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e Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) V06 product has been widely studied, but the
errors and the source of the errors within IMERGover diverse climate regions still need to be quanti�ed. To this end, the �nal run gauge-
calibrated IMERG V06 (V06C) and uncalibrated IMERG V06 (V06UC) products are comprehensively evaluated here against 2088
precipitation gauges acquired between March 2014 and June 2018 over China. Moreover, V06C and V06UC rainfall estimates are
compared against the Precipitation Estimation from Remotely Sensed Imagery using Arti�cial Neural Networks (PERSIANN)-Climate
Data Record (CDR) and the Climate Prediction Center morphing technique (CMORPH) gauge-satellite blended (BLD) products.
Continuous statistical indices and two error decomposition schemes are used to quantify their performance. Key results are as follows.
(1) Except for V06UC’s relatively high underestimation over the Tibetan Plateau (TP) and high overestimation over Xinjiang (XJ),
Northeastern China (DB), and Northern China (HB) and CDR’s severe overestimation over TP, all four satellite-based precipitation
products can generally capture the spatial pattern of precipitation over China. Moreover, the satellite-based precipitation estimates agree
better with gauge observations over humid regions than over semi-humid, semi-arid, and arid regions. (2) All the statistical indicators
show that CDR has the worst performance, whereas BLD is the best precipitation product. As for the two IMERG products, V06C has
improved V06UC’s precipitation estimate. Results show that the gauge calibration algorithm (GCA) used in IMERG has active e£ect in
terms of r, POD, and CSI. (3)Within all subregions, all four satellite-based precipitation products demonstrate their worst performance
over the arid XJ region which exhibits the highest FAR and lowest POD and CSI values among all regions. (4) In terms of intensity
distribution, for summer over China, the four satellite-based precipitation products generally overestimate the frequency of moderate
precipitation and light precipitation events (<25mm/day) and underestimate heavy precipitation events (>42mm/day). (5)e relative
bias ratio (RBR) analysis shows that the contribution of missed precipitation tends to be lower over wetter regions. In addition, for the
same climate region, the contribution of missed precipitation is clearly lower in summer than in winter. In summer, false precipitation
dominates the total error, whereas missed and false precipitation are the two leading error sources in winter. Future algorithm re-
�nement e£orts should focus on decreasing FAR in summer and winter and improving missed snow events during the winter.

1. Introduction

Droughts and §oods are two particularly destructive natural
disasters. Serious drought and §ood hazards can cause heavy

losses of lives and property damage [1–3]. For relevant
emergency management of both drought monitoring and
§ood forecasting, reliable precipitation estimates are of vital
importance [4].
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Due to the uneven and sparse distribution of ground-
based weather radars and rain-gauge networks, obtaining
accurate spatiotemporal precipitation information has be-
come a major challenge [5–10]. /is issue is particularly
relevant for China—especially for areas of Western and
Northern China—with its complex topography and rela-
tively uneven and sparse distribution of gauges and weather
radars [8]. Fortunately, with the launch of new remote
sensing satellites and the improvement of precipitation
retrieval algorithms, new satellite-based precipitation
products (SPPs) are constantly being developed and freely
distributed. SPPs can offer near-real-time precipitation in-
formation and cost-effective information about the pre-
cipitation accumulation and distribution and the occurrence
of area-average estimates over sub-catchments [11]. In ad-
dition, compared with conventional precipitation observa-
tion (gauges and weather radars), satellite-based
precipitation estimates have more extensive spatial coverage
and provide more continuous measurements [12–16].

To date, many satellite-based precipitation estimates,
including the tropical Rainfall Measuring Mission (TRMM)
Multi-Satellite Precipitation Analysis (TMPA) [17], the
Precipitation Estimation from Remotely Sensed Imagery
using Artificial Neural Networks (PERSIANN) [18], the
National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC) morphing
technique (CMORPH) [19], and the Integrated Multi-Sat-
ellite Retrievals for Global Precipitation Measurement
(IMERG) [20–22], have been developed and released. In
addition, researchers have recently made concerted efforts to
evaluate and validate available remotely sensed precipitation
products at the basin, regional, and global scale [7, 23–29].
Multiple researches have reported that SPPs have significant
biases. Furthermore, due to the potentially nonlinear rela-
tionship between the precipitation and the hydrological
process, such biases can be magnified in downstream hy-
drologic predictions when models are driven by satellite-
based precipitation datasets [30–32]. Meanwhile, most prior
researches have primarily focused on assessing the overall
performance of satellite-based precipitation datasets.
However, the exact source of precipitation retrieval error is
also important for the evaluation of SPPs. Retrieving pre-
cipitation processes from satellite observations is composed
of two separate steps: rain/no-rain recognition and pre-
cipitation rate estimation. Errors can arise in both steps.

If a given pixel cannot be correctly identified as rain or
no rain, it will cause missed or false precipitation (termed as
missed bias (−MB) and false bias (FB), respectively) re-
spectively.When the raining pixels are correctly detected but
precipitation rates are not precisely estimated in the second
step, then the precipitation bias will be produced (termed as
hit bias (HB)) [33]. Detailed descriptions of missed, false,
and hit scenarios for the selected satellite-based precipitation
against the gauged observations are introduced in Section
2.4.1. A missed scenario indicates that the precipitation
signal is missed by satellite-based product but detected by
gauged observation, a false scenario represents the opposite
case of a missed scenario, and a hit scenario shows gauged
observation and satellite-based product reporting

precipitation events simultaneously. HB, −MB (missed
precipitation (MP)), andFB (false precipitation (FP)) are
always defined as satellite-based precipitation minus ground
reference in respective scenario. /erefore, HB can be
negative or positive. Likewise, −MB and FB are always
negative and positive, respectively.

To track these various error contributions, Tian et al. [33]
recommended an error-component analysis that decom-
poses the total bias (TB) of SPPs into three independent
parts (hit bias, MP, and FP). According to the results of Tian
et al. [33], the relation of the three independent error
components (HB,−MB and FB) and total bias (TB) can be
expressed as TB � HB − MB + FB. /ey [33] used such an
analysis to evaluate six SPPs over the United States: TRMM
3B42 (TRMMMulti-Satellite Precipitation Analysis research
product 3B42 Version 6), TRMM 3B42RT (TRMM Real-
Time Multi-Satellite Precipitation Analysis experimental
product), CMORPH, PERSIANN, NRL (Artificial Neural
Networks Naval Research Laboratory’s blended technique),
and Higgins (NOAA/CPC near-real-time daily precipitation
analysis). /e study found that the three components were
all substantial with great spatiotemporal variations. Tang
et al. [34] also applied the analysis to investigate the TRMM
errors over the United States and reported that hit bias had
the largest contribution to the bias in the warm season and
false and missed precipitation played an important role in
the cold reason. In China, Yong [10] utilized error-com-
ponent analysis to evaluate TRMM precipitation estimates.
/e results indicated that the error components in TMPA
had remarkably seasonal and regional differences. Xu [35]
used a decomposition assessment technique to trace the
error sources of hourly IMERG during the warm season./e
study pointed out that a large amplitude of false precipi-
tation resulted in a serious overestimation for the precipi-
tation of IMERG (more than 80%) over the eastern part of
Mainland China. Both Ning et al. [36] and Su et al. [9]
comprehensively evaluated the GSMAP (Global Satellite
Mapping of Precipitation product) and IMERG over China
by investigating the error features of GSMAP and compared
them to two other SPPs. /ey found that GSMAP had a
better performance than IMERG. Gebregiorgis et al. [37]
found that the SPPs and hit bias were responsible for soil
moisture error and runoff error, respectively. As revealed by
the above studies, it is valuable to examine the error
components of SPPs.

/e IMERG product was updated to Version 06 in May
2019 [22]. Hereinafter, this new IMERG version is referred
to as “IMERG V06.” /e IMERG V06 contains gauge-
calibrated and uncalibrated products (termed as V06C and
V06UC, respectively). Anjum et al. [38] compared IMERG
V06 and V05 and TRMM 3B42 with gauge-based precipi-
tation observations over the five hydro-climatologically
distinct subregions in the Tianshan mountains. /e result
showed that IMERG V06 had no obvious improvements in
comparison with IMERG V05. Jiang et al. [39] evaluated the
utility of evapotranspiration products and IMERG V06 for
drought monitoring over Mainland China. /e study
pointed out that the performances of the Standard Pre-
cipitation Evapotranspiration Index over Southwest China
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and eastern China were significantly superior to their per-
formances in the XB, TP, and XJ subregions. Wei et al. [40]
assessed the suitability of IMERG V06 for drought moni-
toring over China and reported that the IMERG V06 has a
good drought monitoring ability. Ma et al. [41] evaluated the
accuracy of TRMM Version 7 and IMERG V06 at 677
stations over Mainland China. /e research showed that
IMERG had a better performance over semi-humid regions
than over arid regions. Tang et al. [42] conducted a com-
prehensive comparison of IMERG V06 with nine satellite
and reanalysis products over Mainland China. /eir study
showed that IMERGV06 had better performance than CDR.
In addition, other studies have evaluated IMERG precipi-
tation products from different perspectives and obtained
many useful results [43–46]. However, the IMERG V06
product in particular has not been well evaluated by error
decomposition technique over diverse climate regions in
Mainland China. With its large land area, diverse climate,
and complex topography (Wei et al. [8]), China is very
suitable for the evaluation of the quality of new SPPs. Our
goal is to obtain new insight into IMERG’s comprehensive
error features and offer useful evaluation information for
both data users and IMERG algorithm developers.

2. Study Areas, Datasets, and Methodology

2.1. Study Areas. /e study area focuses on areas of
Mainland China located between 73° and 135°E and
18°–53°N (Figure 1). China is dominated by complex to-
pography with highly variation and diverse climates. Xie
et al. [47] and Shen et al. [48] pointed out that the satellite-
based precipitation agreed well with gauge observations over
humid regions of China but generally demonstrated poor
performance over arid and semi-arid regions. Gebregiorgis
et al. [37] also found that climate regime and topography
played a key role in the performance of SPPs. In order to
better compare SPPs, the whole of Mainland China is di-
vided into eight subregions according to the principles (i.e.,
mountain ranges, the annual average precipitation distri-
bution and elevation, etc.) suggested by Chen et al. [49].

/ese eight subregions are arid Xinjiang (XJ); cold
Qinghai-Tibetan Plateau (TP); semi-arid Northwestern
China (XB); semi-humid Northeastern China (DB) and
Northern China (HB); and humid southwest Yungui Plateau
(YG), Yangtze River (CJ) Plain, and Southeastern China
(HN) regions. /e key characteristics of these eight subre-
gions are provided in Appendix A. For more detailed fea-
tures and information in this regard, see Wei et al. [8] and
related studies [12, 13, 15, 24, 25, 49].

2.2. Gauge Precipitation Observations. /e RV06C, CDR,
and BLD precipitation products were blended with different
gauge precipitation observations (less than 400 China’s
international exchange stations over the country). Here, in
order to avoid any misleading results, those gauge obser-
vations which had been adopted to calibrate the four SPPs
were excluded from the reference data we applied for val-
idation purpose. On this basis, the 2088 in situ gauges were

selected. Furthermore, selected gauges contained no missing
values during the study period from 12 March 2014 to 30
June 2018. Figure 1 shows the spatial distribution of the rain
stations. All gauges make hourly measurements of rainfall
accumulation. Based on these measurements, the China
Meteorological Administration (CMA) provided and cali-
brated the daily precipitation datasets of 2088 separate
automatic meteorological stations. /e strict quality control
of gauge data in three levels included extreme valuemasking,
removal of questionable data, and internal consistency
checks performed by the National Meteorological Infor-
mation Center (NMIC) [30, 50]. Here, the daily precipitation
of gauge observations was defined as accumulated precip-
itation depth every 24 hours from 0 : 00 to 23 : 59 UTC.

2.3. Satellite-Based Precipitation Datasets

2.3.1. BLD. /e CMORPH products are based on the
NOAA Climate Prediction Center’s morphing technique.
/e existing microwave rainfall algorithms are used for
CMORPH. In this process, the motion vectors obtained
from half-hour interval geostationary satellite infrared im-
agery are used to propagate the relatively high-quality
precipitation estimates obtained from passive microwave
data.

CMORPH provides three types of rainfall products: (i) a
satellite-only precipitation product (RAW), (ii) a bias-cor-
rected product (CRT), and (iii) a gauge-satellite blended
product (BLD). Here, based on the CPC unified daily gauge
analysis and the RAW product, NOAA/CPC produced the
CRT precipitation product by utilizing the probability
density function matching to perform bias reduction over
land. /en, a gauge analysis (about 300 to 400 China’s in-
ternational exchange stations over the country) based on an
optimal interpolation technique is applied to the CRT
product to generate the BLD product. /e 0.25° × 0.25°/daily
BLD global precipitation estimates from 60°N to 60°S were
first released in 1998. For a full description of the CMORPH
algorithm and its applications, see Joyce et al. [51] and Habib
et al. [52]. Here, the BLD precipitation datasets were
downloaded from ftps://ftp.cpc.ncep.noaa.gov/precip/ and
examined between 12 March 2014 and 30 June 2018.

2.3.2. CDR. Based on the Climatic Data Center Climate
Data Record program, NOAA designed the PERSIANN-
Climate Data Record (termed as CDR) precipitation product
[53]. /e latest CDR version utilizes local cloud textural
information from GridSat-B1 infrared (IR) data to train the
PERSIANN model. In order to improve upon the accuracy
of the product, the Global Precipitation Climatology Project
(GPCP) monthly 0.25° product version 2.2 (less than 380
China’s international exchange stations over the country)
was adopted to remove monthly bias in PERSIANN pre-
cipitation estimates. /e daily CDR product covers an area
from 60°N to 60°S latitude at a spatial resolution of
0.25° × 0.25°. For this study, CDR precipitation datasets were
downloaded from ftps://persiann.eng.uci.edu/pub/ and ex-
amined between 12 March 2014 and 30 June 2018. For
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more detailed information regarding CDR, see Ashouri
et al. [54].

2.3.3. IMERG. /e American National Aeronautics and
Space Administration (NASA) and the Japan Aerospace
Exploration Agency (JAXA) opened the Global Precipitation
Measurement (GPM) mission in 2014. Since the GPM Core
Observatory satellite was launched on February 27, 2014,
IMERG products have undergone a series of major revisions
and reanalysis including the latest release of IMERGVersion
6 in May 2019 [22]. IMERG V06 contains three types of
precipitation products: (i) an early run precipitation product
with a latency of 4 hours, (ii) a late run product with a

latency of 12 hours, and (iii) a final run product with a
latency of about 4 months. /e IMERG V06 product at
0.1° × 0.1° spatial and half-hour temporal resolution provides
global precipitation estimates from 90°N to 90°S. For a more
detailed introduction regarding CMORPH and IMERG, see
Wei et al. [8]. For more detailed information regarding
IMERG algorithm, see the IMERG Algorithm /eoretical
Basis Document [21]. Here, IMERG V06 precipitation
product datasets during the study period from 12 March
2014 to 30 June 2018 were obtained from https://pmm.nasa.
gov/data-access/downloads/gpm.

/e final run half-hourly IMERG V06UC and IMERG
V06C products with a spatial resolution of 0.1° × 0.1° between
March 2014 and June 2018 were employed in this study. /e
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Figure 1: Map of our eight subregions of interest: the Xinjiang region (XJ), the Qinghai-Tibetan Plateau (TP), Northwest China (XB), the
southwest Yungui Plateau (YG), Northeastern China (DB), Northern China (HB), the plain region of Yangtze River (CJ), and Southeastern
China (HN) and the spatial distribution of ground-based rain gauges within China.
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final run IMERG V06C product was calibrated via com-
parisons with the GPCC (Global Precipitation Climatology
Center) precipitation dataset (only using data from 194
China’s international exchange stations over the country).
Daily IMERG precipitation estimates were produced by
summing all 48 half-hourly precipitation accumulation
products. /e near real-time IMERG products, including
early run and late run products, also need to be evaluated,
given their widespread application in disaster forecasting
and hydrometeorological modeling. Future researches in-
vestigating this aspect should be recommended.

2.4. Methodology

2.4.1. Statistical Analysis. /e inverse distance weighting
(IDW) interpolation method has been widely applied to
obtain the spatial rainfall distribution in previous research
[7, 55–57]. Here, for a fair comparison, the IDW interpo-
lation method was utilized to resample both calibrated
IMERG V06C and uncalibrated IMERG V06UC from a
0.1° × 0.1° to a 0.25° × 0.25° grid. Hereinafter, the resampled
IMERG precipitation estimates are referred to as RV06C and
RV06UC, respectively. For amore detailed description of the
IDW interpolation method, see Wei et al. [7, 8].

Overall, BLD, CDR, RV06C, and RV06UC from 12
March 2014 to 30 June 2018 were employed in this paper.
/e four SPPs were comprehensively evaluated against the
gauge precipitation estimates (2088 precipitation gauges)
with the conventional statistical method and the error-
component analysis technique over Mainland China. Prior
to this comparison, all four SPPs were aggregated to a daily
temporal and onto a uniform 0.25° spatial grid.

Many prior studies have utilized ground-based daily or
monthly precipitation observations to assess the quality of
SPPs [12–15]. Here, all four SPPs (BLD, CDR, RV06C, and
RV06UC) were evaluated at grid-boxes during the period
from March 2014 to June 2018. For the analysis, only the
grids of SPPs containing the in situ gauging stations were
chosen. In cases where the center of grid was close to the
gauging station, a direct comparison was conducted between
the SPPs and the corresponding gauge observation pre-
cipitation. In cases where the gauging station was sur-
rounded by four grid cells but not particularly near to the
center of any, an average of the four satellite grid precipi-
tation estimates was utilized for comparison with the cor-
responding gauge observation. /e daily precipitation
classes followed China Meteorological Administration as
follows: (1) rain < 10mm/day (light rain); (2) 10mm/day-
≤ rain< 25mm/day (moderate rain); (3) 25mm/day-
≤ rain< 50mm/day (heavy rain); (4) rain≥ 50mm/day
(violent rain).

/e four traditional statistical indices Pearson linear
correlation coefficient (r), relative bias (RB), mean absolute
error (MAE), and root mean square error (RMSE) were used
to quantitatively assess the overall performance of the four
SPPs. Meanwhile, a contingency table that monitors the
frequency of rain/no-rain estimates in both gauge and
satellite-based precipitation was also employed (see

Appendix B). A complete description of these statistical
metrics can be found in Wei et al. [7, 8], Chen and Li [15],
and Tan et al. [58]. Here, a threshold of 1mm/day was
adopted to determine the occurrence of precipitation for any
given day when computing categorical metrics.

/e equations for continuous and categorical verifica-
tion metrics are listed in Appendix C—where Gi andSi

represent the values of the rain-gauge measurement and
satellite grid precipitation estimate for the ith day, respec-
tively; G andS are the average values of the reference pre-
cipitation and satellite precipitation, respectively; n is the
total number of observations from the rain station or sat-
ellite-based precipitation estimate; M denotes the total
number of days when observed precipitation is not detected
by satellite product; H is the total number of days when
observed precipitation is correctly detected by satellite-based
precipitation product; and F reflects the total number of
precipitation events that are detected by satellite product but
not by the rain station. All metrics are computed only for
grid-boxes in which rain stations are located.

A detailed description of the error decomposition and
relative bias ratio is provided in Appendix D.

3. Results and Analysis

3.1. Spatiotemporal Analyses of Average Precipitation in
China. To examine the accuracy with regard to capturing
precipitation amounts from March 2014 to June 2018, the
spatial distributions of average daily precipitation values
obtained from the four SPPs and the rain-gauge observa-
tions are shown in Figure 2.

Generally speaking, all the four SPPs can capture the
spatial patterns of average daily precipitation amounts over
Mainland China against gauge observations. Meanwhile, all
products in Figure 2 accurately reflect the general increasing
trend of precipitation from the northwest and northeast to
the southeast coast, illustrating that the characteristics of
precipitation vary with elevation, longitude, latitude, diverse
climate, complex terrains, etc.

However, finer-scale differences can be observed be-
tween the satellite-based products. For instance, the
V06UC precipitate estimate shows less precipitation than
the other three SPPs along the southwest border in the YG
mountainous subregion. In addition, RV06UC estimates
less precipitation than other SPPs in areas bordering CJ
and HN and east of DB. However, CDR tends to have
estimate more precipitation than the other four SPPs over
the XJ subregion according to Figures 2(a)–2(e)—indi-
cating that the current SPPs tend to have greater un-
certainty in high-altitude areas, and there is still room for
algorithm improvement in SPPs.

Impressively, BLD precipitation estimates show very
high accumulated maxima at sporadic individual pixels. On
the contrary, both the IMERG and CDR products have a
smoother precipitation pattern. /e former observation is
perhaps due to the IMERG product’s finer spatiotemporal
resolution (0.1°/half hour) [15] and the additional micro-
wave signals used in the IMERG products which objectively
improve the precipitation retrieval accuracy. /e latter

Advances in Meteorology 5



observation is attributed to the Artificial Neural Networks
employed in CDR.

To further analyze the temporal characteristics of av-
erage daily precipitation over Mainland China, the time
series of average daily precipitation obtained from the four
SPPs and the corresponding gauge-based observations
during the study period (from March 2014 to June 2018) are
depicted in Figure 3. A 31-day running average is utilized to
the mean daily precipitation time series to reduce visual
clutter. Palomino-Angel et al. [59] and Anjum et al. [38]
compared the reference and satellite-based mean daily
precipitation by the same method.

In general, all four SPPs can reproduce the temporal
characteristics of the gauge-based observations. /e period
(June to August) of maximum precipitation was identified.
However, the estimated daily precipitation data (from SPPs)
varied more than the observed precipitation data (from
gauges). According to Figure 3 and the mean of the average
daily precipitation time series (2.767mm/day for RV06C,
2.735mm/day for RV06UC, and 2.5772mm/day for rain-
gauge observations), RV06C and RV06UC precipitation
estimates share a similar distribution in the year, and both
IMERG products overestimate precipitation estimates ac-
quired from gauge observations in rainy season (from June
to August). However, CDR tends to show a larger overes-
timation from March to September according to Figure 3
and the mean average daily precipitation time series
(2.7804mm/day for CDR, 2.5772mm/day for rain gauges).
In the end, Figure 3 and the average rainfall closest to the
station among the four SPPs (2.6643mm/day for BLD and
2.5772mm/day for gauge) indicate that BLD captures the
rainfall of the rain-gauge observations best. However, it still
suffers from some periodic biases.

To quantitatively compare average daily precipitation, r,
RB, MAE, and RMSE metrics for RV06C, RV06UC, CDR,
and BLD mean daily precipitation estimates throughout the
entire study period (from March 2014 to June 2018) over
Mainland China and the selected eight subregions are shown
in Figure 4.

According to Figure 4(a), BLD has the highest r values
among the four SPPs for all regions. Likewise, in comparison
with the other satellite-based products, CDR shows the
lowest r values in all regions./is result may be related to the
fact that rain-gauge data is used to bias-correct BLD at the

daily scale and CDR at the monthly scale. As for the r values
of the calibrated RV06C and uncalibrated RV06UC prod-
ucts, RV06C looks better than RV06UC as the r values of
V06C are higher than those of V06UC for all regions.
Furthermore, among all regions, each satellite-based pre-
cipitation product shows the lowest r over the arid XJ region
due to its complex topography and sparse rain-gauge cov-
erage. With regard to RBs for the two IMERG products, the
uncalibrated RV06UC exhibits higher positive RBs (32.76%
over XJ, 17.46% over XB, 28.47% over DB, and 27.02% over
HB) and larger negative RB (−25.66%) over TP. However,
the calibrated RV06C product improves upon RV06UC’s
overestimation and underestimation with RBs falling to
4.66% over XJ, 10.48% over XB, 15.24% over DB, 11.52%
over HB, and 11.15% over TP. It therefore appears that the
gauge adjustment algorithm in RV06C has partially cor-
rected systematic biases. However, the overestimation of
rainfall remains in the RV06C product and cannot be ig-
nored, especially over XJ, XB, DB, andHB, where the RBs are
above 10%. However, the RB for RV06UC is smaller than
RV06C, which may be related to negative RBs (over TP, YG,
and HN) offsetting a portion of positive RBs (over XJ, XB,
DB, HB, CJ) for RV06UC. Meanwhile, for RV06C, RBs are
always positive. Among the four satellite-based products,
RV06UC shows the highest absolute RBs over XJ, XB, YG,
DB, HB, and CJ. Meanwhile, CDR has the highest RBs over
Mainland China and HN, especially over TP with RB value
of 50.8%. In the end, among the four SPPs, BLD shows the
smallest RBs over most regions, such as China, TP, DB, HB,
CJ, and HN.

With regard to MAE and RMSE, BLD has the lowest
MAEs and RMSEs regardless of region and CDR shows the
highest MAEs and RMSEs over Mainland China, TP, XB,
YG, CJ, and HN among the four SPPs./e calibrated RV06C
and uncalibrated RV06UC precipitation estimates exhibit
similar performance. At the same time, V06C has slightly
smaller MAEs and RMSEs than RV06UC over XJ, XB, DB,
HB, and CJ and has a bit larger MAEs and RMSEs than
RV06UC over other subregions. In general, RV06C shows
slightly better performance than RV06UCwith smaller MAE
(0.9661 vs. 1.0101) and RMSE (1.424 vs. 1.4937) over
Mainland China. In addition, the MAE and RMSE vary
greatly over the eight subregions for the heterogeneity of
precipitation accumulation. Generally speaking, MAE and
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Figure 2: Spatial distribution of average daily precipitation (mm/day) derived from (a) RV06C, (b) RV06UC, (c) CDR, (d) BLD, and (e) in
situ gauges over Mainland China from March 2014 to June 2018.
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RMSE values for the humid regions (YG, CJ, and HN) and
semi-humid regions (DB and HB) are higher than those for
the arid XJ, semi-arid XB, and cold TP regions.

In summary, among the four SPPs, it can be seen that
CDR performs the worst with the lowest r values in all
regions, the highest RMSEs (except for XJ, DB, and HB
subregions) and MAEs (except for XJ and DB), and the
largest RB within all of Mainland China. /e CDR’s poor
performance has been noted previously by Tang [42]. As for

the two IMERG products, RV06C has slightly improved
RV06UC’s precipitation estimates according to the relatively
larger r values regardless of region and smaller RMSEs and
MAEs over China and most subregions (HB, DB, XB, XJ,
and CJ). As for BLD, it is the best of the four SPPs with the
highest r values and the lowest MAEs and RMSEs over each
region and RBs over most regions (China, HB, XB, DB, TP,
HN, and CJ). /ese results are consistent with the results
shown in Figure 3.
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Figure 3: Comparison of average daily precipitation time series derived from the four SPPs and the corresponding gauge observations over
Mainland China during the period fromMarch 2014 to June 2018 (a). A 31-daymoving average is utilized to each average daily precipitation
time series to reduce visual cluttering (b).
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3.2. Spatial StatisticalAnalysis of ErrorFeatures. To study the
spatial characteristics of the RV06C, RV06UC, CDR, and
BLD precipitation products over Mainland China, the
continuous statistical indices r, RB, RMSE, and MAE are
shown in Figure 5.

From Figures 5(a), 5(e), 5(i), and 5(m), it can be seen that
the spatial distribution of r is positively related to the spatial
distribution of average daily precipitation shown in Figure 2.

According to Figures 5(a), 5(e), 5(i), and 5(m) and the
average r values within Appendix E, r values for humid
regions (CJ and HN) with low elevation and latitude are
better than those of semi-humid regions (DB and HB).
However, the humid YG subregion is an exception, and r
values for RV06C, RV06UC, and BLD are significantly lower
over the middle part of YG, especially for CDR. At the same
time, values of r for semi-humid regions are larger than
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Figure 4: Values of r, RB, MAE, and RMSE performance metrics for mean areal precipitation estimate time series derived from RV06C,
RV06UC, CDR, and BLD during the period from March 2014 to June 2018 over Mainland China and the eight subregions.
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those in arid and semi-arid regions (XJ and XB, respectively)
with high elevation and latitude and those in the TP cold
region with complex topography. In addition, BLD has the

highest r and CDR shows the lowest r among the four SPPs.
Note that this result is consistent with the prior analysis in
Figure 4(a).
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As for RBs, it can be seen that calibrated V06C improves
the uncalibrated V06UC’s overestimation over XJ, XB, DB,
and HB. From the large number of yellow, green, and pink
dots shown Figure 5(f), it can be clearly seen that V06UC
shows a significant underestimation over TP. /e four SPPs
show remarkable overestimation for a number of gauge
stations within XJ—see the many black dots within
Figures 5(b), 5(f), 5(j), 5(n). In each subregion, SPPs not
only show overestimation at some gauge stations, but also
exhibit underestimation at other gauge stations. However, in
general, positive biases are stronger and more prevalent than
negative biases.

In terms of RMSE and MAE, the two IMERG products
and CDR show similar spatial patterns. In general, BLD
performs better than the other three SPPs according to
Figure 5.

Variation in the values of r, RB, RMSE, andMAEmetrics
calculated for the RV06C, RV06UC, CDR, and BLD product
is summarized by the boxplots in Figure 6.

Compared with RV06UC, RV06C shows considerable
improvements in r. In terms of variation in the estimation of
precipitation accumulations, RV06C performs better than
RV06UC over most regions (except for TP, YG, and HN), as
witnessed by shorter box lengths of RB for RV06C in those
regions (Figure 6(b)). As for RMSE and MAE, the perfor-
mance of RV06C is better than RV06UC with lower RMSEs
and MAEs over most regions (except for TP, YG, and HN).
From the above discussion, gauge calibration improves the
overall performance of the uncalibrated RV06UC product.

All the four satellite-based products show high RB over
XJ. /e high discrepancies between SPPs and in situ ob-
servations may be due to sparse gauges, complex climate,
and terrain characteristics that can result in high uncer-
tainties in the evaluation of the SPPs at regional scales.

Compared with the other three SPPs, BLD shows the best
performance with the highest r values (all regions) and the
lowest RB (except for TP and YG), RMSE (except for arid XJ
and TP cold region), and MAE (except for TP region). In
addition, CDR shows the worst performance with the lowest
r values and the highest MAEs (except for XJ region) among
all the SPPs.

To further investigate the difference between the four
SPPs, the spatial distributions of POD, FAR, and CSI metrics
for each product are illustrated in Figure 7.

From Figure 7, one can clearly see that POD and SCI
increase from the northwest and northeast to the southeast
coast just like variation of precipitation amount over
Mainland China. However, FAR has the reverse spatial
tendency. In general, RV06C performs better than RV06UC
overMainland China in terms of POD, FAR, and SCI results.
RV06UC POD results reveal that RV06UC misses some
precipitation events over Mainland China, especially over
TP. However, within northern part of HB, RV06UC detects
more precipitation events. RV06C improves upon
RV06UC’s performance, especially over humid regions (YG,
CJ, and HN) and within the TP cold region—perhaps due to
the result of gauge adjustment. Compared with the two
IMERG products, CDR obviously captures more precipi-
tation events over Mainland China—particularly in the HB,

CJ, DB, XB, and TP subregions and the northwest part of XJ.
Likewise, BLD has the best POD among the four SPPs
according to Figures 7(a), 7(d), 7(g), and 7(j).

Interestingly, the differences in FAR for the two IMERG
products are not as obvious as those in POD, except for
northern parts of the DB region and the northwestern part of
HB. Moreover, RV06UC shows higher FAR values than
RV06C over these two regions. CDR shows the worst FAR
among the four satellite-based products according to
Figures 7(b), 7(e), 7(h), and 7(k). At the same time, BLD
achieves the smallest FAR over northern (XB and XJ) and
eastern China (DB, HB, and CJ).

As with FAR, the differences in CSI are not obvious
between the two IMERG products. However, RV06C ap-
pears slightly better than RV06UC according to Figures 7(c)
and 7(f). Meanwhile, BLD has the best CSI performance, just
like that of POD, among the four SPPs. However, CDR
shows the worst CSI according to Figures 7(c), 7(f ), 7(i), and
7(l). In the end, according to Figure 7, the worst POD, FAR,
and CSI values occur over XJ region, which indicates that
high systematic errors may be related to altitude effects and
its arid climate.

/e comparison of POD, FAR, and CSI for RV06C,
RV06UC, CDR, and BLD over Mainland China and our
eight subregions is shown in Figure 8. /e four SPPs achieve
good POD scores (more than 0.5613) over Mainland China
and all eight subregions except for the XJ region and
RV06UC over TP. Furthermore, the best PODs are found in
HN and CJ (more than 0.6653). CDR and BLD demonstrate
better PODs than the IMERG products over most regions
(except for YG and HN). Regarding the two IMERG
products, the scores of RV06C are higher than RV06UC over
most regions except for HB (0.6354 vs. 0.6189 overMainland
China, 0.4461 vs. 0.443 over XJ, 0.6232 vs. 0.5335 over TP,
0.5746 vs. 0.5613 over XB, 0.6059 vs. 0.5744 over YG, 0.6085
vs. 0.6067 over DB, 0.616 vs. 0.6223 over HB, 0.6733 vs.
0.6653 over CJ, and 0.7021 vs. 0.6815 over HN). Among the
four satellite-based products, BLD shows the best perfor-
mance with highest POD (0.7214 over China, 0.5062 over XJ,
0.6338 over XB, 0.7061 over YG, 0.6998 over DB, 0.6761 over
HB, 0.7768 over CJ, and 0.801 over HN) except for TP./ese
results are consistent with the categorical metric results
shown in Figure 7.

/e FAR values for the four SPPs are higher than 0.3814
in all regions. CDR has the highest FARs over all regions
(0.6136 over Mainland China, 0.7618 over XJ, 0.5926 over
TP, 0.6788 over XB, 0.56 over YG, 0.6613 over DB, 0.7122
over HB, 0.5748 over CJ, and 0.4859 over HN) among the
four satellite-based products, while BLD shows the lowest
FARs (0.4462 over Mainland China, 0.6204 over XJ, 0.5161
over XB, 0.4505 over YG, 0.4584 over DB, 0.5039 over HB,
0.3987 over CJ, and 0.3814 over HN) except those for TP.
Compared with RV06UC, RV06C has slightly better FARs
(0.4924 vs. 0.4966 over China, 0.6825 vs. 0.7062 over XJ,
0.5528 vs. 0.5596 over XB, 0.5554 vs. 0.574 over DB, 0.5715
vs. 0.5908 over HB, and 0.4602 vs. 0.4611 over XJ) over most
regions.

With regard to CSI, all four SPPs have low CSIs (less than
0.5362) in all regions. As with FAR results, CDR has the

10 Advances in Meteorology



worst scores in CSI (0.3205 over China, 0.1939 over XJ,
0.3407 over TP, 0.2678 over XB, 0.3409 over YG, 0.2893 over
DB, 0.2518 over HB, 0.3542 over CJ, and 0.4164 over HN)
among the RV06C, RV06UC, CDR, and BLD products. At
the same time, BLD exhibits the highest CSI (0.4563 over

China, 0.277 over XJ, 0.4234 over TP, 0.3782 over XB, 0.4472
over YG, 0.4395 over DB, 0.4008 over HB, 0.5128 over CJ,
and 0.5362 over HN). RV06C performs better than RV06UC
with higher CSI scores in each region according to
Figure 8(c).
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Figure 6: Boxplots of (a) correlation coefficient (r), (b) relative bias (RB), (c) RMSE, and (d) MAE for daily precipitation estimates from
RV06C, RV06UC, CDR, and BLD during the period fromMarch 2014 to June 2018 over Mainland China and our eight subregions./e five
lines from top to bottom for each box describe the maximum value, 75th percentile, 50th percentile, 25th percentile, and minimum value
levels, respectively.
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3.3. Analysis of Error Components. To analyze temporal
variations in precipitation error components during the
period fromMarch 2014 to June 2018, the time series of total
bias and error components are shown in Figures 9–11. A 31-
day running average was applied to the entire time series to
reduce visual clutter. It can be seen that seasonality exists in
each error component, especially in the winter and summer
months. In general, lower values of total bias and error
components are shown in the winter and higher ones in the
summer over all regions. Such seasonality is mainly due to
the uneven seasonal precipitation distribution over China.
Simultaneously, the changing tendency of total bias and
error-component curves also gives differences in different
products and regions.

In terms of the two IMERG precipitation estimates, the
changing tendency of missed error is highly similar over all
regions with the exception of the TP. Over the TP, the
amplitudes of missed errors for RV06C are slightly lower
than those of RV06UC. /e results indicate that the gauge
adjustment of RV06C has little impact on MP event. At the
same time, the changing tendencies of false error are highly
similar over humid regions (YG, CJ, and HN) in Figures 10
and 11. However, when moving from a humid region to
semi-humid, semi-arid, and arid regions, these differences
increase slightly. Over the TP, an excessive number of MP
events and large negative hit bias result in RV06UC’s

underestimation of total precipitation. At the same time, for
RV06C, the most outstanding feature is the decrease of
amplitude in hit bias and the upward adjustments for total
bias according to Figures 9(i) and 9(j). Furthermore, the
adjustments in warm months are larger than those in cold
months. However, when gauge adjustments correct hit bias
and MP of RV06C, they also elevate the FP rate of RV06C.
As a result, RV06C still has a high total bias over the TP.
Over XJ, the outstanding feature is the decrease of amplitude
in false error and downward adjustments for total bias and
hit bias in Figures 9(e) and 9(f). Furthermore, almost over all
regions, compared with hit bias and negative missed errors,
the positive false errors have a larger impact on the total
biases of RV06C and RV06UC. /e negative missed errors
and positive false errors show very similar seasonal vari-
ability. In fact, they are mirror-symmetric in a way that they
could partially offset each other. However, the season am-
plitude of the false errors is somewhat than that of themissed
errors. /erefore, the total bias is generally positive.
According to the above discussion and the description in
Figures 9–11, we can see that RV06C improves upon the
performance of precipitation of RV06UC over Mainland
China, especially over XJ and TP.

Compared with the two IMERG products, the propor-
tion of hit bias for CDR is larger almost in all regions.
Meanwhile, the hit bias of CDR is generally negative over
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most regions except for the TP, particularly in summer (rain
season), which is not the same as the two IMERG precip-
itation estimates. Moreover, the amplitudes of FP increase
over most regions (except for XJ), especially over the TP
where the proportions of hit bias and positive false error of
CDR increase substantially, particularly during summer.
Meanwhile, the higher FP error and positive hit bias for CDR
lead to a serious overestimation of precipitation. A similar
result can be seen in Figure 4(b). However, the seasonal
amplitude of MP tends to be slightly smaller over China and
semi-humid subregions (DB and HB). As described above
and observed in Figure 9(c), CDR shows the worst per-
formance among all the precipitation products with the
highest false error, hit bias, and total bias. In the end, its
excessive FP rate may cause a problem for its application to
hydrological forecasting.

As for BLD, compared with the other three satellite-
based products, it seasonal amplitude in MP is slightly lower
in Mainland China and most of our regions of interest (i.e.,
TP, XB, YG, HB, CJ, and HN). At the same time, BLD shows
the best performance in terms of the smallest total bias over

most regions—including TP, DB, HB, CJ, and HN (see
Figures 9(l), 10(l), 11(d), 11(h), and 11(l)). Generally
speaking, in comparison with the other three SPPs, BLD has
lower seasonality amplitude of false error and missed error
over China (Figure 9(d)), which substantially improves the
error structure of the BLD output. However, the proportion
of hit bias increases a little. Benefiting from the mutual offset
of error components, the total bias of BLD is generally the
lowest over Mainland China. At the same time, from the
time series of false errors, missed errors, and total bias, it can
be seen that the BLD has the best performance among the
four SPPs over China.

3.4. Intensity Distribution Analysis of Error Components.
Previous studies have shown that the errors of SPPs are
closely related to precipitation intensity [33, 58]. To further
explore the features of the error components of the four
SPPs, the daily intensity distributions of total, hit, and MP,
together with the FP events over Mainland China and our
eight subregions for all summer and winter seasons (from
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Figure 8: Categorical statistical indices: (a) POD, (b) FAR, and (c) CSI of daily precipitation for RV06C, RV06UC, CDR, and BLD satellite-
based products compared to precipitation gauges over Mainland China and its eight subregions from March 2014 and June 2018.
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Figure 10: Same as Figure 9 except for the XB, YG, and DB subregions.
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Figure 9: Regionally averaged time series of the total bias and error components for RV06C, RV06UC, CDR, and BLD during the study
period fromMarch 2014 to June 2018 over Mainland China and XJ and TP subregions. A 31-day moving average is utilized to each average
daily precipitation time series to reduce visual cluttering.

14 Advances in Meteorology



March 2014 to June 2018), are shown in Figures 12–14 for
summer seasons and Figures 15–17 for winter seasons. Here,
it should be noted that a threshold of 1mm/day is adopted to
determine rain/no rain for any given day when computing
the intensity distribution of error components. Since the
intensity distributions are closer to lognormal, the loga-
rithmic scale was used to bin precipitation rates across the
range of 1–256mm/day on the x-axis. /e values on the y-
axis stand for precipitation accumulation for each bin, which
is obtained from the total days in the corresponding season.

For summer, over Mainland China, the two IMERG
precipitation estimates generally show similar distribution
of the total precipitation, with their differences being small,
as shown in Figure 12(a). At the same time, in Figure 12(a),
RV06C and RV06UC overestimate light precipitation and
moderate precipitation events (<25mm/day) and underes-
timate heavy precipitation events (>42mm/day). However,
RV06UC is closer to observations than RV06C at precipi-
tation rates between 8 and 25mm/day and at precipitation
rates greater than 64mm/day. However, for precipitation
rates from 30 to 64mm/day, RV06C is closer to the gauge
observation than RV06UC. For BLD and CDR, compared
with the two IMERG products, the underestimation of heavy
precipitation (precipitation rate more than 42mm/day) and
the overestimation of light and moderate precipitation
(precipitation rate less than 30mm/day) become more
pronounced (Figure 12(a)). Furthermore, the curve of total
precipitation of CDR is farther from the rain-gauge-based
reference curve (Figure 12(a)). /e proportion of the MP is
relatively small (Figure 12(c)). Compared with CDR, BLD

has less MP events, while the two IMERG products show
more MP events. Similar results can be seen in Section 3.3.
/e FP rate of the four satellite-based precipitation estimates
is larger than MP rate. Meanwhile, CDR has a wide dis-
tribution of FP, concentrating at precipitation rates less than
42mm/day (Figure 12(d)). RV06C, RV06UC, and BLD have
the extreme similar distributions of selected s. Meanwhile,
BLD looks slightly better than the two IMERG products,
especially at precipitation rates more than 32mm/day. /e
results are consistent with the above analysis in Section 3.3.

/e performances of hit, false, missed, and total pre-
cipitation metrics for SPPs show remarkable regional dif-
ferences. Over the TP (Figures 12(i)–12(l)), the curve of total
precipitation for RV06C is much closer to that of rain-gauge
reference curve than RV06UC. Furthermore, the upward
adjustments are concentrated at precipitation rates from
4mm/day to 64mm/day (Figure 12(j)). Meanwhile, MP
rates decrease across precipitation rates. However, the un-
favorable overcorrection of FP is found at all precipitation
rates. In general, the calibration process used in RV06C is
effective over the TP (Figure 12(i)). CDR overestimates total
precipitation at almost all precipitation rates (Figure 12(i)).
Likewise, BLD shows relatively good performance in terms
of total, hit, and missed precipitation (Figures 12(i)–12(k)).
Over XJ (Figures 12(e)–12(h)), RV06C is successful at
correcting total precipitation for light rain with precipitation
rates ranges from 1.3mm/day to 10mm/day and FP at all
precipitation rates. /e excessively downward correction in
total precipitation is concentrated at precipitation rates from
16mm/day to 105mm/day. BLD shows the best
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Figure 11: Same as Figure 10 except for the HB, CJ, and HN subregions.
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Figure 13: Same as Figure 12 except for the XB, YG, and DB subregions.
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Figure 12: /e daily intensity distribution of the total, hit, missed, and false precipitation summer metrics during the period from March
2014 to June 2018 over Mainland China and the XJ and TP subregions. /e total precipitation of gauge (blue line) is also shown in the first
two columns for comparison.
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Figure 15: /e daily intensity distribution of the total, hit, missed, and FP in winters for the period from March 2014 to June 2018 over
Mainland China and XJ and TP subregions./e total precipitation of gauge (blue line) is also shown in the first two columns for comparison.
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Figure 14: Same as Figure 12 except for the HB, CJ, and HN subregions.
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Figure 16: Same as Figure 15 except for the XB, YG, and DB subregions.
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Figure 17: Same as Figure 15 except for the HB, CJ, and HN subregions.
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performance in total precipitation at precipitation rates less
than 21mm/day and FP at precipitation rates less than
6mm/day among the four satellite-based precipitation es-
timates. CDR’s poor performance is mainly caused by ex-
cessive FP since the intensity distribution of FP looks like
that of total precipitation, and the proportion of daily missed
and hit precipitation is relatively small. Over XB, between
two IMERG products, RV06C shows a downward adjust-
ment in hit precipitation for precipitation rates above
12mm/day and in FP for precipitation rates over 4mm/day
(Figures 13(b) and 13(d)). While, over YG, RV06C has an
upward adjustment in hit precipitation for precipitation
rates between 10mm/day and 72mm/day and in FP for
precipitation rates between 8mm/day and 72mm/day
(Figures 13(f) and 13(h)). At the same time, there is almost
no adjustment in MP. Over the semi-humid subregions (HB
and DB) and humid subregions (CJ and HN), RV06C and
RV06UC share similar curve tendencies of total, hit, missed,
and FP (Figures 13 and 14).

Impressively, over most subregions (except for TP and
YG), CDR, compared with other three SPPs, generally shows
relatively more precipitation during light or moderate pre-
cipitation and has obviously less precipitation in heavy pre-
cipitation cases in the hit scenario (the second column of
Figures 12–14). At the same time, the CDR and the other three

satellite-based precipitation products have three intersection
points, respectively. /ese points are very close, and they all
change with climatic variation. Moreover, the points gradually
increase for the wetter and wetter climate regions (from about
4mm/day over arid XJ to about 6mm/day over semi-arid XB,
about 12mm/day over semi-humidHB andDB, and eventually
about 32mm/day over humid CJ and HN, respectively), which
may be related to the uneven precipitation distribution over
China. Meanwhile, a similar situation occurs with regard to FP
(the fourth column of Figures 12–14) over most subregions
(except for the TP cold region). Over these subregions, an
underestimation of heavy rain in total precipitation (see the
first column of Figures 12–14) is attributed to the less pre-
cipitation in the heavy rain in CDR hit and false scenarios (see
the second and fourth columns of Figures 12–14). At the same
time, more precipitation in the light or moderate rain in CDR
hit and false scenarios result in an overestimation of light and
moderate rain categories in total precipitation.

Similar to summer results, over Mainland China
(Figure 15(a)), the difference in total precipitation of the two
IMERG precipitation estimates is relatively small. Mean-
while, both RV06C and RV06UC underestimate light pre-
cipitation and moderate precipitation events at precipitation
rate between 2.7mm/day and 24.4mm/day and overestimate
heavy precipitation events for precipitation rates larger than
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Figure 18: Intensity distribution of relative bias ratio for the error components of RV06C, RV06UC, CDR, and BLD during summers for the
period from March 2014 to June 2018 over China and XJ and TP subregions.
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29.3mm/day. At the same time, RV06C is closer to obser-
vations than RV06UC at precipitation rates of more than
2.7mm/day (except for individual situation). However, the
situation with regard to total precipitation for CDR and BLD
is different from that of the two IMERG products. CDR and
BLD show overestimation at light precipitation with pre-
cipitation rate below 5.7mm/day and underestimation at
moderate precipitation and heavy rain with precipitation
rates from 8.2mm/day to 73mm/day. Furthermore, it is
generally true that the curve of total precipitation for BLD is
closer to the rain-gauge reference curve than that for CDR.
For hit precipitation (Figure 15(b)), compared with BLD, the
other three SPPs show less hit precipitation at precipitation
rates below 24.4mm/day. However, the two IMERG
products have more hit precipitation than BLD at precipi-
tation rates greater than 35mm/day.

MP (Figure 15(c)) accounts for a larger proportion of
total error in winter than in summer. During the winter, the
MP of BLD is much lower than that of the other three
satellite-based products. Furthermore, CDR has the most
MP with precipitation rates more than 4.7mm/day. From
Figure 15(d), it can be seen that CDR has the highest FP rate
when precipitation rates fall below 24.4mm/day. /e FP
rates of RV06C, RV06UC, and BLD are all similar for
precipitation rates less than 8mm/day. However, when

precipitation rates are greater than 11.8mm/day, BLD shows
the smallest FP rate among the four satellite-based precip-
itation estimates.

Over the arid XJ subregion, Figures 15(e)–15(h) show that
the total, hit, missed, and FP rates fall within the range of 1 to
30mm/day for the four SPPs. Except for individual situation,
RV06UC has less hit precipitation at all precipitation rates
(Figure 15(f)), and RV06C shows a slightly upward adjustment
at most precipitation rates. Among the four SPPs, BLD has the
highest hit precipitation rate at all precipitation rates. /e two
IMERG products have more MP than BLD and CDR. Fur-
thermore, BLD exhibits the lowest MP rate at almost all
precipitation rates (Figure 15(g)). As for FP, an unfavorable
overcorrection was found in RV06C. CDR shows more FP for
precipitation rates less than 4.7mm/day. Over XJ, compared
with the missed and FP, hit precipitation possesses relatively
small proportion in winter (except for BLD). Over the TP cold
region, the curves of hit, missed, false, and total precipitation
show relatively little variation./e intensity distribution of total
precipitation looks like that of FP, and the hit precipitation
accounts for a relatively smaller proportion (Figures 15(i), 15(j),
and 15(l)). All the four SPPs show more MP events s when
precipitation rates are less than 8mm/day (Figure 15(k)).

Over the semi-arid XB subregion (Figures 16(a)–16(d)),
RV06C, RV06UC, and CDR show less hit precipitation in

XB
Re

la
tiv

e b
ia

s r
at

io
 (%

)
YG

Re
la

tiv
e b

ia
s r

at
io

 (%
)

D
B

Re
la

tiv
e b

ia
s r

at
io

 (%
)

-4

-2

0

2

4
Hit bias

(a)

-8

-6

-4

-2

0
Missed precip.

(b)

0

2

4

6

8
False precip.

(c)

-4

-2

0

2

(d)

-8

-6

-4

-2

0

(e)

0

2

4

6

8

(f)

-4

-2

0

2

1 2 4 8 16 32 64 128 256
Gauge intensity (mm/day)

(g)

-8

-6

-4

-2

0

1 2 4 8 16 32 64 128 256
Gauge intensity (mm/day)

(h)

0

2

4

6

8

1 2 4 8 16 32 64 128 256
Satellite intensity (mm/day)

(i)

RV06C
RV06UC

CDR
BLD

Figure 19: Same as Figure 18 except for the XB, YG, and DB subregions.
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comparison with their FP. For this reason, the intensity
distribution of the total precipitation for the three satellite-
based products is similar to that of FP, while BLD shows
relatively more hit precipitation and less MP. /us, the total
precipitation of BLD is the closest to the reference curve
among the four satellite-based products. However, com-
pared with the two IMERG products, BLD shows more FP
events at precipitation rates less than 16mm/day. Over the
humid YG (Figures 16(e)–16(h)) and HN (Figures 17(i)–
17(l)) subregions, RV06C shows an upward adjustment in
hit precipitation (with precipitation rates form 3.2mm/day
to 42mm/day over YG and from 3.2mm/day to 126mm/day
over HN, except for individual situation) and in FP (with
precipitation rates between 1mm/day and 24.4mm/day over
YG and from 1mm/day to 35.1mm/day over HN). At the
same time, a slightly downward adjustment is found in MP
events at precipitation rates less than 29.3mm/day over YG
(Figure 16(g)) and less than 87.4mm/day over HN
(Figure 17(k)). In general, the two IMERG products un-
derestimate rates in the case of light or moderate precipi-
tation and overestimate rates for heavy precipitation over the
humid subregions (YG, CJ, and HN) in winter. For example,
RV06C and RV06UC underestimate precipitation for pre-
cipitation rates from 3.3mm/day to 20mm/day and over-
estimate precipitation for precipitation rates larger than

24mm/day (Figure 17(e)). Generally speaking, RV06C
shows better performance than RV06UC over the YG, CJ,
and HN subregions because RV06C has less MP events
(Figure 16(g) and Figures 17(g) and 17(k)) and the intensity
distribution of total precipitation for RV06C is relatively
closer to gauged-based reference curve than that of RV06UC
(Figure 16(e) and Figures 17(e) and 17(i)). Among the four
SPPs, BLD has the least number of MP events over humid
regions (YG, CJ, and HN), while CDR shows the most MP
over CJ and HN. Furthermore, CDR exhibits relatively more
FP events over the three humid subregions. Over the semi-
humid DB subregion, the intensity distribution of hit pre-
cipitation for BLD is nearest to total precipitation of gauge
observations at precipitation rates less than 14mm/day
(Figure 16(j)), and BLD has the least MP events for all
precipitation rates (Figure 16(k)) and the least FP with
precipitation rates less than 17mm/day (Figure 16(l)) among
the four SPPs. However, over the semi-humid HB subre-
gions, As for the DB subregion, BLD does not show the same
superiority over the other three precipitation products.

3.5. Relative Bias Ratio of Error Components. To further
analyze the dependency of key error metrics on precipitation
rate intensities, the intensity distribution of the relative bias
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Figure 20: Same as Figure 18 except for the HB, CJ, and HN subregions.
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ratio for Mainland China and our eight subregions for all
summer and winter seasons (fromMarch 2014 to June 2018)
is shown in Figures 18–20 for the summer season and
Figures 21–23 for the winter season. Appendix F shows the
relative bias ratio (RBR) for the hit bias (HB), negative hit
bias (NHB), and positive hit bias (PHB).

/e hit bias distributions of RV06C, RV06UC, CDR, and
BLD all share a common error characteristic: overestimation
at lower precipitation rates and underestimation at larger
precipitation rates (the first column of Figures 18–23). /is
phenomenon is mainly caused by the nonunique relation
between brightness temperature and surface precipitation.
/e satellite’s observed brightness temperature derived from
infrared (IR) or passive microwave (PMW) sensors reflects
the combined effects of surface emission and evapotrans-
piration, not the surface precipitation rate. /at is to say, the
different combinations of precipitation profiles and surface
background may produce the same surface precipitation
rate. For this nonunique relation, light precipitation can be
overestimated because the brightness temperature signa-
tures of heavy precipitation are quite similar to those of light
precipitation, and vice versa.

Over China, the largest contributions to the negative hit
biases for the four SPPs are found at large precipitation rates
(peak values at about 50.6mm/day for summer in

Figure 18(a) and 26.8mm/day for winter in Figure 21(a)).
/e high rainy events gradually play an important role as
climate gets progressively wetter. As a result, the peak values
of contribution ratio for hit precipitation dynamically move
to the larger precipitation rates. For example, during the
summer, peak values are about 16mm/day over the arid XJ
subregion, 24.4mm/day over semi-arid XB, 42.2mm/day
over semi-humid subregions (DB and HB), and approxi-
mately 64mm/day over more humid subregions (HN, CJ,
and YG). /e curves exhibit volatility over XJ and TP, es-
pecially for winter (Figures 21(d)–21(i)). /e result may be
related to the following: (1) the complex topography and the
short-lived convective storms or warm rain processes pose a
challenge for remote sensing satellite rainfall observations;
(2) rain events and rain accumulation are relatively less; (3)
gauges are few over the two regions.

Generally, the difference of error components for the
four SPPs in winter is relatively obvious than that in
summer. At the same time, the most dominant difference
occurs over XJ and TP. For example, for the two IMERG
products, the gauge adjustments of RV06C lower the curve
of relative bias ratio at light and moderate precipitation
(precipitation rate less than 24.4mm/day) over arid XJ
(Figure 18(d)). Meanwhile, RV06C decreases the hit bias
ratio at precipitation rates less than 4mm/day and increases
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Figure 21: Same as Figure 18, but for winter seasons.
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the hit bias ratio at precipitation rates between 4.7mm/day
and 24.4mm/day. Over TP cold region, the reverse situation
appears. /e gauge adjustments of RV06C raise the curve of
relative bias ratio for precipitation rates less than 29.3mm/
day (Figure 18(g)). Moreover, RV06C increases the hit bias
ratio for precipitation rates less than 6.8mm/day and de-
creases the hit bias ratio for precipitation rates from 8.2mm/
day to 29.3mm/day. Compared with the intensity distri-
bution of relative bias ratio, the frequently used intensity
distributions of precipitation amount cannot show the actual
variation of the bias ratio before and after the calibration.
For example, after the gauge adjustment corrections, some
small rain events may be adjusted to larger ones at higher
precipitation rates (Figure 12(j)). However, the contribution
of these adjusted small rain events to total bias is clearly
shown in Figure 18(g).

With regard to MP, except for the TP region, the two
IMERG products share extremely similar intensity distri-
bution of relative bias ratio during the summer season (see
the second columns of Figures 18–20). Over the TP sub-
region, RV06C decreases the amplitude of intensity distri-
bution of relative bias ratio for MP events, while RV06C
slightly improves RV06UC’s MP over most regions except
HB in winter (the second columns of Figures 21–23). /is
result indicates that the gauge adjustments have little

influence on missed rain events in the GPM retrieval process
(during the summer). However, they play a relatively active
role during missed rainy events in wintertime.

Figures 18–23 show that the contribution from MP to
the total bias exhibits regional and seasonal dependencies. In
summer, the highest contribution of MP is that over arid XJ
subregion, followed by the semi-arid XB region. /e con-
tributions of MP over TP cold region and semi-humid re-
gion (HB and DB) are a bit smaller, ranking, respectively, the
third and fourth. Additionally, the contribution of humid
region (YG, CJ, and HN) comes last. In winter, the largest
contributions of MP occur over the XJ, XB, and TP sub-
regions, followed by those over the HB and DB subregions.
Moreover, the contribution of humid CJ and HN regions is
the smallest. However, in winter, the humid YG region is an
exception. Generally speaking, the contribution ofMP seems
to be lower over wetter regions. For the same climate region,
the contribution of MP is obviously lower in summertime
than during the winter. /ese results may be due to several
factors: (1) wetter regions have more rainfall and relatively
flatter topography than direr regions; (2) rainy events with
media-high precipitation rates are more common in sum-
mer than in winter; (3) current satellite-based retrieval al-
gorithms are limited in capturing short-lived convective
storms or warm rain processes caused by climate and
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Figure 22: Same as Figure 19, but for winter seasons.
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topography; and (4) precipitation retrieval algorithms are
inclined to misrepresent the small and sparse rain events.

For FP, similar results to those of MP can be seen in
summer. However, in winter, FP events are somewhat
different than those of MP. For example, the largest relative
bias ratio in FP for the RV06C and RV06UC products occurs
over the semi-humid DB (Figure 22(i)) subregion; more-
over, the relative bias ratio over the DB subregion is much
larger than that over the arid XJ subregion (Figure 21(f )).

Appendix G lists the contribution ratios of the error
components (hit, missed, and false) to the total bias of
RV06C, RV06UC, CDR, and BLD.

In summertime, for the four satellite-based products, FP
has the largest contribution to the total bias among hit bias,
missed bias, and FP metrics for all regions (except for
RV06UC over TP). During the transition from arid to wetter
regions, FP rate shows a decreasing tendency. For the four
SPPs, the largest contribution ratios for FP consistently
occur over the arid XJ subregion and the smallest ones over
the humid HN subregion. For example, the false bias for
RV06UC reaches 99% over the arid XJ subregion, while the
corresponding value of the humid region (HN) is 28.06%.
Generally, the hit biases of the two IMERG products exhibit
the smallest contribution to the total bias over most regions
(except for HN).Meanwhile, except for CDR over TP, the hit

biases of all four products are always negative. /e gauge
adjustments applied to RV06C have a relatively larger effect
on hit bias and FP metrics than on MP since the MP rate for
the two IMERG products is quite similar. /at is to say, the
gauge adjustment retrieval algorithms mainly improve the
hit bias and FP to reduce total bias. At the same time, the
total biases of the RV06C product are smaller than that of
RV06UC in almost all regions in summer and winter (except
for Mainland China, and the YG and HN subregions during
the summer). RV06C changes RV06UC’s underestimation
with total biases of 11.53% vs. −24.47% over TP and 5.72%
vs. −0.59% over YG in summer.

Moving from summer to winter in the same region, we
find that the proportion of MP obviously increases sub-
stantially, especially for the two IMERG products. In fact,
within the two IMERG products, the contribution ratios of
MP to the total bias are the largest ones over most regions
except for RV06C and RV06UC over the DB and HB
subregions, and RV06UC over the CJ subregion. However,
for the CDR and BLD products, the largest contribution
ratio to total bias is still FP over almost all regions (except for
CDR over the HN subregion). In wintertime, RV06UC total
biases are negative over Mainland China and the XJ, TP, XB,
YG, and HN subregions. RV06C improves upon RV06UC’s
underestimation over these regions, but the biases are still
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Figure 23: Same as Figure 20, but for winter seasons.

24 Advances in Meteorology



negative. In wintertime, RV06C also relatively improves
RV06UC’s MP which is better than that in summer.

/e sum of Ran d and Syst is 100%. Hence, only the
proportion of systematic errors of the four satellite-based
products’ daily precipitation data is displayed in Figure 24.
RV06, CDR, and BLD have larger systematic errors over XJ
than Mainland China and other subregions. /is result
indicates that there is a large room for improvement in
retrieval algorithms over the arid XJ subregion. /e larger
systematic errors over XJ have been noted previously by
Tang [42]. Over Mainland China and most subregions
(except for XJ region), the differences between systematic
errors of RV06C, RV06UC, and BLD are not obvious.
Among the four SPPs, CDR has the largest systematic errors
over Mainland China and most subregions (except for XJ
region), while RV06UC has the lowest systematic errors over
Mainland China and most subregions (except for TP, YG,
and HN subregions).

4. Discussion

In this study, an intercomparison between gauged-calibrated
RV06C and uncalibrated RV06UC is conducted to inves-
tigate the impact of gauge adjustment. Meanwhile, a similar
comparison is also performed between the IMERG, CDR,
and BLD products to examine retrieval algorithm difference
between satellite-based products. /is comparison is
intended to explore differences and similarities of the sat-
ellite-based products with different retrieval algorithms.
Conventional precipitation assessments compare satellite-
based precipitation estimates against gauge-based or
ground-based radar precipitation observations directly with
continuous statistical metrics or categorical statistics to
obtain overall performance of satellite precipitation. How-
ever, these conventional approaches often fail to answer the

question where the errors are from. To solve this problem,
Tian et al. [33] introduced an error decomposition technique
to separate total retrieval bias into three error components.
Here, the conventional precipitation evaluation ways and the
error decomposition analysis are utilized together to provide
an in-depth exploration of the error features.

Within China, flood and drought are two mainly de-
structive natural disasters. According to Gebregiorgis et al.
[37], different sources are responsible for different errors.
For these reasons, the error features of satellite-based pre-
cipitation estimates are analyzed specifically in summer (rain
season) and winter (dry season). In the future study, an
evaluation including satellite-based satellite precipitation
estimates’ predictive ability of streamflow rate in a hydro-
logical modeling framework should be conducted.

/e four satellite-based precipitation estimates are sys-
tematically evaluated against 2088 separate automatic me-
teorological stations over China. However, a relatively sparse
gauge network still occurs over some subregions (such as XJ
and TP). Tian et al. [60] indicated that the dense rain-gauge
network shows better assessment metrics of SPPs except for
POD. /at is to say, the sparse station distribution may
increase uncertainty in our evaluations. Future work is
needed to assess the satellite precipitation through more
ground-based precipitation observations.

5. Summary and Conclusions

In this paper, the latest IMERG V06C and V06UC pre-
cipitation products are systematically evaluated over
Mainland China and eight Chinese subregions during the
period from March 2014 to June 2018 via statistical indices
against the observation precipitation estimates from 2088
separate gauges. As a point of reference, CDR and BLD
precipitation products are also investigated (in parallel with
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Figure 24: /e proportion of systematic errors for the four satellite-based products’ daily precipitation over Mainland China and the eight
subregions during the period from March 2014 to June 2018.
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the two IMERG precipitation products). In this process, the
overall performance of the four SPPs is cross-compared and
quantified at regional and national scales. For further
analysis, the seasonal (summer and winter) error features of
the error components are analyzed separately, and the
contribution ratios of the error components to the total bias
of satellite-based precipitation are investigated. Our main
findings are as follows:

(1) In comparison with the precipitation observations of
gauges, the four SPPs can generally capture the
spatial distribution of precipitation over Mainland
China. Meanwhile, according to relatively higher r
values and lower RBs occurring over humid regions,
the SPPs agree better with ground-based precipita-
tion observations over humid regions than with
those over semi-humid, semi-arid, and arid regions.

(2) According to the conventional evaluation way,
among the four satellite-based products, CDR per-
forms the worst with the lowest r values regardless of
region and the highest RMSEs and MAEs over most
subregions. As for the two latest IMERG products,
RV06C has improved the performance of RV06UC
with slightly larger r values in all subregions and
smaller RMSEs and MAEs over Mainland China and
most subregions (XJ, XB, DB, HB, and CJ). In the
end, BLD shows the best performance with the
highest r values and lowest MAEs and RMSEs over
each region and the lowest RBs over most regions
(China, TP, XB, DB, HB, CJ, and HN).

(3) Over the cold TP subregion, IMERG RV06UC
severely underestimates area-average precipitation
with a highly negative RB (−25.66%); however,
CDR significantly overestimates it with a strongly
positive RB (50.8%). Meanwhile, the calibrated
RV06C prominently improves RV06UC’s precip-
itation underestimation with better RB (11.5%),
and BLD has the best performance with the
smallest RB (10.04%).

(4) Except for the XJ subregion and RV06UC over the
cold TP subregion, all four SPPs demonstrate rela-
tively high POD (>0.5613). Likewise, all four SPPs
have relatively low CSI (<0.5362) and high values of
FAR (>0.3814) over all regions. At the same time,
BLD has the highest values of POD over Mainland
China and most of the examined subregions (except
for XJ and TP) and provides the highest CSI over
each region. RV06C shows slightly better scores of
CSI and POD than RV06UC regardless of region
(and for POD, except in the HB subregion), and
CDR has the worst CSI and FAR scores over all
regions. Across all subregions, all of the four SPPs
have their worst performance (i.e., highest FARs and
lowest PODs and CSIs) over the arid XJ region. All
four precipitation products must improve their
quality before they can be applied with confidence
within the XJ subregion.

(5) /e regional time series analyses clearly show that
the total bias results from the interaction of the three
independent error components (hit bias, MP, and
FP). /e error components of the four SPPs show
strong regional and seasonal differences over
Mainland China. /e positive false error plays a
remarkable role in the total bias of the four SPPs
because the amplitude of FP is relatively larger than
hit and missed precipitation, most of the time
(Figures 9(a)–9(d)). For the two IMERG products,
the calibrated RV06C improves upon the uncali-
brated RV06UC’s performance over most subre-
gions, especially over TP and XJ; meanwhile, the
result of adjustment for RV06C is better over dry
regions (XJ and XB) and semi-humid regions (DB
and HB) than over humid regions (YG, CJ, and HN).
Generally speaking, among the four SPPs, CDR
shows the worst performance with the highest am-
plitude of false error, hit bias, and total bias over
Mainland China, while BLD has the best perfor-
mance with the smallest amplitude of false error,
missed error, and total bias (Figures 9(a)–9(d)).

(6) From the perspective of intensity distribution, for
summer, over China, the four SPPs generally over-
estimate light precipitation and moderate precipi-
tation events (<25mm/day) and underestimate
heavy precipitation events (>42mm/day). Com-
pared with RV06UC, the most remarkable im-
provement of RV06C occurs over TP, where
calibrated RV06C provides an upward adjustment
and therefore concentrates precipitation with pre-
cipitation rates from 4mm/day to 64mm/day
against the uncalibrated RV06UC product. For the
four SPPs, large FP rates play a dominant role in total
bias in summer and winter. From summer to winter,
the proportion of MP in total bias clearly increases.
At the same time, the amplitude of CDR FP is usually
the largest for light or moderate precipitation events,
which contributes to CDR’s overall poor
performance.

(7) /e relative bias ratio analysis shows that the con-
tribution of MP seems to be lower over wetter re-
gions. Moreover, for the same climate region, the
contribution of MP is obviously lower in summer
than in winter. For IMERG products, the gauge
adjustments of RV06C have little effect on missed
precipitation rates. However, the gauge adjustments
have relatively bigger influence on missed rainy
events in winter than in summer. In summer, for the
four satellite-based products, the FP rate has the
largest contribution to the total bias among hit bias,
missed bias, and FP components over each region
(except for RV06UC over the TP subregion). With a
transition from arid region to the wetter and wetter
regions, the FP rate shows a decreasing tendency.
Generally speaking, the difference of error compo-
nents for the four SPPs is relatively clearer in winter
than in summer.
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/is analysis provides important insight regarding the
spatiotemporal error characteristics of the IMERG V06C,
IMERG V06UC, CDR, and BLD precipitation products over
the eight subregions and all of Mainland China. Based on
our research, large effort should be done to reduce missed
snowing events in winter and FP of the four satellite-based
products. An enhanced understanding of the structures and
features of error components for the four SPPs is valuable for
satellite precipitation data users to better apply data for
applications in hydrologic forecasting, water resource
management, and hydro-meteorological disaster prediction.
Moreover, results are beneficial for future development of
the satellite-based precipitation production algorithms.
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[9] J. Su, H. Lü, Y. Zhu, X. Wang, and G. Wei, “Component
analysis of errors in four gpm-based precipitation estimations
over mainland China,” Remote Sensing, vol. 10, no. 9, p. 1420,
2018.

[10] B. Yong, B. Chen, Y. Tian, Z. Yu, and Y. Hong, “Error-
component analysis of trmm-based multi-satellite precipita-
tion estimates over mainland China,” Remote Sensing, vol. 8,
no. 5, p. 440, 2016.

[11] D. F. Barrera, E. Ceirano, and G. V. Zucarelli, “Differences in
area-averaged rainfall depth over a mid-size basin from two
remote sensing methods of estimating precipitation,” in
Predictions in Ungauged Basins: Pub Kick-OffIAHS Publica-
tion, London, UK, 2007.

[12] H. Guo, S. Chen, A. Bao, J. Hu, B. Yang, and P. Stepanian,
“Comprehensive evaluation of high-resolution satellite-based
precipitation products over China,” Atmosphere, vol. 7, no. 1,
p. 6, 2015.

[13] H. Guo, S. Chen, A. Bao et al., “Early assessment of integrated
multi-satellite retrievals for global precipitation measurement

Advances in Meteorology 27

http://ftps://ftp.cpc.ncep.noaa.gov/precip/
http://ftps://persiann.eng.uci.edu/pub/
http://ftps://persiann.eng.uci.edu/pub/
https://pmm.nasa.gov/data-access/downloads/gpm
https://pmm.nasa.gov/data-access/downloads/gpm
https://downloads.hindawi.com/journals/amete/2022/9070970.f1.zip


over China,” Atmospheric Research, vol. 176-177, pp. 121–133,
2016.

[14] G. Tang, Y. Ma, D. Long, L. Zhong, and Y. Hong, “Evaluation
of gpm day-1 imerg and tmpa version-7 legacy products over
mainland China at multiple spatiotemporal scales,” Journal of
Hydrology, vol. 533, pp. 152–167, 2016.

[15] F. Chen and X. Li, “Evaluation of imerg and trmm 3b43
monthly precipitation products over mainland China,” Re-
mote Sensing, vol. 8, no. 6, p. 472, 2016.

[16] S. Chen, Y. Hong, J. J. Gourley et al., “Evaluation of the
successive v6 and v7 trmmmultisatellite precipitation analysis
over the continental United States,” Water Resources Re-
search, vol. 49, no. 12, pp. 8174–8186, 2013.

[17] G. J. Huffman, D. T. Bolvin, E. J. Nelkin et al., “/e trmm
multisatellite precipitation analysis (tmpa): quasi-global,
multiyear, combined-sensor precipitation estimates at fine
scales,” Journal of Hydrometeorology, vol. 8, no. 1, pp. 38–55,
2007.

[18] S. Sorooshian, K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and
D. Braithwaite, “Evaluation of persiann system satellite–based
estimates of tropical rainfall,” Bulletin of the American Me-
teorological Society, vol. 81, no. 9, pp. 2035–2046, 2000.

[19] R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. Xie, “Cmorph: a
method that produces global precipitation estimates from
passive microwave and infrared data at high spatial and
temporal resolution,” Journal of Hydrometeorology, vol. 5,
pp. 287–296, 2004.

[20] G. J. Huffman, D. T. Bolvin, D. Braithwaite et al., Algorithm
:eoretical Basis Document (atbd) Version 4.5: Nasa Global
Precipitation Measurement (gpm) Integrated Multi-Satellite
Retrievals for gpm (imerg), NASA/GSFC, Greenbelt, MD,
USA, 2015.

[21] G. J. Huffman, D. T. Bolvin, D. Braithwaite et al., Algorithm
:eoretical Basis Document (atbd) Version 06: Nasa Global
Precipitation Measurement (gpm) Integrated Multi-Satellite
Retrievals for gpm (imerg), NASA/GSFC, Greenbelt, MD,
USA, 2019.

[22] G. J. Huffman, D. T. Bolvin, E. J. Nelkin, E. F. Stocker, and
J. Tan, V06 Imerg Final Run Release Notes, NASA/GSFC,
Greenbelt, MD, USA, 2019.

[23] B. Yong, Y. Hong, L. L. Ren et al., “Assessment of evolving
trmm-based multisatellite real-time precipitation estimation
methods and their impacts on hydrologic prediction in a high
latitude basin,” Journal of Geophysical Research: Atmospheres,
vol. 117, no. D9, p. 9108, 2012.

[24] H. Zhao, S. Yang, S. You, Y. Huang, Q. Wang, and Q. Zhou,
“Comprehensive evaluation of two successive v3 and v4 imerg
final run precipitation products over mainland China,” Re-
mote Sensing, vol. 10, no. 2, p. 34, 2017.

[25] H. Zhao, B. Yang, S. Yang et al., “Systematical estimation of
gpm-based global satellite mapping of precipitation products
over China,” Atmospheric Research, vol. 201, pp. 206–217,
2018.

[26] Y. Shen, P. Zhao, Y. Pan, and J. Yu, “A high spatiotemporal
gauge-satellite merged precipitation analysis over China,”
Journal of Geophysical Research Atmospheres, vol. 119, no. 6,
pp. 3063–3075, 2014.

[27] W.Wang, H. Lu, T. Zhao, L. Jiang, and J. Shi, “Evaluation and
comparison of daily rainfall from latest gpm and trmm
products over the Mekong river basin,” IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote
Sensing, vol. 10, no. 6, pp. 2540–2549, 2017.

[28] F. Porcù, L. Milani, and M. Petracca, “On the uncertainties in
validating satellite instantaneous rainfall estimates with

raingauge operational network,” Atmospheric Research,
vol. 144, pp. 73–81, 2014.

[29] M. Petracca, L. P. D’Adderio, F. Porcù, G. Vulpiani, and
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