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Climate analysis at relevant time scales is important for water resources management, agricultural planning, food risk assessment,
ecological modeling, and climate change adaptation. Tis study analyzes the spatiotemporal variability of climate on rainfall
distribution for the Hare catchment of Ethiopia. Numerous hydroclimatic variables and scenarios were developed to assess the
pattern of rainfall during diferent seasons.Te average annual precipitation varies between −37.3%, +33.1%, and −38.2%, +61.2%,
for RCP 4.5 and RCP 8.5, respectively. Te anticipated declines in mean seasonal rainfall changes for the Bega and Belg seasons
range from −69.6% to 88.4% and from −60.6% to 15.2% for RCP 4.5 and RCP 8.5, respectively. Climate models predict that the
average periodic precipitation considered for the Kiremt season will vary from −12.1% to 1.33%. Te Belg, Kiremt, and Bega
seasons will likely see a 28.2%, 12.2%, and 22.6% drop in mean seasonal precipitation, respectively. Te decrease in stream fow
accompanied by the aforementioned climate scenarios (RCP 4.5 and RCP 8.5) can be as high as 19.6% and 6.7%, respectively. Also,
the amount of discharge will reduce in the near future because of a substantial reduction in rainfall and a rise in evapotranspiration
in the catchment.Tis decline in stream fow has its own efect on the future availability of water resources.Te research fnding is
vital to environmental protection authority, decision makers, and scientifc community to undertake climate change adaption
techniques for rain scare areas. A program combined with multi-RCMs to evaluate climate change efects on hydrometeorology
generated a novel approach to this research with appropriate adaptation mechanisms.

1. Introduction

Global warming due to climate change is one of today’s most
persistent problems. It has efects on the lives of people,
property, the ecosystem health and services, land use/cover,
watershed hydraulics, and large-scale water/groundwater
resources [1–3]. Most scholars suggested that the climate
change efect was mostly manifested by an increase in global
temperature. In developing countries such as Ethiopia, the
efect of precipitation is high as compared to temperature
[4].Te amount of rainfall is an indication of climate change
since rainfall has a direct efect on the environment and is
associated with the growth of the country’s economy [5].Te
usual form of precipitation in Ethiopia is rainfall. Te ag-
ricultural activities of a certain country also depend on the
amount of rainfall, which is very important in this regard.

Te existence of a huge population in developing
countries such as Ethiopia requires a detailed investigation
of the variability of rainfall and its trend. In addition to this
natural calamity, there will be, for instance, foods and
droughts due to uneven distribution of rainfall. Hare
catchment, the catchment found near Arba Minch city, was
the susceptible region with the aforementioned problem. In
the past, in 2001, 2007, 2013, and 2019, the surrounding areas
of the catchment were extremely agonized by this problem,
and in the year 2013, the highest food enormity of
60–120 cm was recorded with the resettlement of around 60
households from their residence. Similar situations have
happened in diferent parts of the world. Excessive rainfall
caused fooding, for instance, in Kendari, which is one of the
cities in Indonesia, where most of the time foods happened,
and historically, around 19 food events were documented
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from 2000 until 2017. Also, another city in Indonesia, Palu,
sufered from similar circumstances, and in 2012, a huge
magnitude of foods afected a lot of people [6–8]. For best
prediction and reliability purposes, most of the time, the
annual rainfall data are preferred to the mean value [9–15].
Te research focuses on inspecting the uneven distribution
of yearly as well as monthly precipitation for a record period
of 30 years in the Hare catchment of Ethiopia. Te data were
utilized to explain which kinds of rainfall experienced sig-
nifcant variations as a consequence of the changing climate.
Also, the authors in [16] provide the appropriate portion of
the study’s fndings.Tis paper aims to be used as a guide for
comprehensive rainfall investigations and basic in-
vestigations of climate variation’s impact on diverse forms of
rainfall to come in subsequent rainfall and environmental
change studies.Te present research applied a bias-corrected
MME to nine GCMs [17]. Tis helps to examine the er-
raticism of precipitation under historical and upcoming
weather conditions. Te RCA4 RCM was selected while, in
conjunction with the CORDEX project, and it downscaled
an enormous amount of GCMs for Africa, indicating a desire
to examine the efectiveness of the GCMs in downscaled
scenarios compared to measured or actual data.Te research
site is recognized as the cultivated endowed regions, plus
extensive hydraulic structures or schemes for growing ag-
ricultural crops are presently ongoing. In addition, the re-
gion’s growing population drives up the consumption of
water. Terefore, it is essential to keep track of the region’s
water supply. A multi-RCM approach was employed in the
current research for evaluating the impact of climate vari-
ability on hydrometeorology, including recently demon-
strated emission pathway predictions that will enhance the
nation’s adaptation strategy. Te study encompassed the
following specifc objectives in our study to accomplish this
main aim: (i) efciency evaluation of the regional climate
model; (ii) pattern identifcation for metrological and hy-
drological parameters; (iii) calibration and validation of the
hydrological model; and (iv) sensitivity analysis of model
parameters. In addition, by illustrating how to utilize RCMs
in development attempts, this research is likely to be highly
helpful to future scholars. Te anticipated rainfall and
temperature outcomes from fve bias-corrected GCMs have
been determined with two common conditions, namely,
RCP4.5 and RCP8.5 [18, 19]. Te study’s fndings are an-
alyzed and compared to those of prior studies [20, 21] in the
same and nearby catchments. Te fndings might aid in the
expansion of adequate adaptable strategies for proper water
administration to make timely choices in response to the
possible impact of changes in climate.

2. Methodology

2.1. Study Area Description. Hare catchment is a subcatch-
ment of the Abaya Chamo subbasin, southern Ethiopia, with
an enclosed coverage of 187.14 km2. Te catchment is
generally located at 6°4′00″ and 6°17′30″ N latitudes and
37°27′00″ to 37°45′00″ E longitudes (Figure 1). Hare
catchment is classifed as steep valleys upstream and grad-
ually becomes a fat river plain till it joins Lake Abaya [22].

2.2. Data Collection and Analysis

2.2.1. Time Series Metrological Data. Ethiopian National
Meteorological Agency (ENMA) is an essential source for
metrological data designed for the Hare catchment from
1987 to 2021, or about 30 years of data. Tree climate data
recording sites were situated nearby and surrounding the
study area (Table 1). When comparing the availability of data
for each station, one station has more available data than the
others. Chencha and Dorze stations only ofer rainfall and
temperature data (Table 1). But the Arba Minch gauging
station (synoptic station) was utilized to provide additional
meteorological data for other stations. ArbaMinch’s weather
is much diferent from that of Chencha and Dorze.

2.3. Spatial and Temporal Data

2.3.1. Digital Elevation Model. Te resolution of the DEM is
determined by the size of each cell. On December 15, 2022,
https://asf.alaska.edu/ provided a 12.5m× 12.5m resolution
DEM for the Hare catchment (Figure 2). Te obtained DEM
grids were mosaicked with ArcGIS 10.1 software and utilized
in the SWATmodel to delineate catchments and for further
analysis.

2.3.2. Land Use/Cover Data. In Ethiopia, rain-fed agricul-
ture is the most widely employed traditional farming
technique. Land use land cover can have a considerable
impact on land surface sediment erosion. Vegetation cover
can mitigate the efect of precipitation on soil erosion.
Changes in land cover, such as the conversion of thick forest
to agricultural land, have accelerated erosion and increased
sediment output at catchment outlets [23]. Te Hare
catchment is mostly occupied by modestly farmed terrain,
with some forestland in the higher reaches.Te lowest half of
the catchment has heavily farmed land and shrub vegetation.
Te study region also features a high concentration of ri-
parian vegetation. Te study catchment is dominated by
highly farmed, moderately cultivated, and shrub regions
(Figure 3).

2.3.3. Soil Data. Te soil type has a certain factor for the
runof generation as well as the infltration capacity of the
catchment [24]. After overlaying clipped study area map to
the Ethiopian soil map the classifed major soil type of the
catchment are easily identifed and listed as follows: eutric
nitisols dystric nitisols, orthic acrisos, eutric fuvisols, and
dystric fuvisols (Figure 4).

2.4. Setup for SWAT Model

2.4.1. Delineation of Catchment. Arc Map interface voguish
ArcGIS 10.1 was used to manage and interpret geographic
data that were utilized as input for SWAT. Catchment
delineation is the frst stage in starting a SWAT model
catchment simulation. SWAT allows users to designate
catchments and subcatchments utilizing DEM to perform
sophisticated GIS tasks to assist users in splitting catchments
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into numerous hydrologically related subcatchments for use
in SWAT catchment modeling [25]. During the delineation
of catchments and subcatchments, the Hare catchment was
defned with an outfow point at the catchment’s outlet. Te
ArcGIS was enhanced by using a catchment delineation tool.
Catchment delineation was performed by SWATmodel. Te
model created the stream network in place of the entire
digital elevation model by utilizing the concepts of direction
and accumulation of fow. Te smaller threshold area
revealed greater drainage network information, as well as
a signifcant number of subcatchment and HRU. Tis,
however, necessitates additional processing time and
a considerable amount of computer space. For this study,
a threshold area of 540 ha was used, and the catchment
outfow was manually inserted and selected before con-
cluding the catchment delineation. Te model then defned
a 187.14 km2 catchment with 19 subcatchments (Figure 5).

2.4.2. Analysis of Hydrologic Response Unit (HRU).
HRUs are subcatchment regions that have a distinct land
use/cover, soil, and slope combination. HRUs can be

assigned to each subcatchment by assigning only one HRU
based on the major spatial data combinations. A multiple
HRU analysis option was employed for this investigation.
SWAT land use datasets have four-letter codes established in
the GIS interface (Figure 6). To connect the land use map to
the SWAT database, the lookup table in the SWAT was
prepared in a way that was consistent with the loading of the
land use/cover map.

By loading lookup table, the soil layer on the geo-
graphical map was connected and stored in the database. To
incorporate this map into the model, a user-defned soil
database which includes physical as well as chemical
characteristics of each soil was created and amalgamated
together with the combined lookup table. Te provided soil
map’s categories of soil have been encoded using a lookup
table (Figure 7).

Furthermore, to land use and soil, HRUs have been
categorized by slope classifcation. Te multiple slope ap-
proach tends to be desired when considering number slope
categories for HRU defnitions. In the present investigation,
a lot slope alternatives were selected and the slope class has
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been divided into four classes with slopes that ranged from
0–3% to 3–6%, 6–12% to over 12% (Figure 8).

Following redefning the spatial structure, entirely of the
aforementioned corporeal characteristics was layered on top
for HRU defnition. As stated by [26], the percentage of land
use, soil and slope is 20%, 10%, and 10%, respectively, for the
majority purposes of modeling. Small land use, soil, and
slope classes inside a specifc subcatchment could be
dominant over close to signifcantly larger physical char-
acteristics throughout HRU identifcation under specifc
threshold scales. Te HRU in the present research was
established by a 10%, 5%, and 5%, respectively. In the end, 77
HRUs for 19 small catchments were established alongside
the whole Hare catchment HRU map (Figure 9).

2.4.3. Weather Data Defnition

(1) Weather Generator. Te precipitation statistical analysis
model (PCP STAT) produced by the weather generator was
used for the statistical analysis of everyday rainfall records
required for creating climate fles. Te dew point (dew02) is
a confgurable value for the weather generator. As stated by
[20], dew02 is used for calculating the daily mean metro-
logical data. Angstrom–Prescott empirical equation (21) was

applied for converting existing sunlight hour into solar
radiation. Weather observatories were placed using latitude,
longitude, and elevation measurements.

2.4.4. Model Sensitivity, Calibration, and Validation. Te
model’s appropriateness aimed at the intended purpose ought
to be assessed by sensitivity analysis, standardization (cali-
bration), and justifcation (validation) [22]. Te calibration
process involves altering the input variables and comparing
anticipated results with actual results till the target function is
achieved, and the calibration is carried out by using automatic
calibration. Nevertheless, in the present investigation, an
automated calibration approach was used for calibration from
1990 to 2001 and validation from 2002 to 2007, with
a two-year warm-up phase from 1988 to 1989. Te calibrated
model was evaluated in contradiction of a self-determining set
of observed data in order to be used for measuring sediment
production. Te capacity should be treated as sound in
simulation stages of the evaluation [27]. Model performance
was evaluated by visual inspection of hydrographs value and
with combination of objective functions.

2.4.5. Model Performance Evaluation. A model’s accuracy,
consistency, and fexibility must all be considered. To
evaluate the model’s performance, a forecast efciency
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criterion is required. Assessing the efcacy of a hydrologic
model necessitates subjective and/or objective judgments of
the model’s simulated behavior’s proximity to data [23]. In
this study, the model’s performance is evaluated by the
following points.

(1) Nash–Sutclife Efciency (ENS). It helps to judge the ft
concerning the outcome of the model and actual measured
hydrograph shapes. Te efectiveness of the model is de-
termined by ENS as described in the following equation:

ENS � 1 −
􏽐

n
i�1 qoi − qsi( 􏼁

2

􏽐
n
i�1 qoi − qo( 􏼁

2. (1)

ENS can range between 1 and −∞ and operates best when
it is one. Values ranging from 0.80 to 0.90 suggest that the
model works very well, whereas values ranging from 0.90 to 1
designate that the model performs exceptionally well [24].

(2) Coefcient of Determination (R2). R2 refects the model
approach to recreate the observed value through a given time
period and for a given time step. R2 values vary from 1.0
(best) to 0.0.

R
2

�
􏽐

n
i�1 qsi − qs( 􏼁 qoi − qo( 􏼁􏼂 􏼃

2

􏽐
n
i�1 qsi − qs( 􏼁

2
􏽐

n
i�1 qoi − qo( 􏼁

2. (2)

Te predisposition of anticipated threshold higher/
smaller than measured value is assessed by percent bias

(PBIAS) [25]. Te absolute value of PBIAS should be as low
as possible for a well-performing model. Te PBIAS is
provided by the following equation:

PBIAS �
􏽐

n
i�1qsi − 􏽐

n
i�1qoi( 􏼁

􏽐
n
i�1qOi( 􏼁

􏼢 􏼣∗ 100. (3)

(3) Te Ratio of Root Mean Square Error to Observation
Standard Deviation (RSR). It serves as an error index in-
dicator. RSR has a value between zero and one, with the
lower value, closer to zero, suggesting better model repre-
sentation and one indicating poor model performance.

RSR �
RMSE

STDEVob

�

�������������

􏽐
n
i�1 qoi − qsi( 􏼁

2
􏽱

������������

􏽐
n
i�1 qoi − qs( 􏼁

2
􏽱 ,

(4)

where qsi is the simulated discharge (m3/sec), qoi is the mea-
sured discharge (m3/sec), qs is the average simulated discharge
(m3/sec), and qo is the average measured discharge (m3/sec).

2.4.6. Soil and Water Assessment Tool (SWAT). SWAT
model is a physically based, semidistributed, long-term
simulation, deterministic, and originated from agricultural
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models with spatially distributed parameters and operating
on a daily time [26]. SWATmodel has been used worldwide
and considered as adaptable environmental model that can
be used to evaluate the biophysical impacts of intensifcation
of interventions at the watershed scale, which supports more
efective watershed management and the development of
better informed policy [28, 29]. Te model has been widely
applied for the simulation of runof, sediment yield, ni-
trogen, and phosphorus losses from watersheds in diferent
geographical locations, with varying soils, land use, and
management conditions over long periods of time. Several
researchers for instances, the authors [30] were proved the
applicability of SWAT model in the Ethiopian watersheds.

2.4.7. Description of Regional Climate Model. In this study,
projected climate datasets were used. Datasets with a grid
spacing of 0.44° 0.44° (50 km× 50 km) were accessed from
the CORDEX-Africa database at https://cordexesg.dmi.dk/
esgf-web-fe/. Te reference period for the analysis was from
1986 to 2005, and the future midterm period was chosen
between 2051 and 2080 to match the timeframes typically
utilized in studies of climate change. Basic climatological
information including precipitation, maximum and mini-
mum temperatures, solar radiation, wind speed, and relative
humidity are included in this climate model’s output for
both the reference and future periods. Te climate efect
assessment was conducted using the extreme (RCP 8.5) and
the intermediate (RCP 4.5) emission scenarios for the
midterm era (the 2050s). In the present study, seven regional
climate model datasets were employed.

2.4.8. Evaluation of CORDEX RCMs. By plotting the actual
and simulated data for the yearly cycle and interannual
variability, the CORDEX rainfall simulations were evaluated
using statistical performance indicators. Te analysis was

carried out using a statistical technique for evaluating model
performance that encompasses bias, root means square error
(RMSE), Pearson correlation coefcient, and coefcient of
variation (CV) and is discussed in the following sections
[31].

Bias � 100∗
Rrcm-Robs

Robs

RMSE �

��������������

􏽐
N
1 Rrcm-Robs( 􏼁2

N

􏽳

Correl �
􏽐

n
t�1 Rrcm-Robs( 􏼁 RG-RG( 􏼁

���������������

􏽐
N
t�1 Rrcm-Rrcm( 􏼁2

􏽱 ������������

􏽐
N
t�1 RG-RG( 􏼁2

􏽱

CV � 100∗
σR

R
,

(5)

where the R bar represents the mean value of rainfall in the
analysis period; R is the average rainfall in the basin in
a given year; rcm is a subscript for the regional climate
model, while G refers to a subscript for rainfall values ob-
tained from the rain gauge network.; σ is the standard
deviation. Te RCMs used in this study are the Canadian
Regional Climate Model CanRCM4, KNMI Regional At-
mospheric Climate Model, Version (RACMO22T), SMHI
Rossby Center Regional Atmospheric Model (RCA4), MPI
regional model (REMO), CLMcom COSMO-CLM
(CCLM4), and CLMcom COSMO-CLM (CCLM4).

2.4.9. Bias Correction. Bias correction for rainfall and
temperature was made using the CMhyd tool with the
nearest grid of RCM data. Researchers have utilized a variety
of bias correction techniques to eliminate bias from climate
model data [32]. For this study, the distribution mapping
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technique was used to correct bias in the dynamically
downscaled temperature and precipitation data. Teutschbein
and Seibert (2012) went into greater detail about the tech-
niques. On the other hand, the mean-based bias adjustment
approach was used to correct a bias for RCM simulation of
future relative humidity, wind speed, and solar radiation
[33]. Equation (6) provides the mean-based bias correction
method used in this study.

Xadj � Xrcm,future + Xobs,hist − Xrcm,hist􏼐 􏼑, (6)

where Xadj � adjusted data; Xrcm, future�RCM future data;
and Xobs,hist and Xrcm,hist are the mean for observed and
RCM data, respectively.

3. Results

3.1. SWAT Model Calibration and Validation

3.1.1. Stream Flow Calibration and Validation. Te goal of
the calibration procedure is to see if the simulated and
observed fow values coincide by changing the sensitive
model fow parameters within the specifed range. For
subsequent iterations in the calibration periods, the six more
powerful (governing) fow characteristics are used as de-
scribed in Table 2.

Te validation procedure was also followed without
altering the model fow parameters that had been altered
during the calibration step. Te model’s performance was
examined throughout the validation period (from January 1,
2002 to December 31, 2007).

According to Table 3, the model performed extremely
well throughout the fow calibration and validation for
calibration, R2 � 0.78, ENS� 0.76, RSR� 0.57, and
PBIAS� −12.5%, while for validation, R2 � 0.89, ENS� 0.75,
RSR� 0.44, and PBIAS� 10.2%. For calibration, the SUFI-2
uncertainty measure gave P-factors of 0.73 and R-factors of
0.42, and for validation, P-factors of 0.74 and R-factors of
0.52. Tis suggests that the 95% prediction of uncertainty
(95PPU) band contains about 73% of calibration data and
74% of validation data, with R-factors of 0.42 and 0.52,
respectively.

According to Figure 10, the maximum model output
occurs in August 1998 for calibration and September 2004
for validation. Furthermore, the hydrographs (Figure 10)
revealed that the model somewhat overstated fow in most
years while underestimating fow in others. Tis means that
the uncertainty analysis revealed that around 27% and 26%
of the calibration and validation data, respectively, were
questionable.

3.2. Assessment of Climate Change Impact

3.2.1. Baseline Hydroclimatic Variables. Figure 6 depicts the
monthly patterns in maximum and lowest temperatures.
Accordingly, February has the greatest maximum temper-
ature (28.8°C) and July has the lowest (23.0°C), while March

has the highest minimum temperature (13.1°C) and No-
vember has the lowest (10.4°C) (Figure 11).

As seen in Figure 12, the comparison of actual pre-
cipitation to GCM reference values. Similarly, in Figure 7,
the highest signifcant variation between the MIROC5
baseline and the July values was 14mm/month. Te IPSL-
CM5A-MR had the most substantial divergence in rainfall
among all GCMs.

3.2.2. Temperature. Changes in the worldwide diurnal
temperature range, DTR (TmaxTmin), are an important in-
dication of climate change [34]. We analyzed the DTR in the
Hare catchment using the averages of the fve GCMs for the
baseline and future eras to study the signifcance of the
variability of temperature as presented in Figure 13. Under
all scenarios, the DTR will be smaller in the Kiremt and late
Belg periods than in the baseline period, with just a slight
diference in the beginning of the Belg season.

3.2.3. Rainfall. Figure 14 depicts percentage variations in
expected rainfall on a seasonal and yearly basis for the near
and distant future timeframes. Te forecasts suggest that the
Bega season will be longer, while the Belg and Kiremt
seasons would be shorter. Te estimated yearly rainfall loss
varies from 6.5% (MPI-ESM-LR-RCP4.5) in the near future
to 38.3% (CanEMS2-RCP8.5) in the distant future.
CanESM2-RCP8.5 seasonal estimates indicate the greatest
substantial declines in the Belg (55.2%) and Kiremt (51.5%)
seasons. MPI-ESM-LR-RCP4.5 produced the lowest sea-
sonal decreases of 8.5% in the Belg season and 11.2% in the
Kiremt season.

3.2.4. Evapotranspiration. Te current study’s fndings show
that both emission scenarios enhance evapotranspiration.
Te spike is linked to the higher-than-expected temperature
rise (Figure 14). Figure 15 depicts a steady increase in av-
erage annual and seasonal evapotranspiration rates across all
scenarios. Te anticipated annual average rise for RCP4.5
and RCP8.5 is 6.3–14.8% and 8.9–16.8%, respectively.

Figure 16 shows a strong connection between the
monthly baseline stream fows predicted with various GCMs
and the actual stream fow, with a coefcient value of roughly
0.89. Tere is, however, a diference between the observed
and baseline periods. Te highest diference is 7.8mm/
month achieved with the MIROC5 model in November,
followed by 7.3mm/month acquired with the IPSL-
CM5A-MR in March. For the baseline period, the simulated
stream fows with CanESM2 and IPSL-CM5A-MR are
higher than the observed values, but with CSIRO, they are
lower, except for January.

(1) Impact of Climate Change on Drought Characteristics. We
examined the likelihood of drought incidence and mean
drought index (SPI, RDI, and SDI) in the study area using an
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Table 3: Indicators of model performance for monthly observed and simulated fow during calibration and validation (1990–2007).

Recording site Simulation period
Uncertainty analysis Model evaluation parameters

P-factor R-factor R2 ENS RSR PBIAS

Hare @outlet point Calibration (1990–2001) 0.73 0.42 0.78 0.76 0.57 −12.5
Validation (2002–2007) 0.74 0.52 0.89 0.75 0.44 10.2
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Figure 11: Monthly temperature observations and GCM simulations in the baseline period (1986–2005): (a) highest temperature and
(b) lowest temperature.

Table 2: Summary of calibrated model fow parameters.

Parameters Description Range value Calibration range Fitted values Rank
ALPHA_BF Recession constant for alpha base fow 0-1 0-1 0.145 1
CANMX High amount of canopy storage 0–10 0–10 2.688 2
CN2 Curve number for SCS runof 35–98 ±25% 0.126 3
SOL_Z Soil depth (for each layer) 0–3000 0–3000 0.348 4
SURLAG Lag time for surface runof 0–10 0–10 9.586 5
GWQMN Verge depth of water in the shallow aquifer 0–5000 0–5000 2374.738 6
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ensemble average of fve GCMs for nearby and future pe-
riods under, RCP4.5 and RCP8.5 (Figure 17). Te chance of
drought incidence from January to December is calculated
by dividing the number of years with a drought index value
of 1 by the total number of years in the period [34]. Under
RCP8.5, it reached its maximum (0.19) for the Belg (from
February to May) in the distant future era (Figure 17(a)).
Tis increased likelihood is mostly due to a considerable
drop in predicted rainfall. Another cause might be the higher
unpredictability of rainfall in Belgium.Te SPI and RDI data
demonstrated a similar temporal pattern of drought in-
cidence (Figure 17(c)). Tis suggests that drought suscep-
tibility is also strongly connected to the sorts of land use
circumstances that may lead to available water
shortages [35].

Te probable function of the hydrological drought from
the three indexes shows a value of 0.07 for the base line
scenario and 0.14 for the predicted one. Figure 17 describes
almost similar pattern for the three drought indexes. Te
output of this study also comparable with the scholars who

put their own suggestion in upper blue Nile and Bilate
catchment showed that the possibility of existence of met-
rological drought 0.22 and 0.16 in Belg and Kiremet, re-
spectively [36, 37]. Also, the domain of existence of drought
is manifested by the variability of climate especially rainfall
over the area.

Figure 18 depicts the average mean monthly pre-
cipitation change of all individual RCMs over the research
region for the midterm 2050s period. Climate model
projections suggest that, with the exception of the
CanRCM4 model, there will be a probable constant de-
crease in future rainfall quantity for virtually all months.
Te CanRCM4 model predicts a rise in rainfall quantity
from January to September. Te model projection for the
base period is correct based on the data collection as shown
in Figure 19.

Figure 19 depicts the expected midterm change in mean
seasonal and annual rainfall for the Hare catchment related
to the reference period.With rare exceptions, the anticipated
changes in the basin’s mean annual rainfall have showed
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Figure 12: Observed monthly rainfall and GCM simulated baseline rainfall (1986–2005).
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Figure 15: Percentage changes of annual and seasonal evapotranspiration with reference to the baseline in the (a) near future period from
2021 to 2050 and (b) far future period from 2071 to 2100.
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a decline tendency. Te relative change in average yearly
precipitation is greater in RCP 8.5 than in RCP 4.5. Te
average annual precipitation change in the 2050s is expected
to be between −37.2% and +33.1% for RCP 4.5 and between
−38.2% and +63.2% for RCP 8.5 (Figure 20).

During the Belg and Bega seasons, simulations from fve
models including the chosen RACMO22T model show
decreasing precipitation across the Hare catchment, while
the remaining two models show higher precipitation. In the
study region, estimates commencing four models, counting
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Figure 17: Probability of drought. (a) SPI; (b) SDI; and (c) RDI for the baseline and future periods.
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the selected RACMO22T model, show increasing pre-
cipitation, while the remaining three models show de-
creasing precipitation. Te expected mean seasonal rainfall
variations for Bega and Belg seasons are from −71.5% to 67%
and from −69% to −8.5%, respectively. Te predicted

variations in average periodical rainfall for the Kiremt
season range from −35% to 65%. Rainfall in the three seasons
(Bega, Kiremt, and Belg) will likely vary by −18.1%, −0.023%,
and −26.4%, on average and its approachable in value with
the study [38].
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With a few exceptions, rainfall simulations from most
RCMs under RCP 8.5 indicate a steady drop intended for
entire periods. For the Bega and Belg seasons, the estimated
decreases in mean seasonal rainfall changes range from

−68.6% to 87.4% for RCP 4.5 and from −59.6% to 15.5% for
RCP 8.5, respectively, and similar study is conducted by [32].
Climate models predict a range of −12.1%–1.33% in mean
seasonal rainfall for the Kiremt season. Te average quantity
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Figure 19: Projected change in monthly rainfall of the Hare river basin for the medium-term future (2051–2080) compared to the reference
period (1986–2015) under the RCP4.5 and RCP8.5 scenarios.
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of average periodic precipitation will likely fall by a certain
amount for Belg, Kiremt, and Bega seasons as 28.2%, 12.0%,
and 22.6%, respectively.

4. Conclusion

Except for the CanRCM4 model, almost all RCMs indicated
a considerable decline in average annual rainfall and stream
fow.Te CanRCM4model simulation of rainfall in the Hare
catchment difers dramatically from all other models. Tis
might be ascribed to its unfortunate presentation in the
study area, which could be linked to structural discrepancies
in RCMs and process parameterization. For both climate
emission scenarios, the mean yearly rainfall would be de-
creased from 16.7% to 10.2%. Tis study’s expected out-
comes are reliable through further scientifc researches in the
catchment. Te study is crucial for rain-fed agriculture,
management of reservoir storage and further water-related
activities. Troughout general, maximum temperature,
lowest temperature, and potential evapotranspiration ex-
hibit reasonably consistent trends throughout the project
region, whereas predicted rainfall shows signifcantly less
consistency and volatility. Moreover, three drought indices
SPI, SDI, and RDI are also used to examine how climate
change afects drought aspects. Te results show that future
droughts will be more severe and protracted than the
baseline era (under both emission scenarios). Residents of
the Hare catchment depend greatly on the provision of
runof that found in natural waterways and periodic streams,
that is negatively impacted by absence of rainfall brought on
by climate change. Signifcant courtesy must be given to
adopting new and problem solving mechanisms which is
safe to climate alteration to preserve viable agricultural
production and food for the future generation.
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[16] M. Dembélé and S. J. Zwart, “Evaluation and comparison of
satellite-based rainfall products in Burkina Faso, West
Africa,” International Journal of Remote Sensing, vol. 37,
no. 17, pp. 3995–4014, 2016.
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