and (5) Kolmogorov-Smirnov test (KST). The
second is for evaluating the relationships in sequential data
pairs as time series: (6) Pearson correlation coefficient (7), (7)
mean error (ME), (8) root mean square error (RM), (9)
relative change (RC), (10) T-test (TT), and (11) Z-test (ZT).
The third is for addressing the performance on extreme
events detection: (12) fraction skill score (FSS) and (13)
Anderson-Darling test for the 75th, 90th, and 98th per-
centiles. For overall performance, we apply a summation of
rank (SR) to all metrics used in all groups of scores and select
the top one dataset. As a reference, we employed rain gauge
data of 133 meteorological stations belonging to the Indo-
nesian Meteorological, Climatological, and Geophysical
Agency (BMKG) observed from 2003 to 2015 (see Figure 1).

2. Materials and Methods

2.1. Gridded Precipitation Datasets. The summary of eight
primary datasets used in this study is presented in Table 1.
These datasets are research products with high-latency data
transfer (in the order of several months) and generally
derived from combination of rain gauge, satellite, and re-
analysis data. It should be noted that all datasets have daily
temporal resolution, but the spatial resolutions are 0.25 for
five (CHIRPS, CMORPH-CDR, GFD, PERSIANN-CDR,
and TMPA) and 0.1 for the other three (GSMaP RNL, GPM-
IMERG and MSWEP) datasets. Comparisons between
gridded and observed station precipitations were performed
for the station locations by interpolating the gridded data,
using the “nearest neighbor” method. In addition to the
eight primary datasets, we also analyzed other five gridded
datasets that have different specifications (see the Discussion
section).

2.2. Observation Datasets. The observation datasets used as a
reference employs rain gauge data from 133 meteorological
stations in Indonesia from 2003 to 2015 (Figure 1). These
periods overlap the years between observation and all
precipitation datasets that were being compared. The rainfall
data are the same observed daily precipitation dataset that
was used in Supari et al. [9] up to 2012, with additional
stations and time periods. The same quality control analysis
described in Supari et al. [9] was applied, consisting of
checking for gross errors, missing values, outliers, and
overall data homogeneity. The accumulation of daily pre-
cipitation measured at 07.00 local time assigned the date of
that day’s precipitation data regarding the guidelines of the
Indonesia Meteorological Service (BMKG) [36]. The inter-
comparison between precipitation datasets and observation
rain gauge in this study was carried out without a day shift
(for more details, please refer to Van den Besselaar et al.
(20).

2.3. Metrics of Distribution-Based Performance

2.3.1. Mean (g). The mean (or average) is the measure of the
central tendency for both discrete and continuous data.
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FIGURE 1: The location of station sites with observed mean annual rainfall distribution in the period of 2003-2015 with red (<1500 mm/yr),

green (150-3000 mm/yr), and blue (>3000 mm/yr).

Given y, the time mean, o, the standard deviation of the
observation, and y,, the time mean of a precipitation dataset
with the same period, we define the performance metric

gzl_iltum A“U|’ (1)
ng 0,

where n, is a scale factor taken as equal to 1 [34, 35]. The
maximum value of g =1, and g <0 if the difference between
the time mean of rainfall dataset and observation is greater
than ng multiplied by o,. The performance indices for this
metric were calculated for daily (g_d), monthly (g_m),
seasonal (g_DJF, g_MAM, g_JJA, and g_SON), and annual
(g_a) timescales. Herein, DJF, MAM, JJA, and SON are the
months of December-January-February, March-April-May,
and September-October-November, respectively.

2.3.2. Standard Deviation (SC). Standard deviation mea-

sures the spread of data distribution. The metric SC is a

normalized quantity to represent the comparison between

the spreads of evaluated datasets and the referent, given by
o, — 0

SC=1——0|, (2)

0o

where ¢, and o,, are the standard deviations observation of
gridded precipitation datasets, respectively, so that SC=1 is
being the perfect skill [34, 35]. As with g, the performance
indices for SC were calculated for daily (SC_d), monthly
(SC_m), seasonal (SC_DJF, SC_MAM, SC_JJA, and
SC_SON), and annual (SC_a) timescales.

2.3.3. Coefficient of Variance (CV). The metric CV is a
normalized measure of dispersion. Given CV, and CV,, are
the coefficients of variation for the observation and pre-
cipitation dataset [34, 35], the performance index is cal-
culated as

|CV,, - CV.

ol
cv, ©)

CV=1-
o

for daily (CV_d), monthly (CV_m), seasonal (CV_D]JF,
CV_MAM, CV_]JJA, CV_SON), and annual (CV_a) timescales.

2.3.4. PDF Skill Score (SS). The probability density function
(PDF) skill score (SS) is calculated using samples of rain days
(days with precipitation >0.5 mm) [36]. The SS compares the
PDF observed and gridded precipitation datasets by the
following formula [37]:

nb
$S =Y min(fy, f3), (4)
k=1

where f* and f* are relative frequency of occurrence of a
value in the k™ bin belonging to the histograms of the dataset
and observation, whereas Nb is the number of bins used to
calculate the empirical PDF. If SS=1, the precipitation
dataset perfectly simulates the observed PDF [35, 37].

2.3.5. Kolmogorov-Smirnov Test (KST). The KST test is like
SS but for ECDF (empirical cumulative distribution func-
tion). Given F,(x) and F,,(x) are ECDFs of the observed data
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and a precipitation dataset, the KST performance index is
calculated by

Dyg = maks]Fo (x) - F, (x)|,

(5)
KST = 1 - Dy,

with Dgg is the maximum absolute difference be-
tween ECDF of the two different datasets. The metric
values are normalized and bounded by 1 as the perfect
skill [34, 35].

2.4. Metrics of Time Sequence

2.4.1. Normalized Mean Error (ME). Normalized mean
error (ME) is to measure value-to-value differences between
the two time series calculated as

Zﬁl'mi - Oil
> O;

where m; and O; are the i data of the time series of the
gridded dataset and observation, and N is the number of data
records [38]. Calculations of ME are at daily (ME_d),
monthly (ME_m), annual (ME_a), and seasonal (ME_D]JF,
ME_MAM, ME _]JJA, and ME_SON) time sequences with
ME =1 means the perfect skill.

ME=1- (6)

2.4.2. Normalized Root Mean Square Error (RM). Root
mean square error, or RMSE, is a common measure to
quantify the difference between the two time series. For two
time series p(f) and f(t) with n data records, it can be cal-
culated as follows:

n 27172
RMSE = [Zizl (pi— f1) ] ‘ (7)
n

Herein, we use normalized RMSE [35], which is
expressed as follows:

— (8)

where n_ and 02 are the scale factor and observation
standard deviation relevant to the index i of interest related
to daily (RM_d), monthly (RM_m), annual (RM_a), and
seasonal (RM_DJF, RM_MAM, RM_JJA, and RM_SON)
time sequences.

2.4.3. Relative Change (RC). The RC metric is only applied
for annual rainfall P by calculating changes in two con-
secutive years as

=1 9)

RC index for the whole data period (years) is then
calculated as the mean difference of C' for the observation
and precipitation datasets using equation (1) [34, 35].

2.4.4. Pearson Correlation Coefficient (r). The Pearson
correlation coefficient (r) of the sequential time series for
every point of observation and the corresponding grid cell of
a precipitation dataset is computed using the following
equation:

V(=138 (%) (- 7) |
(V- D3 (- %] "1 - DY (- 722
(10)

where x and y are the variables of observation and the
precipitation dataset with the mean X and ¥, and » is the
degree of freedom of the variables [35]. The calculations of r
are at daily (r_d), monthly (r_m), annual (r_a), and seasonal
timescales (r_DJF, r_MAM, r_JJA, and r_SON).

2.4.5. Z-Test (ZT). Z-test compares the significant difference
between the mean values of observation and a precipitation
dataset taking into account the difference in sample size.

P e
(@) + (o)™ (1)

where x,,, 0,,,, and n,, are the mean, standard deviation, and
sampling size of the dataset, respectively; x,, 0, and n, are
the mean, standard deviation, and sampling size of obser-
vation, respectively. The test P value of this statistic is ap-
proximated using the standard Gaussian distribution at 95%.
P value <0.05 means the average of the precipitation dataset
is significantly different with observation. The score of ZT is
the number of stations with an insignificant P value (>0.05)
divided by the total number of stations [35]. ZT calculations
are at daily (ZT_d), monthly (ZT_m), seasonal (ZT_DJF,
ZT_MAM, ZT_JJA, and ZT_SON), and annual (ZT _a)
timescales.

2.4.6. T-Test (TT). The metric TT is computed the same way
as the Z-test but using Student’s ¢ distribution [35].

2.5. Metrics of Extreme Value Representation. To evaluate the
performance of precipitation dataset for extreme value
representation, two metrics are used: fraction skill score
(ESS) and the Anderson-Darling Tests (ADT). The FSS uses
the forecast verification approach to evaluate the detect-
ability of moderate-to-heavy rainfall events [39], where
rainfall data that exceed a threshold transform into a binary
number of 1, otherwise it is 0 following the formula
FBS

FSS=1-——.
FBS,, (12)

FBS represents the differences of mean squares between
the referent (O;), and the precipitation dataset (F;) on each
grid computed as

FBS = 1 - — i (0, - F,) (13)
N 1 1 N

i=1
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FIGURE 2: Heatmaps of distribution performance metrics by ratio (a) and mean (b) with corresponding SR.

where N is the amount of data, while FBS,, is the largest FBS
that can be obtained. FSS ranges between 0 (no skill) and 1
(perfect skill). Although FSS can be calculated with absolute
thresholds, in this study it is defined relatively to the 75th
(p75), 90th (p90) [40], and 98th (p98) percentiles of each
dataset.

A modified version of Anderson-Darling [41, 42] was
applied to test the differences between the precipitation
dataset distribution with reference data, using the following
formula:

- 2
AZ@JOO(GM_Fn) dHN,
N Jiw Hy
(14)
_nF, +mG,,
N — N .

A represents the distribution of daily precipitation from
the dataset that reproduces the distribution of daily ob-
servations concerning moderate-to-heavy rainfall (using the
same thresholds as FSS). Smaller values of A indicate a
similarity between the two distributions of daily precipita-
tion at a 95% significance level. Let X and Y be an n and m
sample with the empirical cumulative distribution function
(CDF) of F and G. H denotes a measure determined by the
weighted average of F and G, N=#n+m. The rainfall dis-
tribution dataset is significantly different from the observed
rainfall when P values <0.05. The score values were nor-
malized value of A and bounded by 1 as the perfect skill
(ADT).

2.6. The Summation of Rank. The metrics were applied based
on point-to-grid comparisons since the observation data as
referents were at point locations, which may affect the
representativeness of the values being compared. However,
Tan et al. [43] pointed out that results of point-to-grid
comparison are substantially similar to the grid-to-grid
comparison. In this work, we use two scoring schemes for
indexing the precipitation dataset performance with the
distribution and time sequence metrics: the “ratio” scheme,
which summates the station index of more than 0.5 divided
by the total number of stations; and the “mean” scheme,

which averages the entire index from all stations. These
indices and scores measure statistical performance at daily,
monthly, seasonal, and annual timescales. However, the
performance scores for extreme value representation were
only calculated with the “mean” scheme. The summation of
rank (SR) [34, 35, 44] method is used to summarize and
quantify the total score of all metrics.

3. Results

3.1. Distribution-Based Performance. Scores for five per-
formance metrics in the data distribution group, namely g,
SC, CV, SS, and KST, are presented as heatmaps in Figure 2.
It should be noted that the scores are calculated as an
aggregate of all validated points in Figure 1, with two
representation schemes, that is, “ratio” (Figure 2(a)) and
“mean” (Figure 2(b)) as previously explained. The number
of samples for CMORPH-CDR, GPM-IMERG-F,
GSMaP_RNL, GFD, and TMPA 3B42 datasets are 133 or
sampled at the 133 validating points. However, PER-
SIANN-CDR, MSWEP, and CHIRPS had slightly fewer
samples (128, 131, and 131, respectively) because some
grids do not enclose observational data.

It can be seen from Figure 2(a) that, based on the ratio
scoring (summation) scheme, MSWEP has the highest
scores followed by TMPA 3B42 and GPM-IMERG-F. The
MSWEDP also has the highest scores with the mean scoring
scheme, followed by TMPA 3B42 and CMORPH-CDR
(Figure 2(b)). It is of interest to note that the metric gshows
relatively low scores for seasonal and annual, in comparison
to daily and monthly, timescales. Seasonally, the g scores are
worse for DJF and MAM than those for JJA and SON. At
most stations, the JJA and DJF periods correspond to dry
and rainy season, respectively. The spatial distribution of SR
distribution-based performance at all 133 stations in
Indonesia can be seen on Figure S1 in the Supplementary
Material (SM).

3.2. Time Sequence Performance. Time sequence perfor-
mance for each dataset was evaluated using six metrics,
namely ME, RM, RC, r, TT, and ZT, and are presented as
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FIGURE 3: Heatmaps of time sequence performance metrics by ratio (a) and mean (b) with corresponding SR.

heatmaps in Figure 3. As shown in Figure 2, the heatmaps in
Figures 3(a) and 3(b) correspond to the results of the ratio
and mean scoring schemes. The SR scores show that the
MSWEP dataset consistently appears in the topmost rank,
along with the TMPA 3B42 in the second rank. On the other
hand, the CHIRPS now emerges as the third-ranking dataset
overperforming GPM-IMERG-F and CMORPH-CDR. In
contrast to the distribution-based performance, the metrics
for time sequence performance are worse with daily com-
paring to monthly, seasonal, and annual timescales. Thus, in
general, longer temporal aggregates improve the time se-
quence performance of the datasets.

It is notable from Figure 3 that RM or normalized RMSE
metric groups show the worst scores at all timescales. Most
datasets have RM scores less than 0.5 (0.3) for the ratio
(mean) scoring schemes (Figures 3(a) and 3(b)). There are
even negative scores, which indicate that the RMSE of
dataset precipitation is larger than 1 standard deviation of
the observation [35]. Negative values also appear in the
normalized mean error (ME) scores at daily timescale, with
the mean scoring scheme, except that of TMPA 3B42. In
general, the mean scoring scheme tends to produce lower
scores for all metrics in Figures 2 and 3. The spatial dis-
tribution of time sequence SR for all datasets at 133 stations
as seen on Figure S2 in SM shows randomly distributed and
lower values than the SR of the distribution performance.

3.3. Extreme Value Representation. The two metrics for
extreme value representation, that is, FSS and AD can be
calculated using both percentiles and absolute thresholds.
However, considering that the distributions of extreme
values can be significantly different among datasets
(Figure S3 in the SM), we calculated the scores only based on
three percentiles, that is, p75, p90, and p98, and show the
results in Figure 4. In contrast to the results of two previously
discussed performance rankings, Figure 4 shows that the
MSWEP and TMPA 3B42 datasets are in the bottom three
with the SR scores and only perform better when compared
to CMORPH-CDR. In this case, the PERSIAN-CDR is in the
top rank followed by GFD and CHIRPS. Figure S3 in SM
shows the empirical CDF of all stations average
(Figure S3(a)) and five stations in Sumatra, Borneo, Java,
Sulawesi, and Papua (from Figure S3(b) to S3(f)).

In general, all scores in this category drop drastically
with higher percentiles. The ADT scores for p75 are the
highest but those for p98 are the lowest among all scores. On
the other hand, the scores of FSS decrease more gradually
with p75, p90, and p98. These results indicate that extreme
precipitations are still poorly represented in the globally
gridded datasets, bearing in mind that daily precipitation
values are being compared.

4. Discussion

Based on SR scores, MSWEP and TMPA 3B42 are the top
two datasets that consistently outperform the others for both
distribution-based and time sequence performance metric
groups. It should be noted that MSWEP combines several
datasets including other gridded data, such as CMORPH
and TMPA 3B42, and station (GHCN) data. MSWEP data
processing involve bias and frequency correction, CDF
matching, improvement in the peak attenuation of rain
distribution, weighted combination of data sources, and
refining the spatial resolution to 0.1 [33]. Results of a pre-
vious study [10] that compared 22 precipitation datasets also
show that MSWEP had the best performance in temporal
correlation with rain gauge observations and calibration
scores for hydrological model applications. However, Fig-
ure 3 clearly shows that the scores of time sequence per-
formance metrics are low at daily resolution. Longer
temporal aggregation is likely needed to improve the rep-
resentativeness of the datasets.

In contrast, statistical performances of MSWEP and
TMPA 3B42 datasets are low in extreme value representa-
tion. The averaging process when combining several data
sources could have smoothing effects that eliminates real
extreme values. A study by Hamada et al. [45] shows that
maximum near-surface rain rate from TRMM PR data
surpasses 50 mm per hour only at percentiles higher than 90.
Therefore, gridded precipitation datasets may still be useful
for qualitative studies of extreme events, but additional
efforts should be needed in more quantitative applications.

Considering the variations in rainfall climatology of
Indonesian region [46], spatial variation of performance
indices might also be of user’s concerns. Maps of SR scores
for all 133 validating stations can be found in the SM
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FIGURE 4: Heatmap of extreme value representation performance metric with SR.
TaBLE 2: SR score comparison based on dataset types.
Distribution Time sequences Extreme
Datasets . .
Sum ratio Sum mean Sum ratio Sum mean SUM mean
Rain gauge-based datasets
APHRODITE 13.06 7.85 11.40 7.72 0.32
SA-OBS 14.02 17.43 17.27 20.16 0.14
Satellite datasets (near real time)
CMORPH-raw 14.58 10.90 13.31 9.14 0.37
GPM-IMERG-early run 18.33 14.85 17.78 14.87 0.61
GSMaP_NRT 17.35 14.45 17.39 13.67 0.51

(Figure S1). In general, the spatial distribution of SR shows
random patterns. However, relatively lower scores tend to
concentrate over the northern part of Sumatra Island. This
area is characterized by a bimodal annual rainfall and
mountainous topography.

So far, we have discussed the statistical performance of
eight gridded precipitation datasets that are categorized as
(high latency) research data. Some previous studies include
rain gauge-based datasets, as well as near real-time (low
latency) satellite products in their analysis. For more
comparisons, we applied the same procedures of scoring and
ranking to five additional datasets, that is, SA-OBS, APH-
RODITE, CMORPH-Raw, GPM-IMERG-Early Run, and
GSMaP NRT (see Table S4 in the SM), and summarize the
results in Table 2. By comparing the SR scores with those in
Figures 2 and 3, the performance of MSWEP is comparable
with that of rain gauge-based SA-OBS, whereas APHRO-
DITE does not show good performance. On the other hand,
from three low latency satellite products, GPM-IMERG
Early Run show the best statistical performance comparable
to MSWEP in terms of SR scores.

This study adopts a multimetric approach [34, 35] to
evaluate climate models. We use a combination of standard
continuous and categorical verification statistics [47] as
quantitative measures to assess the accuracy of the rainfall
estimation amounts and occurrence of the gridded pre-
cipitation dataset. We apply continuous type metrics for the

performance of data distribution comprehensively and time
sequences in data pairs from time to time between the
rainfall of the dataset and the observed data. In addition,
categorical type metrics were employed to evaluate the
representation of extreme events with a threshold value. The
summation of ranks diagnoses the rank of precipitation
dataset performance to decide the best performance ro-
bustly. Previous studies [10, 21, 22] used fewer metrics
without rank scoring and a greater focus on biases and
correlation in comparison. This study compares more of the
statistical distribution for all rainfall data and extreme rain
days. The weakness of this study lies in not considering
physical factors when comparing the rainfall of precipitation
datasets and observed data, such as comparisons with al-
titude differences [22], while regional influences of monsoon
[35] were only briefly discussed. This research is still purely
statistical analysis with the quantitative evaluation of the
“value-to—to-value” between gridded precipitation datasets
and point-based rain gauge stations. Nonetheless, our results
could be informative for those who need to use gridded
precipitation datasets, especially for climatological and hy-
drological applications in the Indonesian region.

5. Conclusions

The performance and reliability of eight gridded precipi-
tation datasets, namely CHIRPS v2.0, CMORPH-CDR v1.0,
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GFDv3, PERSIANN-CDR v01r0l, TMPA 3B42v7,
GSMaP_RNL V06, GPM-IMERG V06 (Final Run), and
MSWEPv2, were compared with rain gauge station obser-
vations for daily, monthly, seasonal, and annual timescales
in the period of 2003-2015. The findings of this study can be
summarized as follows:

(i) A multimetric approach of 13 metrics is grouped
into three: data distribution, time sequence, and
extreme value representation. The application of
summation of rank deals with the ranking of all
datasets for every performance metric and quantifies
the scores of all metrics for diagnosing and deciding
the best performing dataset.

(ii) The results show that MSWEPV2 is the best product,
followed by TMPA 3B42 for daily, monthly, sea-
sonal, and annual precipitation in comparison with
rain gauge data based on summation of rank. The
extreme performance of all gridded precipitation
datasets is low in more than 75th percentile of daily
rainfall. This study implicates for the application of
climatology and hydrology in the Indonesian region
using gridded precipitation datasets.
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