
Research Article
An Integrated Framework for Mapping Nationwide Daily
Temperature in China

Shaobo Zhong ,1,2 Xinlan Ye ,3 Mingxing Wang ,3 Xin Mei ,3 Dunjiang Song ,4

and Wenhui Wang 3

1Urban Construction School, Beijing City University, Beijing 10083, China
2Institute of Urban Systems Engineering, Beijing Academy of Science and Technology, Beijing 100035, China
3Faculty of Resources and Environment Science, Hubei University, Wuhan, China
4Institute of Science and Development, Chinese Academy of Sciences, Beijing 100190, China

Correspondence should be addressed to Xin Mei; 55296119@qq.com

Received 11 August 2021; Revised 31 January 2022; Accepted 4 April 2022; Published 14 May 2022

Academic Editor: Stefano Federico

Copyright © 2022 Shaobo Zhong et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Air temperature (Ta) is an essential parameter for science research and engineering practice. While the traditional site-based
approach is only able to obtain observations in limited and discrete locations, satellite remote sensing is promising to retrieve some
environmental variables with spatially continuous coverage. Nowadays, land surface temperature (Ts) measurements can be
obtained from some satellite sensors (e.g., MODIS), further enabling us to estimate Ta in view of the relationship between Ta and
Ts. In this article, we proposed a two-phase integrated framework to estimate daily mean Ta nationwide. In the �rst phase,
multivariate linear regression models were �tted between site-based observations of daily mean air temperature (Ta-mean) and
MODIS land surface temperature products (including Terra day: TMOD-day, Terra night: TMOD-night, Aqua day: TMYD-day, and Aqua
night: TMYD-night) conditional on some covariates of environmental factors. �e �tted models were then used to predict Ta-mean
from those covariates at unobserved locations.�e predicted Ta-mean were looked on as stochastic variables, and their distributions
were also obtained. In the second phase, Bayesian maximum entropy (BME) methods were used to produce spatially continuous
maps of Ta-mean taking the meteorological station observations as hard data and the predicted Ta-mean in the �rst phase as soft data.
It is shown that the proposed approach is promising to improve the interpolation accuracy signi�cantly, comprehensively
considering the prior knowledge and the context of space variability and correlation, which will enable it to compile spatially
continuous air temperature products with higher accuracy.

1. Introduction

Air temperature (Ta) is one of the most important variables in
scienti�c research and engineering practice. Short-term e�ects of
air temperature include disease spreading, crop growth, snow-
melting, and inundation, while the long-term e�ects of it on
regional and global development such as global warming,
drought, extreme weather, and food safety are concerned. In
meteorology, air temperature is one of the basic meteorological
factors commonly observed at 2m above the ground in weather
observation sites.�erefore, their spatial distribution depends on
the sites built for weather data collection [1]. Ta is obtained as
point data that cannot directly depict the range of climate

variability within a region. Weather observation sites are dense
in cities and sparse in sparsely populated and underdeveloped
regions. In China, most of weather observation sites are dis-
tributed in the east. To densify air temperature observations, the
remotely sensed land surface temperature (LST, Ts), retrieved
from thermal images, has been used in estimating Ta. However,
the major limitations in estimating Ta using remotely sensed Ts
are the uncertainties of Ts estimation, nonlinear relationship
between Ts and Ta, and trade-o� between the temporal and the
spatial resolution. In addition, the thermal remote sensing ap-
proach is not applicable under cloudy conditions.

To produce high-resolution Ta data, many methods
involving in station observations and remotely sensed Ts are
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proposed. -ree types of methods—interpolation, regres-
sion analysis, and simulation—were reviewed and have been
proven to be useful in mapping high-resolution Ta [2].
Among them, satellite remote sensing Ts-based regression
estimation and spatial interpolation of observed Ta are most
popular approaches. Wang et al. [3] compared spatial in-
terpolation and regression analysis models for estimates of
monthly near-surface Ta from station observations in China
[4].-eir results indicated that the higher standard deviation
and the lower mean of near-surface Ta from sample data
would be associated with a better performance of predicting
monthly near-surface Ta using spatial interpolation models.
Considering filling in data gaps in the time series of Ta,
Shtiliyanova et al. applies a Kriging-based interpolation in
the temporal dimension to predict missing Ta data [5]
against temperature datasets from five sites in Europe and
one site situated in the Indian Ocean (Réunion Island,
France overseas). To provide long-term grid historical
temperature datasets based on sparse historical stations, a
temperature spatial interpolation based on the Biased
Sentinel Hospitals Areal Disease Estimation (P-BSHADE)
method was proposed, which successfully interpolate 1-km
grids of monthly Ts in the historical period of 1900–1950 in
China [6]. Considering the characteristics of spatial auto-
correlation and nonhomogeneity of the temperature dis-
tribution to obtain unbiased and minimum error variance
estimates, the proposed method shows better accuracy
compared to inverse distance weighting (IDW), spline. Cho
et al. proposed a so-called stacking ensemble model con-
sisting of multilinear regression (MLR), support vector re-
gression (SVR), and random forest (RF) optimized by the
SVR to interpolate the daily maximum Ta during sum-
mertime in Seoul, the capital of South Korea [7]. Some other
case studies can also be seen, which have selected either
satellite remote sensing-based Ta estimation or spatial in-
terpolation of site Ta to conduct spatially continuous Ta
prediction. However, thanks to either of them has limita-
tions and shortcomings, it is necessary to integrate advan-
tages of potential methods to enhance the knowledge of Ta
patterns, and to map spatially continuously covered and
high-resolution Ta.

It is well known that remote sensing takes some ad-
vantages such as continuous space tessellation, wide ob-
servation scope, and low cost over other observation
methods. In recent decades, several well-known sensors such
as AVHRR and MODIS were launched into orbit, which
enables us to obtain moderate resolution images with many
spectrums (e.g., up to 36 for MODIS) ranging from infrared
to microwave. Simultaneously, researchers begin to develop
a variety of algorithms for retrieving Ts from these remotely
sensed data. In view of the fact that, Ts and Ta have a strong
association with each other, remote sensing has been
combined with meteorological sites to improve the spatial
coverage and accuracy of Ta. Kloog et al. presented work on
predicting Ta from Ts in Massachusetts by predicting 24 h Ta
means on a 1-km grid across the Northeast andMid-Atlantic
states demonstrating how Ts can be used reliably to predict
daily Ta at high resolution in large geographical areas even in

nonretrieval days [8]. Alonso et al. proposed to estimate Ta
from 28 explanatory variables (covariates), using multiple
linear regressions, which integrates variables from remote
sensing and the variables traditionally used like the ones
from the Land Use Land Cover [9]. Some other researchers
proposed statistical models to estimate Ta usingMODIS land
surface temperature data [10–13]. Furthermore, with a
daytime Ta variation model, it is possible to estimate daily Ta
at any time. For example, Chen et al. [14] first estimate
daytime Ta at the times of Terra and Aqua satellites overpass,
and subsequently, the maximum Ta is inferred from the
daytime Ta. A general approach to obtaining Ta from images
involves two steps: (1) retrieve the land surface temperature
at the satellite overpass time and then (2) calculate the Ta
from the land surface temperature according to the physical
or statistical function relationship between them.

Spatial interpolation is a class of methods that inter-
polate the values of unobserved locations from the values of
observed locations. In a geographical context, spatial auto-
association is universally present, which differs spatial
problems from nonspatial ones [15]. -erefore, the focus of
most of the spatial interpolation methods is devoted to
dealing with this nuisance. -ese methods estimate the most
likely values through spatial trend analysis and spatial
correlation analysis of discrete observed data. Geostatistics is
developed from Kriging interpolation techniques along this
thread. -e recent advances in geostatistics have been
striving to obtain better estimates by blending as much
information as possible (including observations and prior
knowledge). Christakos [16] extended Kriging techniques
into a new methodological framework called BME (Bayesian
maximum entropy) [16]. BME takes some types of data and
different types of knowledge into spatial interpolation.
According to BME methodology, these data and knowledge
are divided into general knowledge (GK) and site-specific
knowledge (SK). Two types of data are involved in BME
interpolation procedure: hard data and soft data. Hard data
are generally measured with instruments and considered
having definite values. Soft data have indefinite values rel-
ative to hard data. Soft data are generally depicted by value
interval, probability distribution, etc. -e application of
BME methods in some fields can be referenced in [3, 17, 18].
It has been also shown that BME is promising in blending
multiple sensor data and multiresolution satellite products
[19, 20].

In this study, Ts from MODIS sensors and Ta from
weather stations were integrated to densify Ta, considering
that Ts is spatially continuous and is able to provide addi-
tional information for spatial estimation of Ta. -e purpose
of this study was to estimate Ta with a high spatial resolution
and accuracy simultaneously, coupling high spatial resolu-
tion remote sensing data with high accuracy (but spatially
sparse) station data. We proposed a two-phase approach to
estimating Ta at unobserved locations and demonstrated the
estimation and evaluation of daily mean Ta (Ta-mean) on four
days of 2004 (the vernal equinox (VE), the summer solstice
(SS), the autumnal equinox (AE), and the winter solstice
(WS)).
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2. Study Area and Materials

-e study area is Mainland China.-ere is a total of 839 sites
distributed over the area. Observations from these sites are
taken as hard data. A total of 334 locations are supplemented
to obtain soft data through multivariate linear regression
estimate techniques. -ese supplemented locations were
generated at spatial random conditional on meteorological
site locations (constrained in areas with sparse sites). Fig-
ure 1 shows the study area and the distribution of meteo-
rological observation sites and the supplemented locations
within it. According to the elevation, the whole study area
can be divided into three terrain ranges. -e first terrain
range is in the western China and has a mean altitude higher
than 4000m. High mountains are main features in this
range.-e second range is in the central and northern China
and has a mean altitude from 1000m to 2000m. It consists
mainly of plateaus, large basins, and some high mountains.
And the third range is in the eastern China and has mean
altitude from 200m to 1000m. It is mainly composed of
plains, hills, and low mountains. We also divided the whole
study area into the west part and the east part in terms of the
Hu Huanyong line in the name of Chinese scholar Hu
Huanyong, which is going to be used to examine the effects
of areas with different geographical characteristics on the Ta
estimation.

-e Ta observations from meteorological sites and the Ts
products derived from MODIS in the 80th day (VE), the
172th day (SS), the 266th day (AE), and the 356th day (WS)
of 2014 were used. -ese are four representative days in a
whole year. Daily Ta variables are collected at those sites
from China Meteorological Service Center. Ta-mean was
calculated based on a published standard by CMA (China
Meteorological Administration) from the original weather
site observations, which is the arithmetic mean of the Ta
observations at four time points: 02 : 00, 08 : 00, 14 : 00, and
20 : 00 a day.

Two MODIS products—MOD11C1 and MYD11C1—
were used, which are global Ts data retrieved from MODIS
sensors aboard Terra and Aqua satellites. -ey are estimated
at time when satellites pass according to an algorithm de-
veloped by NASA. -e nominal equatorial passing time of
Terra is around 10:30 am and 10:30 pm of local solar time,
while Aqua passes in the opposite direction at about 1:30 am
and 1:30 pm. -erefore, Terra MOD11C1 and Aqua
MYD11C1 include both day and night Ts (Terra day: TMOD-

day, Terra night: TMOD-night, Aqua day: TMYD-day, and Aqua
night: TMYD-night). -ese two products cover the main
continents on the Earth surface, and the spatial resolution is
0.05 degrees. -erefore, the real ground extent is
5 km× 5 km or so near the equator. We downloaded the Ts
data from a remotely sensed data distribution website cre-
ated by the United States National Aeronautics and Space
Administration (NASA) (https://disc.gsfc.nasa.gov/). -e
global products were trimmed to the north latitude range
(39.4°, 41.1°) and east longitude range (115.3°, 117.6°), which
is the bounding box of the study area. According to the
quality control information of the products, we excluded the
missing data and the data whose nominal errors are greater

than 3K. As a result, we got some data with acceptable
quality (nominal errors ≤3K).-e analysis will be carried out
based on these remaining data.

We also acquired a DEM data of China from the Ad-
vanced Spaceborne -ermal Emission and Reflection Ra-
diometer (ASTER) Global Digital ElevationModel (GDEM),
which was developed jointly by the Ministry of Economy,
Trade and Industry (METI) of Japan and NASA under the
agreement of contribution to GEOSS (Global Earth Ob-
servation System of Systems), and a public release was
started on June 29, 2009 [21]. Version 1 of the DEM data is
produced in 2009 and reproduced and improved in 2011
(version 2). We downloaded version 2 of the DEM data.-is
dataset is provided in raster format, and its spatial resolution
is 30m. -e absolute vertical accuracy is within 0.20 meters
on average.

Two vegetation index data provided by MODIS were
used. One is the classical NDVI (normalized difference
vegetation index) product and the other is EVI (enhanced
vegetation index) product. -e latter is more sensitive to
areas with high vegetation coverage than the former. -e
MOD13C1 product was selected to extract these two indices.
Since the MOD13C1 product is a 16-day composite one.
Corresponding to the four days when Ta-mean was estimated
in this study, the MOD13C1 data on the 65th day, the 161th
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Figure 1: Map of the study area: provincial administration regions
of Mainland China and the geographical locations of all 839
meteorological observation sites (brown dots) within it. -ese sites
provide Ta observations called hard data. -e study area was di-
vided into two parts: the west part and the east part with a dividing
line (called Hu Huanyong line in the name of Chinese scholar Hu
Huanyong). According to the elevation, three terrain ranges are
demarcated (brown lines). -e pink dots are supplemented loca-
tions to calculate soft data (totally 334 locations).
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day, the 257th day, and the 353th day of 2014 were selected
and downloaded.

A LUCC (Land Use/Cover Change) dataset from the
Chinese Academy of Sciences Resources and Environment
Science Data Center (https://www.resdc.cn/) was selected to
extract the land use/cover. -e dataset covers 1990 to 2015,
and the time interval of production is 5 years. Its spatial
resolution is 1 km× 1 km.We selected the LUCC data in 2015
that is closest to 2014. -e format of the data is raster format.
In this dataset, the land use/cover types of level 1 include
forest, grassland, wetland, farmland, and artificial surface.

3. Methods

-e proposed methodology includes two phases. -e first
phase regressed the Ta observations from weather sites on Ts
from MODIS conditional on some environmental factors
such as topological, meteorological, vegetative, and LUCC as
covariates. In this phase, multivariate linear regression
models are fitted. Once proper models are fitted, we can
predict the Ta at a specific location given covariates.
According to the statistical theory of multivariate linear
regression analysis, the predicted Ta has an uncertainty, and
we can also estimate its confidence interval. -en, in the
second phase, we make an ensemble estimation of Ta by
integrating weather site observations and the prediction of
Ta from the regression analysis in the first phase.

3.1. Multivariate Linear Estimates. -e multivariate linear
estimation is formulated as

Y � x􏽢β + e, (1)

where Y is the dependent variable, x is the vector of the
prediction variables, 􏽢β is the parameter vector of the mul-
tivariate linear regression model, and e is the residual error.
-us, given a group of samples X0 (land surface tempera-
tures and environmental variables), we can estimate the
corresponding Ta as

􏽢Y0 � X0
􏽢β. (2)

For a linear regression, the estimate of variance is

􏽢σ2e0 � 􏽢σ2 1 + X0 x′x( 􏼁
− 1X0′􏼐 􏼑, (3)

where 􏽢σ is the estimated standard error, which is given as

􏽢σ2 �
􏽐 e

2
i

n − k − 1
, (4)

where n is the number of samples, and k is the number of
covariates.

We further construct a statistic:

t �
􏽢Y0 − Y0

􏽢σe0

∼ t(n − k − 1). (5)

In probability theory, this statistic is t-distributed with a
degree of freedom n−k−1. -erefore, we can calculate the
confidence interval of Y0:

􏽢Y0 − tα/2 × σe0
<Y0 < 􏽢Y0 + tα/2 × σe0

. (6)

When n> 35, the t distribution can be approximated
with the normal distribution N (􏽢Y0, 􏽢σ2e0 ).

In this study, three groups of variables are taken as
covariates: Ts from Terra and Aqua, including TMOD_Day,
TMOD_Night, TMYD_Day, and TMYD_Night; vegetation data in-
cluding EVI and NDVI; and topological data including lati-
tude, altitude, and longitude. All variables used in the
regression analysis are listed in Table 1.-e dependent variable
Ta-mean is regressed on the covariates. -e first-level classifi-
cation of LUCC was represented by setting up a nominal
covariate LUCC. To carry out the regression analysis, we ex-
panded it into 7 dummy variables according to 6 types of the
first-level classification.

Taking weather sites as reference locations, we extracted
the values of covariates from corresponding data sources
such as MOD11C1, MYD11C1, MOD13C1, LUCC, and
DEM using GIS Extraction tools (Extract Values to Points in
ArcMap). For a certain weather site, if there exist missing
values or outliers in either of the dependent variable and
covariates, the sample of this site was excluded.

3.2. BME Interpolation. We selected the BME method as the
interpolation estimator of the Ta, which is firstly established
by Christakos [16, 22]. BME uses many types of data for
spatial estimation. -ese data are classified into two types:
GK and SK, whose specific definitions and meaning in
meteorological data can be identified in some research ex-
amples [3, 17, 23]. In this study, we intend to estimate the
values of a meteorological variable X(s) (a spatial random
field) at unmeasured locations sk given acquired data:
χ � [x1, x2, . . . , xm]′, where χ represents a set of meteoro-
logical data xi at spatial locations si (i� 1, . . .,m; si≠sk). -ese
datasets can be divided into two main groups: hard data and
soft data. -e former is observations of Ta from meteoro-
logical stations, and the latter is Ta estimation obtained from
the multivariate linear regression analysis. According to the
regression modeling, the soft data are expressed in normal
distribution (an approximation of t distribution) with the
corresponding estimated Ta and their variances as distri-
bution parameters. We let the vector χhard � [x1,

x2, . . . , xmh
]′ denote the hard data and

χsoft � [xmh+1, xmh+2, . . . , xm]′ is the soft data. Furthermore,
let χmap � [x1, x2, . . . , xm, xk]′ denote the random vector
including the hard data, soft data, and unknown value xk.
-ere are three stages to finish BME estimation.

3.2.1. Prior Stage. -e aim of this stage was to determine the
prior probability density function (pdf) fG(χmap) based on
GK, called prior pdf. Prior knowledge of GK is taken as
statistics constraint conditions derived from χmap, which is
expressed mathematically as

gα � 􏽚 dχmapfG χmap􏼐 􏼑gα χmap􏼐 􏼑, (7)

where α � 0, 1, . . . , Nc, Nc is the number of constraints,
gα(χmap) are known functions, and the case α� 0, g0 � 1 is a
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normalization constraint. In this article, other constraints in-
clude means and covariances of χmap and probability of soft
data. -e corresponding forms of gα(χmap) can be referred to
[22].

An entropy function of fG(χmap) is defined as

Inf χmap􏼐 􏼑 � − 􏽚 dχmapfG χmap􏼐 􏼑log fG χmap􏼐 􏼑. (8)

-us, prior pdf may be derived by means of a procedure
that maximizes the entropy function and takes into consid-
eration the constraints of equation (7), which represent prior
knowledge.

3.2.2. Preposterior Stage. -e objective of this stage is to collect
and organize additional auxiliary information in appropriate
forms to produce SK. -ese are then used in the BME model.
Hard data were incorporated in the prior stage indirectly and
used directly in the preposterior stage. Soft data were generated
according to the responding Gaussian distributions.

3.2.3. Posterior Stage. -e aim of this stage is to update the
prior pdf based on the Bayesian conditional probability

theorem and SK, thereby attaining the posterior pdf. When
the distribution of hard and soft data is certain, the posterior
pdf fK(xk) of spatial variable xk at location sk is

fK xk( 􏼁 � fG xk|χhard, χsoft( 􏼁 �
fG xk, χhard, χsoft( 􏼁

fG χhard, χsoft( 􏼁
. (9)

In practice, only hard and soft data within the scope of
maximum distance dmax to the estimation point are used to
calculate xk. If the soft data are in the form of a pdf, then

fK xk( 􏼁 �
􏽒
β
α fG xk, χhard, χsoft( 􏼁fS χsoft( 􏼁dχsoft
􏽒
β
α fG χhard, χsoft( 􏼁fS χsoft( 􏼁dχsoft

. (10)

where fS(χsoft) is the pdf of soft data.

3.3. Prediction Accuracy Evaluation. We used the leave-one-
out cross-validation to evaluate the goodness of the results.
Each time, one out of mh observations were left as the
validation point to calculate the error between the estimated
value and the observed value, and the other mh−1 points
were used to build the model and predict the value at the

Table 1: Dependent variable and covariates considered in the multivariate linear regression analysis.

Variable group Variable category (n) Units
Dependent variable Daily Ta (1): daily mean Ta (Ta-mean) Degree Celsius

Covariates

Ts (4): TMOD_day (o_d), TMOD_night (o_n), TMYD_day (y_d), TMYD_night (y_n) Degree Celsius
Vegetation index (2): NDVI (ndvi), EVI (evi) n/a

Land cover type (1): LUCC (lucc) Nominal
Terrain (3): longitude (lon), latitude (lat), altitude (ele) Decimal degree, decimal degree, meter

Table 2: Best models with Ta-mean regressed on different sets of covariates and their specifications for the selected four days.

Day Model R2 S.E. Intercept Lat Lon Ele ndvi evi y_d y_n o_d o_n

VE

1 0.958 2.755 7.276 0.812
2 0.967 2.449 4.009 0.699 0.201
3 0.970 2.341 3.868 0.426 0.184 0.294
4 0.971 2.304 2.878 6.614 0.402 0.186 0.275
5 0.972 2.282 6.287 −0.030 7.124 0.408 0.170 0.281

SS

1 0.891 2.622 12.035 0.689
2 0.904 2.468 10.964 0.438 0.288
3 0.911 2.387 14.143 −0.001 0.370 0.223
4 0.922 2.242 21.342 −0.134 −0.002 0.262 0.211
5 0.935 2.060 21.386 −0.201 −0.002 0.149 0.214 0.131
6 0.937 2.030 26.713 −0.195 −0.041 −0.002 0.124 0.218 0.126

AE

1 0.939 2.625 6.798 0.856
2 0.946 2.460 7.338 0.364 0.491
3 0.952 2.328 4.274 0.156 0.338 0.433
4 0.956 2.227 2.131 6.808 0.197 0.316 0.380
5 0.959 2.166 5.496 −0.089 5.919 0.216 0.286 0.363
6 0.960 2.143 7.176 −0.119 −0.001 6.323 0.232 0.246 0.340
7 0.960 2.132 10.446 −0.116 −0.027 −0.001 6.641 0.217 0.242 0.347
8 0.961 2.125 10.223 −0.118 −0.027 −0.001 6.853 0.171 0.231 0.065 0.344

WS

1 0.958 2.972 4.400 0.891
2 0.971 2.495 1.271 0.342 0.617
3 0.973 2.390 1.702 0.338 0.342 0.287
4 0.975 2.331 7.975 −0.184 0.308 0.263 0.274
5 0.975 2.312 9.985 −0.248 0.000 0.287 0.283 0.228
6 0.976 2.288 16.134 −0.294 −0.040 −0.001 0.266 0.270 0.224
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leave-one-out location. Based on the prediction errors, two
indices are used to evaluate the interpolation accuracy, and
one is mean absolute error (MAE), defined as

MAE �
􏽐

mh

i�1 abs xi − 􏽢xi( 􏼁

mh

. (11)

And the other is root mean square error (RMSE), which
is defined as

RMSE �

�������������

􏽐
mh

i�1 xi − 􏽢xi( 􏼁
2

mh

,

􏽳

(12)

where 􏽢xi represents the estimated Ta value by the spatial
interpolation at the spatial location si.

MAE is mainly used to evaluate the upper and lower
limits of errors, while RMSE is better at evaluating the
sensitivity of spatial interpolation results and the maximal
minimum effect of some points.

4. Results

4.1.RegressionAnalysis andPrediction. Wemade regression
analysis and prediction for each of the four selected days.
With a stepwise regression procedure, Ta-mean was
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Figure 2: Boxplots of (a) the standard deviations (σ) and (b) the limits of the 95% confidence intervals of the estimated values of Ta-mean with
the applicable regression models in the 334 supplemented locations.
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Figure 3: -ree-dimensional scatterplots of Ta-mean. Longitude is the X axis, latitude is the Y axis, and Ta-mean is the Z axis. -e observations
of Ta-mean of (a) VE, (b) SS, (c) AE, and (d) WS were projected onto the XZ (green dots) and YZ (blue dots) planes to analyze the trends of
them. According to the 3D scatterplots and projections, a polynomial with order of 2 was used to fit the trend surfaces of the observations.
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regressed on those selected covariates. At each step, a
temporary best model (with maximal adjusted R-square)
was chosen given the certain covariates. When adding any
new covariate always leads to a decrease in the adjusted R-
square, the final best model was obtained. Table 2 shows
the best fitted models. Among all these models, Model 1 of
VE has the smallest R-square value of 0.891, and Model 6
of WS has the biggest R-square value of 0.976. Further-
more, the F test shows the p-values of these models are all
≤0.001, indicating these models are statistically signifi-
cant. Also, the t test for regression coefficients shows all
these models have coefficients with significance levels
<0.01. -us, these models were used to predict the cor-
responding Ta at the supplemented locations. Table 2
shows the best models with Ta-mean regressed on differ-
ent sets of covariates and their specifications for the se-
lected four days.

According to the fitted models, the prediction values at
the supplemented locations (pink dots in Figure 1) and
their corresponding confidence intervals were calculated

taking the extracted values of covariates. Perhaps not all
the values of the covariates are able to be extracted due to
potential missing data and outliers. In this case, we turned
to the model whose covariates are available and R2 is
largest (we call it the applicable model) to calculate the
estimated Ta and its corresponding confidence intervals.
Figure 2 shows the boxplots of the standard deviations (σ)
of the estimated values of Ta-mean. From Figure 2, we can
evaluate the regression accuracy; for example, the re-
gression estimates of Ta-mean indicate that most of esti-
mates have an estimation error with σ approximating 1.6
degrees Celsius. -e boxplots on the right show the limits
of the confidence intervals of the estimated values of Ta-
mean, showing most of estimates have limits of about 6
degrees Celsius (95% confidence interval). -ese esti-
mated values and their corresponding confidence inter-
vals were taken as soft data in the coming BME
interpolation.

According to the estimate u and the standard devi-
ation σ at a certain supplemented location, a normal
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Figure 4: Observation binning and experimental semivariograms, and the fitted semivariogram models of residuals after detrending for
(a) VE, (b) SS, (c) AE, and (d) WS. c (Distance) is the semivariogram function, where Distance is the distance of pairs of locations and
Nugget is called the nugget.
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distribution (Gaussian distribution) N (u, σ2) is used to
approximate the distribution of the variable. A graphical
BME tool, the SEKS-GUI software library, was used to
carry out the interpolation operation, which accepts soft

data in the form of Gaussian, uniform, or triangular
distributions [24, 25]. An Excel file was created to feature
the soft data of the supplemented locations. In the case of
Gaussian distribution, for a certain supplemented
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Figure 5: Scatter plots of measured and predicted values for the four days and the two methods, respectively. Two graphs in a row
correspond to a certain day, and the graph on the left is plotted according to the results of the BME-hard method, while the graph on the
right is plotted according to the results of the BME-both method.
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location s (x, y), its soft data are portrayed in consecutive
cells in the same row: x y u σ2 .

4.2. Spatial Interpolation and Evaluation. Taking longitude
as X axis, latitude as Y axis, and Ta-mean as Z axis, in a XYZ
coordinate system, the 3D scatterplots of Ta-mean and their
projections on XZ and YZ planes are plotted as shown in
Figure 3. From the spatial distribution of the Ta observations
and the characteristics of the projections on XZ and YZ
planes, quadratic polynomial was used in the coming in-
terpolation operation of BME.

After removing the global trends from the observations
of Ta, we analyzed the semivariograms of the residuals. With
a technique called binning, the experimental semivario-
grams of the residuals were plotted. -rough observing the
experimental semivariograms, we selected the spherical

model to fit the semivariograms. Isotropy was applied for the
fitting of the experimental semivariograms. Figure 4 shows
the fitted results. -e fitted models are also given in each
subgraph.

After identifying the semivariograms, two method-
s—BME with only hard data (BME-hard) and BME with
both hard and soft data (BME-both)—were applied to
predict Ta-mean.

-e scatter plots of measured and predicted values are
shown in Figure 5. Following the scatter plots, the BME-both
achieved higher accuracy than BME-hard. Generally, scatter
plots of SS and AE are more clustered and better fitted with
the line y� x, indicating their predictions are more accurate
and stabler than SEs and WSs.

Spatially continuous distribution maps of Ta-mean in the
study area were produced by setting the output grid size to
0.1degree∗0.1degree, as well as of the corresponding
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Figure 6: VE interpolationmaps of Ta-mean with (a) BME-hard and (c) BME-both. (b, d)-e corresponding prediction standard error maps.

Advances in Meteorology 9



prediction standard errors as shown in Figures 6–9 for VE,
SS, AE, and WS, respectively. Each figure shows two pairs of
maps. Each pair of maps consists of an estimation map and a
prediction standard error map, which are produced by
BME-hard (maps in the upper part) and BME-both (maps in
the lower part). From these maps, we see the BME-both-
produced maps are more accurate than those produced by
BME-hard overall. Comparing the prediction standard error
maps, we found BME-both-produced maps have signifi-
cantly smaller and stabler prediction standard error than
BME-hard-produced maps, which means the estimation
from BME-both has less uncertainty. Furthermore, inter-
polation errors are closely associated with the density of the
site distribution.-e first terrain range has the largest errors,
where meteorological sites are very sparse because of high
altitude and sparse population. Furthermore, according to

the results of the four selected days, interpolation errors are
probably dependent of days or seasons. -e prediction
standard error maps show that interpolation results in SS
and AE have higher accuracy than those in SE and WS. WS
has the highest interpolation errors among the four selected
days.

To explore the effects of different geographic charac-
teristics on the interpolation accuracy, the prediction ac-
curacy in six areas—the whole study area, the west and east
of Hu Huanyong line (Hu W. and Hu E.), the high terrain
range (Terrain 1), the medium terrain range (Terrain 2), and
the low terrain range (Terrain 3)—were evaluated with
BME-both and BME-hard. Table 3 shows the calculated
RMSE and MAE for each area and method. Our two-phase
method, BME-both, achieved significant improvement on
nationwide Ta prediction. Quantitative calculation further
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Figure 7: SS interpolation maps of Ta-mean with (a) BME-hard and (c) BME-both. (b, d)-e corresponding prediction standard error maps.
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confirmed our judgement that interpolation accuracy is
associated with some geographic factors such as site density
and altitude. In areas with low altitude and dense pop-
ulation, the interpolation accuracy is better than that in
other areas.

5. Discussion

Soft data are one of the two kinds of input data in BME
interpolation, which differ from other interpolation
methods. -e general framework of BME explains some
approaches to the acquisition and representation of soft
data. Transforming prior knowledge into probability dis-
tribution is the most used technique in practice. It is well
known that regression analysis can predict a response
variable from some covariates in terms of a function re-
lationship. Furthermore, as a random variable, the

predicted variable (dependent variable) obeys a certain
probability distribution. Taking advantage of this charac-
teristic, in this article, we employed a multivariate linear
regression method to retrieve the distribution of Ta at some
unobserved locations and used Gaussian distribution to
approximate the t distributions of the predicted variable of
the regression model. -us, additional information is in-
corporated into the interpolation process as prior knowl-
edge of a probabilistic distribution. -e results indicate that
significant improvement is made on the interpolation ac-
curacy. In some studies other than Ta interpolation, re-
searchers practiced this idea and showed enhanced effects,
which confirmed that it is an effective approach to retrieve
soft data and implement BME interpolation operation. For
example, Cao et al. used a binary logistic regression to
model the occurrence of the highly pathogenic avian in-
fluenza and interpolate the risk, indicating an improved
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Figure 8: AE interpolationmaps of Ta-mean with (a) BME-hard and (c) BME-both. (b, d)-e corresponding prediction standard error maps.
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result [26]. Some scholars also regressed the precipitation
on historical records or other factors to generate soft data
for better interpolation [3, 27, 28].

We compared the results with several studies contrib-
uted to daily Ta estimation. Janatian and Zeng investigated
daily Ta retrieval from remotely sensed Ts considering the
Ta−Ts relationship. -e former proposed a statistical
framework for estimating Ta usingMODIS Ts data andmade
a case study in the eastern part of Iran [10], which achieved a
RMSE of 3.0°C in daily Ta estimation. -e latter evaluated
the ability of MODIS Ts data to estimate daily temperature
over the Corn Belt in the United States [12]. -ey found that
the RMSE of different land covers ranges from 2°C to 5°C. As
seen, the errors of these results are much larger than ours.

-is can be explained that our methods take far more ex-
planatory variables and integrate hard data and soft data.
-ere are also some studies considering some potential
explanatory variables. For example, Alonso et al. used
multiple regression models to estimate the daily Ta from
some remotely sensed explanatory variables and the vari-
ables traditionally used like the ones from the LandUse Land
Cover in Rhône-Alpes county, located in southeastern
France. -ey achieved a RMSE of 1.20. -is result is con-
sistent with our results. However, our study area has a larger
extent and more complicated environment, which may
cause that our results have a little lower accuracy than theirs.
In their study, remote sensing variables were incorporated
and made significant contribution to the Ta prediction
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Figure 9: WS interpolation maps of Ta-mean with (a) BME-hard and (c) BME-both. (b, d) -e corresponding prediction standard error
maps.
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model. In another study, a stacking ensemble model was
proposed to interpolate daily maximum Ta during sum-
mertime over Seoul [7]. -ey achieved a RMSE of 0.7°C,
which is lower than our results. In our study, however, BME-
both has an improvement of 40%, which is much better than
theirs (less than 20%).

In the first phase of the proposed two-phase process, we
used regression modeling to predict Ta-mean in unobserved
locations and took them as soft data. From the multivariate
linear estimates, the best models show good fitting. How-
ever, as explained in the regression analysis operation, the
best models are sometimes unusable due to failure to extract
data of some variables from the corresponding data sources,
and as a result, inferior models have to be selected for
calculating estimates in unobserved locations, which de-
grades the prediction accuracy. -e observation errors and
unavailability of covariates are of great concerns in the
regression phase of our two-phase model. For example, Ts
retrieved from satellite remote sensing includes errors
depending on the underlying surface. And even Ts is un-
available when the surface is sheltered by clouds. Further-
more, since limited cognition for the problem domain and
data unavailability, it is difficult to build a perfect model. For
example, we considered 10 putative factors as covariates in
our multivariate linear regression analysis. However, there
are certainly other unknown (or untaken) factors affecting
the dependent variable and the relationship between Ta and
covariates is likely nonlinear. -erefore, regression analysis
generally is taken as a primary approach in some practices
where rough results are acceptable. Nowadays, some al-
ternative advanced approaches such as neural networks are
prevalent [29, 30]. -ese methods can depict the complex
nonlinear relationships between outputs and inputs and can
improve the prediction accuracy. Nonetheless, enormous
input parameters and large data are needed to achieve good
results in neural network models.

From the comparison of the interpolation accuracy in six
areas, it is shown that BME-both is consistently better than
BME-hard in any certain area.-is can be expected from the
characteristics of spatial distribution of meteorological ob-
servation stations: the meteorological observation stations in
the east are spatially dense, more hard data (with high
quality) are incorporated into the interpolation, and the soft
data contribute less to the interpolation results. In contrast,
more soft data (considered high uncertainty) are used in the
interpolation and lead to bigger errors of the interpolation
results.

6. Conclusions

Ta is one of the most important parameters for science and
practice. While traditional meteorological station observa-
tions are limited and spatially distributed unevenly, envi-
ronmental factors and remote sensing images are promising
to predict Ta with spatially continuous coverage. For ex-
ample, Ts retrieval has undergone long-term studies shortly
after the first Landsat launched. And then in terms of the
statistical relationship between Ts and Ta, Ta can be predicted
at the pixel locations. With advances in the acquisition of

remotely sensed data and retrieval models, some full-fledged
algorithms for retrieving Ts from remotely sensed data have
been developed. As a newer remotely sensed data source,
MODIS has been put into use in many fields since 2000.
Especially benefiting from well-developed products with
sound algorithms, the width and depth of MODIS data
application are promoted largely.-e distribution website of
MODIS data products created by NASA is capable of
providing some land products covering the globe (e.g., Ts).
And the global users can freely download these product data
according to their requirements.

To densify Ta from discrete meteorological observa-
tions, two popular approaches, interpolation and regres-
sion, are widely used. Interpolation uses the observed data,
while regression fits the observed data and covariates and
then predicts the Ta in unobserved locations with covariate
inputs. -ere are advantages and disadvantages for them.
Incorporating the relationship between Ta and environ-
mental factors into the interpolation procedure is supposed
to supplement additional information into the observa-
tions, and thus, higher accuracy is expected to achieve. -e
BME methods can well blend observations and prior
knowledge, which use two kinds of data called hard data
and soft data.

Utilizing the relationship between Ta and environmental
variables, in this article, a two-phase approach was proposed
to increase the accuracy of Ta estimates. Taking Ta-mean
prediction as example, first, multivariate linear regression
models were fitted between Ta-mean and Ts (TMOD-day, TMOD-

night, TMYD-day, TMYD-night) conditional on some environ-
mental factors including vegetative and topographical ones.
-e fitted models were then used to predict Ta-mean from
those factors. -e predicted Ta-mean were looked on as
stochastic variables, and their distributions were also esti-
mated. In the second phase, BME methods were used to
interpolate the meteorological observations of Ta-mean taking
the meteorological station observations as hard data and the
predicted Ta-mean in the first phase as soft data. It is approved
that the proposed methods supplement new information to
the observations and thus reduce uncertainty of the esti-
mated results. Particularly, for some stations distributed
spatially sparse, our method significantly improves the ac-
curacy. -e proposed approach is supposed to map Ta with
spatially continuous coverage and higher accuracy simul-
taneously through blending multisource information.

In the coming work, we are going to investigate other
advanced methods for producing soft data, which is ex-
pected to further improve the accuracy of Ta estimates. Deep
learning regression methods are also promising approaches
to achieving Ta estimates with high precision in view of their
performance in the prediction of environmental parameters,
which are of great interest in our next work. According to the
improved methods, we plan to produce high spatial reso-
lution Ta products and distribute them for free use.
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