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Utilization of satellite precipitation products (SPPs) for reliable food modeling has become a necessity due to the scarcity of
conventional gauging systems. Tree high-resolution SPPs, i.e., Integrated Multi-satellite Retrieval for GPM (IMERG), Global
Satellite Mapping of Precipitation (GSMaP), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), data
were assessed statistically and hydrologically in the sparsely gauged Chenab River basin of Pakistan.Te consistency of rain gauge
data was assessed by the double mass curve (DMC). Te statistical metrics applied were probability of detection (POD), critical
success index (CSI), false alarm ratio (FAR), correlation coefcient (CC), root mean square error (RMSE), and bias (B). Te
hydrologic evaluation was conducted with calibration and validation scenarios for the monsoon fooding season using the
Integrated Flood Analysis System (IFAS) and fow duration curve (FDC). Sensitivity analysis was conducted using ±20% cal-
ibrating parameters. Te rain gauge data have been found to be consistent with the higher coefcient of determination (R2). Te
mean skill scores of GSMaP were superior to those of CHIRPS and IMERG. More bias was observed during the monsoon than
during western disturbances. Te most sensitive parameter was the base fow coefcient (AGD), with a high mean absolute
sensitivity index value. During model calibration, good values of performance indicators, i.e., R2, Nash−Sutclife efciency (NSE),
and percentage bias (PBIAS), were found for the used SPPs. For validation, GSMaP performed better with comparatively higher
values of R2 and NSE and a lower value of PBIAS. Te FDC exhibited SPPs’ excellent performance during 20% to 40%
exceedance time.

1. Introduction

A food is a frequently recurring destructive natural hazard
that humanity encounters [1]. Te adverse fooding con-
ditions have resulted in a signifcant deterioration of envi-
ronmental sustainability [2] throughout the world, wreaking
havoc with costly infrastructure, food production, and
human lives [3]. Globally, climate change and anthropogenic
activities have increased the frequency and intensity of
foods and exacerbated riverine food threats in several world
places [4]. Pakistan is located in a highly vulnerable region to
climate change where foods occur almost every year since
the last three decades [5, 6]. Te devastating food in

Pakistan’s history has emphasized the critical need for an
efcacious and steadfast food warning system [7]. Improved
food modeling and remote sensing necessitate enhanced
food analysis methodology to send timely warnings to
populations and better reservoir operations [8]. Te early
warning system in Pakistan has limited capabilities. Al-
though substantial improvements in food forecasting have
been made by utilizing the weather radar and telemetric
systems in the warning system, there is still a need for many
eforts to advance the food forecasting and warning system
[9, 10].

Precipitation is an important hydrological parameter
used for watershed management, food forecasting, and
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climatological assessment [11]. It is also the most complex
parameter because of its excessive spatiotemporal variations
that traditional rain gauges and radar networks cannot re-
cord due to their sparsity [12]. Accurate and precise pre-
cipitation data with fne spatiotemporal resolution is
important for watershed management and food analysis
[13]. It necessitates the need for such techniques that sup-
plements the rain gauge observations and provides excep-
tional precipitation data to support hydrological modeling
issues [14–16].

Remote sensing satellites use refected light to detect,
collect, measure, and record the electromagnetic energy
from the earth’s surface [17]. Advances in satellite remote
sensing have made it an excellent data source, as it can
provide metrological data to support hydrological modeling
issues [18–20]. Moreover, precipitation data obtained from
remote sensing have the potential to supplement the tra-
ditional rain gauge system [21].

Recent studies have shown that the precipitation data
estimated through satellite-based observations contributed
well to detecting rainfall distribution and severity in data-
scarce regions [22, 23]. However, the satellite products may
have errors due to indirect estimation, sampling uncertainty,
and retrieval algorithms [24–27]. Te properties of these
errors signifcantly vary in contrasting climates, storms,
seasons, and altitudes [11, 28]. Terefore, it is essential to
validate the accuracy of satellite precipitation products and
suitability for a broader range of environments. Satellite
rainfall data can be validated using statistical analysis re-
garding ground-based on gauge data and a proper hydro-
logical modeling framework [29]. Statistical analysis
determines the accuracy and consistency of satellite pre-
cipitation data, while hydrological simulation elucidates the
usefulness and application of the same datasets [30]. For
reliable hydrological modeling, a proper calibration tech-
nique, parametric sensitivity, and model capability are of
primary consideration. A suitable calibration technique is
critical because errors in model calibration and input
datasets contribute to incorrect outcomes [31]. Similarly,
parametric sensitivity produces only important parameters,
reduces the analysis time, and contributes to modeling
calibration [32].

Furthermore, the ability of the hydrological model to
simulate water fow can be examined using the FDC, “a key
runof variability signature” [33]. Te FDC ofers additional
details on the basins’ hydrological modeling and underlying
processes [34, 35]. Generally, lumped, semidistributed, and
distributed models are used for a watershed’s hydrological
modeling. Lumped models consider spatially uniform wa-
tershed characteristics. Te semidistributed model divides
the watershed into subbasins with unique hydrological re-
sponses [36]. Conversely, distributed models consider the
spatial and temporal variation of physical properties in the
watershed.Tesemodels can interpolate the rainfall data and
predict water fow at ungauged locations. However, these
models require a considerable input data set for fow
estimations [37].

Recently, studies reported that statistical assessment of
precipitation data had not yielded reliable results that

necessitated hydrological modeling. In Pakistan, limited
studies have been conducted to assess satellite precipitation
products’ efectiveness, particularly utilizing the distributed
IFAS model. In [38], the authors highlighted the scarcity of
hydrological data and the signifcance of upstream fow
boundary conditions when barrage operation standards are
unknown in the Indus River. In [31], the authors used
a lump and regional calibration approach to model the
Jhelum river basin. In [39], the authors pointed out the
difculty of food modeling at the confuence point of the
Chenab and Jhelum basins. In [38], the authors explored that
the performance of IFAS can be improved by utilizing local
soil texture data in the Indus River. In [38], the authors
evaluated the precipitation results from diferent sources
for modeling the Indus River’s middle reach. Aziz [40]
demonstrated that IFAS could be used for hydrological
modeling of the Kabul River with data scarcity. In [41], the
authors investigated that integrating satellite and gauge
rainfall data can enhance food forecasting in the
Philippines-Cagayan River catchment. In [42], the authors
recommended that improved satellite precipitation data be
used to enhance food prediction in the Dungun River basin,
Malaysia.

Assessment of SPPs with a fully distributed hydrological
model under diferent calibration scenarios is yet to be
evaluated in the study area. In addition, the representation of
hydrological signatures with diferent rainfall data sets is yet
to be explored. It mandates the investigation of satellite
precipitation data sets using a distributed hydrological
model for diferent applications. In this study, three SPP-
based datasets, i.e., IMERG, GSMaP, and CHIRPS, have
been evaluated statistically and hydrologically in a data-scar
region, i.e., the Chenab River catchment of Pakistan. Te
study utilized the IFAS model to generate streamfow for
a sparsely gauged catchment by using satellite precipitation
datasets and derived hydrological signatures.

2. Study Area and Data Description

2.1. Study Area. Te Chenab River starts in Himachal
Pradesh, India, at the confuence of the Bhaga and Chandra
streams and fows across Indian-controlled Kashmir to
Pakistan [43]. Te catchment of the Chenab River covers an
area of about 26,000 km2 up to the Marala Barrage. It
embraces 97% of this catchment area in India, while only 3%
in Pakistan up to the Marala barrage [44]. In Pakistan, there
are four streamfow gauge stations on the river, i.e., Marala
barrage, Khanki barrage, Qadirabad barrage, and Trimmu
barrage. For the present research, the study area ranged from
the Marala barrage to the Trimmu barrage (Figure 1).

Since the Chenab River and Jhelum River converged at
the Trimmu barrage, hydrological modeling at the con-
vergence point is not possible [39]. So, the study considered
the assessment of outfow at Qadir Abad barrage with an
assumption of free fow at Khanki barrage during the
monsoon fooding season.Te selected catchment is situated
between latitudes 72°–78° E and longitudes 32°–34° N,
spanning over ∼16,000 km2, with a gradient of 0.4m/km
downstream of plain areas [43].
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Te crosssectional characteristics of the basin comprise
85 km in length with an average width of 800m. Te scarcity
and sparsity of meteorological gauging stations are big con-
cerns in this region. Tere are only four rain gauges organized
by the Pakistan Meteorological Department (PMD), which do
not meet the requirements of the World Meteorological Or-
ganization (WMO) and are inadequate for hydrological
modeling for watershedmanagement.Te central hydrology of
the catchment is controlled by the summer monsoon and
winter seasons, where the summer monsoon season dominates
and has triggered signifcant fooding in this region.

2.2.DataDescription. Tedata for the research was collected
at a daily scale for the years 2015–2020 and consisted of
a gauge rainfall dataset, observed streamfow, and a satellite
precipitation dataset. In addition, the topographical data
comprises a digital elevation model, land use, and soil type.
Daily rainfall data for the selected rain gauge stations were
acquired from the PMD. Streamfow data for stream gauging
stations were collected from Pakistan’s Flood Forecasting
Division (FFD).

Satellite precipitation datasets at the daily time scale
(Table 1) consisting of GSMaP, IMERGE, and CHIRPS
were downloaded from the Japan Aerospace Exploration
Agency (JAXA) (https://sharaku.eorc.jaxa.jp/GSMaP/),
National Aeronautics and Space Administration (NASA)
(https://pmm.nasa.gov/data-access/downloads/gpm), and
the University of California, Santa Barbara’s Climate
Hazards Group (UC Santa Barbara) (https://chg.geog.
ucsb.edu/data/chirps/), respectively. GSMaP consists of
four types of products; two real-time (GSMaP-NRT,
GSMaP-Gauge, and NRT) and two postreal-time
(GSMaP-Gauge, GSMaP-MVK). In the present work,
GSMaP-Gauge NRT (version 6) was used. In order to
formulate the GSMaP-Gauge NRT precipitation pre-
dictions with a 4 h latency period, the error parameters
estimated for the postreal-time product of GSMaP-Gauge
are utilized. GSMaP-Gauge also employed a blending of
passive microwave (PMW) and infrared (IR) data along
with a unifed gauge-based analysis of the global daily
precipitation dataset from the Climate Prediction Center
(CPC) [22].
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Figure 1: Location map of the Chenab River Basin showing catchment area, upstream and downstream gauging stations of Marala Barrage.
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Similarly, Global Precipitation Measurement (GPM) is
a multinational satellite project to integrate and enhance
precipitation observations from diferent satellites. IMERG
is a GPM-based level 3 multisatellite precipitation algorithm
that incorporates all passive microwave and infrared-based
observations in the constellation. Typically, three products
of IMERG precipitation (early-run, late-run, and fnal-run)
are mostly considered. Early-run uses only forward
morphing with a 4 hour latency period; however, late-run
and fnal-run use forward and backward morphing with
latency periods of 14 hours and 3.5months, respectively
[45]. IMERG combines passive microwave, propagated pulse
width modulation, and infrared radiation-based observa-
tions by the Kalman flter method to obtain precise esti-
mation [46]. Tis research work utilized daily IMERG-
late-run version 6 for statistical and hydrological assess-
ments in the study area.

Moreover, CHIRPS is a quasi-global rainfall dataset that
consists of three types of temporal data (daily, pentanal
(5 days), and monthly) with two types of spatial resolution
(0.05°, 0.25°). Te daily data are considered real-time data
with a latency period of 2 days, while pentanal and monthly
data are considered post-real-time datasets with a 21 days
latency period. Its algorithm is based on cold cloud duration
(CCD) and ground gauge observations to approximate the
rainfall. Tis study employed the daily 0.05° grid CHIRPS
version 2.0 dataset [47].

Furthermore, digital elevation model (DEM) was used to
represent the catchment’s topography and delineate the
watershed. Te present study collected DEM and Global
Map’s land cover data (Version 2) from the International
Steering Committee for Global Mapping (ISCGM). Finally,
the soil type data based on the Digital Soil Map of the World
(DSMW), provided by the Food and Agriculture Organi-
zation (FAO), was used.

3. Research Methodology

3.1. Double Mass Curve Analysis. DMC is employed to in-
spect the consistency of the hydrologic data and to adjust the
inconsistent precipitation data. In this graphical approach,
the cumulative data of a single station is compared with the
pattern composed of cumulative data from other stations in
the area. Likewise, for the used pattern, enough gauging
stations must be included while checking the consistency of

precipitation records so that inconsistency does not sig-
nifcantly infuence the average in one of the station’ records.
If there are less than 10 stations located in a specifc region,
the consistency of each station must be examined.Terefore,
at all four gauging stations located in the study area, the
DMC technique was applied to examine the consistency of
annual rainfall data.

3.2. Evaluation Statistics. Te efcacy of selected satellite
precipitation products was assessed against four-gauge
station records with categorical and continuous metrics
on a daily, ten daily, monthly, and seasonal scales from 2015
to 2020. Diferent approaches have been used by comparing
point precipitation data observed by rain gauges with pixel
precipitation data recorded by remote sensing satellites.
Usually, such procedures are based upon the upscale in-
terpolation of point values to grid scale data and the
downscaling of grid data towards point values. Te rean-
alyzed gridded data always vary from the station observa-
tions and vice versa in several aspects. To avoid inaccuracies
caused by such upscale interpolation methods and down-
scaling, a more direct approach has been proposed and used.
In this approach, precipitation observed at stations falling
within a grid cell will be averaged to obtain an estimate for
the observed precipitation at the center of that grid cell and
then compared to the gridded value [21]. Tis approach has
been used in this study for comparison between rain gauge
and satellite data sets. For this purpose, satellite precipitation
data at the daily time scale was downloaded and then
converted into ten daily, monthly, and seasonal scales. In
selecting the tile of satellite precipitation data, PMD gauge
value recording time (8:00 am daily) was kept in focus. Event
detection capability was evaluated with categorical metrics
that include POD, FAR, and CSI. POD refects the ratio of
accurately identifed rainfall events by the satellite con-
cerning gauge rainfall data. FAR demonstrates the fraction
of rainfall events in which the satellite predicts precipitation
while the rain gauge does not observe it. CSI represents
typically the fraction of rainfall occurrence accurately rec-
ognized by the satellite. Continuous metrics measure the
quantitative diference between observed and predicted
precipitation. Tese metrics include bias, CC, and RMSE.
Bias is the mean discrepancy between satellite estimation
and rain gauge data. Depending on the quality of the rainfall
data, its value could be positive or negative, indicating

Table 1: Specifcations of the three SPPs used in the study.

Specifcation
Satellite precipitation datasets

GSMaP IMERG CHIRPS
Developer JAXA NASA USGS and CHC
Spatial resolution 0.1° 0.1° 0.05°
Temporal resolution Daily Daily Daily
Coverage 60N-60 S 90N-90 S 50N-50 S
Data availability 2014-onwards 2014-onwards 1981-onwards
Latency 4 hours 14 hours 48 hours
Frequency 1 hour 0.5 hour 24 hours
Algorithm PMW and IR GMI and DPR CCD and gauge
Version 6 6 2
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overestimation and underestimation, respectively. CC esti-
mates the degree of agreement between the satellite and rain
gauge precipitation data. RMSE depicts the mean dispersion
of predicted precipitation around the known value of gauge
observations. It is used to evaluate the precision of the
rainfall dataset [48]. From historical data, two rainy seasons,
monsoon (June to September) and westerly disturbance
(November to February), have been established in the study
area: these were considered for seasonal evaluation at the
daily scale. Tese statistical metrics are given as follows:

POD �
H

H + M
,

FAR �
F

H + F
,

CSI �
H

H + M + F
,
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N
,
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�������������
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N



,
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n
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��������������


n
i�1(Gi − Gm).

2
 �������������


n
i�1(Si − Sm).

2
 ,

(1)

where H,M, and F exhibit the number of hit, miss, and false
alarm events, while Gi and Si denote the gauge and satellite
precipitation, Gm and Sm represent the mean of gauge and
satellite precipitation data, and N indicates the total number
of events used for evaluation.

3.3. Explication of Hydrological (IFAS) Model. IFAS is
a succinct runof analysis toolkit designed for food pre-
diction in basins with insufcient hydrological and geo-
physical information in developing countries. It is
categorized as a physically distributed framework that can
integrate gauge rainfall data, satellite-based precipitation
data, evaporation data, snowmelt data, and geophysical data
to simulate river course fow. It integrates grid-based
datasets of topography, geology, and land cover to esti-
mate the parameters of the physical conditions of a basin
[49]. Te model can generate the channel network using
topographical data to defne the basin, sub-basin boundaries,
fow direction, and drainage patterns. It employs the Public
Works Research Institute Distributed Hydrological Model
(PWRI-DHM), consisting of a two- or three-tank structure
and a routing model for runof simulation. Te three-tank
structure comprises a surface, sub surface, and aquifer, while
the routing model comprises a kinematic hydraulic river
course routing tank. PWRI-DHM uses a nonlinear re-
lationship to calculate each cell’s outfow based on the tank
model philosophy, considering Manning’s equation, Darcy’s
law, and hyperbolic approximations. It uses a kinematic
wave equation to calculate the discharge in the river course
tank [38, 50, 51].

3.4. Model Formulation. For the development of the IFAS
model, the extent of the target study area was defned by
determining the latitude and longitude of the selected
catchment. Te IFAS model with a two-layered and three-
tank structure was created by customizing the digital-based
land cover, elevation, and soil type data to the appropriate
grid size. Te shapefle of the study area was imported into
the basin manager function of IFAS to defne basin and sub
basin boundaries. Te surface tank parameters were esti-
mated utilizing the land cover data, while the aquifer tank
parameters were tuned according to soil type data. Te
essential aspect of hydrological modeling in a basin is ac-
curately estimating runof and water level initial conditions
in the river course that afect the parameter optimization of
the model [31]. Te model was run six months before the
calibration of the food event to generate proper initial
conditions until hydrological equilibrium was achieved. Te
principle of equifnality dictates that many combinations of
parameters are possible that give good agreement with the
observed streamfow data. Boundary conditions are essen-
tial, especially when hydrological data is scarce and stan-
dards for barrage operations are unknown. IFAS has an
integrated water resources management (IWRM) interface
that contains various techniques to incorporate barrage
operating tasks. Te discharge fle technique was applied
using the IWRM function to give the boundary condition in
this study condition. Tis technique employed daily dis-
charge data in the CSV fle to represent barrage operations.
Marala barrage outfows were considered boundary con-
ditions in this research due to data scarcity and unknown
barrage operations upstream of the catchment.

3.5. Calibration Scenarios andModel Performance Indicators.
Since the outputs of hydrological models are rarely capable
of accurately refecting nature in its completeness, their
performance must be evaluated before they can be employed
in any decision-making process. Te IFAS is designed for
food analysis; therefore, it was calibrated and validated
utilizing precipitation data collected during the monsoon
seasons (July to October) of 2015 and 2017, considering
medium and high fooding years, respectively (PMD/FFD).
Te model was calibrated individually using CHIRPS,
GSMaP, and IMERG precipitation datasets. All datasets
were validated against each calibration scenario. Te cali-
bration of the model was achieved through a trial-and-error
process. Te model performance was evaluated using model
performance indicators (MPI), R2, NSE, and PBIAS. Te R2

is a statistical indicator representing the fraction of the
dependent variable’s variance predicted by the independent
variable. Te ideal value is 1, while a lower value than 1
reveals the variation of model output. Te model perfor-
mance with R2> 0.5 is acceptable. Likewise, the NSE is the
most often used method for determining correlation to test
the efcacy of hydrological models. Te literature reveals
a variety of acceptable, very good, and excellent value cat-
egories for NSE. Te calibration tolerance criteria are very
subjective. Calibration with NSE is generally perceived as
good if it is higher than 0.6 and excellent if it is more
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signifcant than 0.8 in the literature. Te model validation
criteria are less restrictive than the calibration levels. A value
of NSE greater than 0.5 is acceptable for validation, while
NSE greater than 0.7 is considered highly excellent. Te
PBIAS examines the average tendency of the simulated fows
to be greater or smaller than their observed fows. Te
perfect value of PBIAS is 0, and lower values represent
accurate model reproduction [52].

Tese MPIS are given as follows:

R
2

�


n
I�1(Oi − Om)(Pi − Pm)

�������������


n
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 ������������
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 ,
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n
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n
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2 ,

PBIAS � 100∗


n
i�1(Oi − Pi)


n
i�1(0i)

,

(2)

where Oi and Pi represent the observed and simulated fows,
Om and Pm are denoted by the mean values of the observed
and simulated fows, and n is the total number of events.

3.6. Implications of Sensitivity Analysis Technique. Te
sensitivity analysis helps to examine the nonlinear variation
of highly uncertain parameters in the complex models. Te
IFASmodel was investigated to determine the most sensitive
calibrating parameters severely afecting the calibrating
hydrograph. In this regard, the values of all calibrated pa-
rameters were frst increased and then decreased by 20%, one
by one of their calibrated values. C+20% is the 20 percent
change in the calibrated parameter value and is determined
using equation (3). So are the simulation results of a cali-
brated hydrograph, and S+20% is the change that occurred in
the simulation results when one of the calibrating param-
eters’ values changed to +20%. Te mean percentage change
in the simulation results by increasing or decreasing the
calibrating parameter value to 20% is called the sensitivity
index (I) and can be determined using equation (4). Te
mean absolute sensitivity index (MASI) can be determined
using equation (5).

C±20% �
S0 − S±20( 

S0
  × 100, (3)

I±20% �
C+ + C−20( 

2
, (4)

MASI �
C+20


 + C−20


 

2
. (5)

3.7. FlowAssessmentUsingHydrological Signature. Te FDC
is an infuential streamfow variability signature that de-
scribes hydrological behavior. It is the graphical represen-
tation of fows and the percentage of time that the fows
equal or surpass each other. Satellite precipitation datasets
were evaluated through the FDC, in which the observed

streamfow was taken as the baseline and the variation in
simulated fow was evaluated. Furthermore, the ability of
each precipitation dataset to generate high and medium
fows was examined through dependable fow exceedance,
where the extreme food events were represented in the
range of Q5–Q25 dependable fows, the medium fow re-
quired for irrigation was designated by Q50 dependable
fows, and Q70 dependable fows correspond to the water
availability for domestic supply.

4. Results and Discussion

4.1. Consistency of Gauge Rainfall Data. Double mass
analysis has been used to check the consistency of rainfall
data records at four stations, i.e., Gujrat, Sialkot, Sargodha,
and Jhang. Te cumulative data of a single station was
compared with the cumulative data of other stations in the
respective area.

Te straight line shows data consistency, whereas any
change in the straight line manifests a change in the data
collection method that afects the relationship. For any
station, the rise of the curve from the trend line shows that
there was more annual rainfall than in other stations. For all
gauging stations, the R2 values were 0.98 to 0.99, and the
annual rainfall data were consistent with the DMC technique
(Figure 2). where CAR� is the cumulative annual rainfall.

4.2. Statistical Evaluation of SPPs atDiferent Temporal Scales.
Tis study identifed and quantifed the errors associated
with satellite datasets. Te efcacy of selected satellite
products (CHIRPS, IMERG, and GSMaP) was assessed
statistically at daily, 10-daily, monthly, annual, and seasonal
scales using precipitation data recorded at PMD stations.

4.2.1. Daily and 10-Daily Scale. Statistical evaluations of
selected SPPs at daily and 10-daily levels are presented in
Table 2. In the case of categorical metrics, the mean POD of
GSMaP was better than CHIRPS and IMERG on both
temporal scales. Te mean POD for CHIRPS and IMERG
was lower by 50.79% and 22.22% for the daily scale with
reference to GSMaP. In terms of mean FAR values, IMERG
and GSMaP showed good agreement, and CHIRPS
underperformed. CSI gives more stable results due to the
characteristics of the blending of POD and FAR. Te per-
formance of GSMaP, IMERG, and CHIRPS was improved by
54%, 58%, and 55%, respectively, for CSI at the 10-daily
scale. Remarkably better values of categorical metrics were
given by all the used satellite products at the 10 daily time
scale as compared to the daily time scale.

In the case of continuous metrics, the mean BIAS of
GSMaP was better than the other two products at daily scale.
A slight diference was observed between the mean RMSE
values of the selected products on both temporal scales.
However, it was noted that the used SPPs showed less errors
(BIAS and RMSE) on a daily scale, compared to 10 daily.
Probably this was due to a reduction in sample size at a larger
time scale as compared to a smaller time scale. All SPPs did
not show good agreement with rain gauge data at the daily
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scale. Te correlation coefcient was low at 0.21–0.30 at the
daily scale, while it was high at 0.71–0.74 at the 10-daily scale,
showing better performance of SPPs at a larger time scale,
identical with categorical metrics. Overall, the statistical
performance of SPPs was lower on a daily scale and higher
on a 10-daily scale.

4.2.2. Monthly and Annual Scale. Figure 3 shows a monthly
comparison of IMERG, GSMaP, and CHIRPS precipitation
observations with the reference data for the entire study
period (January 2015 to December 2020). Te GSMaP
precipitation product represented the best monthly pre-
cipitation temporal pattern. However, both IMERG and
CHIRPS were also capable of representing the temporal
variability of observed precipitation over the study area,
albeit with notable overestimation. In July and August of
2016, 2017, and 2018, all precipitation data sources (gauges,
IMERG, GSMaP, and CHIRPS) revealed increased pre-
cipitation magnitude. Almost all data sources exhibited

a similar temporal pattern in monthly estimates from Jan-
uary to December 2015. All SPPs signifcantly overestimated
precipitation for July through September 2020.

On an annual time scale, a comparison was made be-
tween the rain gauge values and the used SPP values shown
in Figure 4. Te annual average precipitation in the study
area, as estimated from observations from 2015 to 2020 from
four gauging stations, was 691mm/year. It has been ob-
served that the selected satellite-based precipitation products
overestimated the annual precipitation amounts. IMERG
and GSMaP showed overestimations of 23.47% and 7.17%,
respectively, while CHIRPS showed an overestimation of
1.08% with reference to rain gauge values.

Te result showed some diference in estimating pre-
cipitation magnitudes by the IMERG products over the
Chenab River basin of Pakistan, but the performance of
CHIRPS and GSMaP encourages the utilization of SPPs in
the study area at an annual time scale. Several researchers
have also reported identical fndings in diferent regions of
the world.
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Figure 2: Consistency assessment of rain gauge data in the study area based on DMA. (a) Gujrat (GRT) Gauge Station. (b) Sargodha (SGD)
Gauge Station. (c) Jhang (JNG) Gauge Station. (d) Sialkot (SKT) Gauge Station.

Table 2: Evaluation of the used SPPs based on mean values of categorical and continuous metrics at daily and 10-daily time scales.

Assessment scale Satellite product
Categorical metrics Continuous metrics

POD FAR CSI BIAS (mm) RMSE (mm) CC

Daily scale
GSMaP 0.63 0.63 0.29 0.13 8.32 0.3
CHIRPS 0.31 0.74 0.17 0.44 9.24 0.21
IMERG 0.49 0.68 0.24 0.08 9.57 0.25

10-daily scale
GSMaP 0.97 0.14 0.83 1.3 23.75 0.71
CHIRPS 0.86 0.18 0.72 0.99 27.55 0.62
IMERG 0.97 0.16 0.82 4.42 23.35 0.74
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4.3. Evaluation of SPPs at the Seasonal Scale

4.3.1. Summer Monsoon Season. Figure 5 shows the per-
formance of SPPs through box plots during the monsoon
season for the study period.Te categorical detection indices
revealed that POD results were found in the range of 0.26 to
0.85. Te precipitation detection capability of GSMaP was
better with a POD of 0.75, followed by IMERG and CHIRPS
with values of 0.56 and 0.34, respectively. Notably, all SPPs
revealed large FAR values during the monsoon season. Te
performance of the selected SPPs was lower in terms of CSI.
Inter comparing the results of CSI revealed the better
performance of GSMaP for the monsoon period. In the case
of bias, an agreement was observed between CHIRPS and
IMERG, while GSMaP revealed better performance. Te
results of RMSE indicated that the frst quartile of daily data
was found in the range of 11 to 20mm per day for the
selected three products. Te values of the second and third
quartiles of RMSE were observed at about 11 to 17mm/day.
For the CC results, it was observed that the median values

varied from 0.21, 27, and 0.29 for CHIRPS, IMERG, and
GSMaP, respectively. Intercomparing between SPP revealed
that GSMaP depicted higher values of CC. Te statistical
performance in terms of BIAS, RMSE, and CC of the selected
products revealed that the overall efciency of GSMaP has
remained higher than the other two products in the mon-
soon season.

4.3.2. Winter Western Disturbance Season. Figure 6 shows
the performance of SPPs towards estimation of precipitation
during winter due to the western disturbance season
(westerly waves) for the entire study period based on daily
precipitation data. Te event detection capability revealed
that the POD of GSMaP was higher and better than the other
two products. Te CHIRPS underperformed in terms of
POD values. In the case of FAR, GSMaP outerperformed
than IMERG and CHIRPS. In the case of CSI, all selected
SPPs revealed better performance during western distur-
bances. In the case of bias value, IMERG overestimated the
precipitation, while CHIRPS showed excellent performance.
While considering the results of RMSE, an agreement was
observed between the median values of CHIRPS and
GSMaP. Te box plot results showed the RMSE values
ranged from 2.5 to 7.5mm/day for the selected satellite
products, and higher values were produced by the IMERG. A
strong agreement between CHIRPS and IMERG was ob-
served for the CC results. Intercomparison revealed that
SPPs showed comparatively better statistical performance
during western disturbance than monsoon season.

Conclusively, the statistical performance of GSMaP is
better than other SPPs, as also reported in [22, 53, 54], in
other regions of the world.

4.4. Parametric Sensitivity Assessment. Figure 7 shows the
sensitivity analysis of the IFAS model for surface, aquifer,
and river course tank parameters based on the mean ab-
solute sensitivity index (MASI). In the case of surface tank
parameters, the surface tank height (HFMND) and fnal
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Figure 3: Comparison among precipitation estimates by the PMD gauges and the three SPPs at the monthly time scale in the study area.
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Figure 4: Comparison among average annual precipitation esti-
mated by the PMD gauges and the three SPPs in the study area.
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Figure 5: Statistical (continuous and categorical) assessment results of the used SPPs at a seasonal scale during the summer monsoon
period. (a) POD. (b) FAR. (c) CSI. (d) BIAS. (e) RMSE. (f ) CC.

PO
D

0.65

0.55

0.45

0.35

0.25

0.15

CHIRPS
GSMAP
POD

(a)

FA
R

0.90
0.85
0.80
0.75
0.70
0.65
0.60

CHIRPS
GSMAP
FAR

(b)

CS
I

0.30

0.20

0.10

0.00
CHIRPS
GSMAP
CSI

(c)

BI
A

S

0.60

0.40

0.20

0.00

CHIRPS
GSMAP
BIAS

(d)
Figure 6: Continued.

Advances in Meteorology 9



infltration capacity of soil (SKF) are the most sensitive
parameters, with a mean absolute sensitivity index (MASI)
of 8 and 3.5, respectively. It was observed that other surface
tank parameters, i.e., SNF, HFOD, and HFID, do not sig-
nifcantly impact the calibration of the model and show
a lower mean absolute sensitivity index. Similarly, the
evaluation of aquifer tank parameters indicated that the
parameters, i.e., the efect of storage height to generate base
fow (AGD) and the initial value used for calculation
(HIGD), are the two most sensitive parameters, with MASI
values of 452 and 99, respectively. Te aquifer parameter
HIGD depicted a direct relationship with the change in
simulation results of the hydrograph, while HCGD and
AUD do not infuence the calibration of the model.

Meanwhile, the analysis of the river course tank pa-
rameters indicated that the parameters related to the co-
efcients of a crosssection of a river, i.e., RLCOF and RBS,
were sensitive to the simulated hydrograph.Te aquifer tank
parameters are more sensitive than any other tank param-
eters also reported by [55], and river tank parameters played
signifcantly less in calibration. Terefore, it is suggested to
introduce the option of actual groundwater conditions in the
IFAS model for the target area.

Te IFAS model was calibrated and validated for the
river Chenab at Qadir Abad barrage outlet for the monsoon
periods of 2015 and 2017, respectively, utilizing the selected
SPPs. In the calibration process, initially the default pa-
rameters for surface and aquifer tanks were used to run the
model. Te surface parameters were based on digital land
cover data, while the aquifer parameters were based on soil
type data for the selected basin. Te parameters were tuned
and optimized with the trial-and-error technique to bring
them into sound agreement with the observed fow data.Te
critical parameters considered for a successful calibration of
the model are the coefcient of base fow regulation (AGD)
for the aquifer tank, the surface tank height (HFMND), the
fnal infltration capacity of the soil (SKF), and the initial
height of infltration (HFOD) for the surface tank. Since
HFOD is a surface parameter, it signifcantly infuences the
adjustment of the peak of the hydrograph. Due to the surface
tank’s fve distinct feature classes, successful peak calibration
requires fne-tuning of the land cover parameter. Land cover
classes from the IFAS graphical module were used to cali-
brate the model, which was then fne-tuned using a trial-

and-error method. Another surface tank parameter
(FALFX) was tuned from 0 to 1 to control the subsurface
fow to calibrate the model. Te values of FALFX parameters
were subsequently decreased to adjust the hydrograph in the
calibration process.

Tree diferent calibration scenarios were established to
investigate the capacity of selected SPPs to calibrate the IFAS
model and to examine their efectiveness for diferent ap-
plications. In the frst scenario, the model was calibrated
utilizing the CHIRPS satellite precipitation data, and then
the validation process was completed using the GSMaP and
IMERG. For the second scenario, the IFAS model was
calibrated utilizing the GSMaP, and the model was validated
by using CHIRPS and IMERG for evaluation. In the third
scenario, the IMERG precipitation dataset was utilized to
calibrate the IFAS model and then validated against GSMaP
and CHIRPS. Calibration and validation of the IFAS model
were evaluated using the model performance indicators, i.e.,
NSE, R2, and PBIAS. Te model’s performance on each
scenario and comparison among the performance of the
three scenarios are presented in Table 3.

For the frst calibration scenario, the statistical perfor-
mance indicators R2, NSE, and PBIAS were 0.89, 0.86, and
−0.16, respectively. Te intercomparison results of model
validation for this scenario revealed the better performance
of the GSMaP dataset with R2, NSE, and PBIAS values of
0.85, 0.83, and 0.16, respectively. Te IMERG and CHIRPS
datasets showed slightly lower performance during the
model validation process. From the graphical presentation
of scenario 1 in Figure 8, some variations in simulating low
and high fows were observed by the SPPs.

For the second calibration scenario, the statistical per-
formance indicators (R2, NSE, and PBIAS) were 0.97, 0.96,
and −0.03, respectively. According to the calibration criteria,
this scenario displayed excellent performance, demon-
strating that GSMaP precipitation data resulted in a robust
and trustworthy testing model with utility and accuracy that
could be used to check and compare the results produced
from the IMERG and CHIRPS precipitation models.
Comparison of model validation results revealed that the
GSMaP dataset outperformed the other datasets, with R2,
NSE, and PBIAS values of 0.9, 0.89, and 0.14, respectively. A
strong agreement was observed between IMERG and
CHIRPS-based simulated fows. Te ability of the GSMaP
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Figure 6: Statistical (continuous and categorical) assessment results of the used SPPs at seasonal scale during the winter westerly wave
period. (a) POD. (b) FAR. (c) CSI. (d) BIAS. (e) RMSE. (f ) CC.
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Table 3: Performance evaluation comparison among the used calibration and validation scenarios.

Year
Scenario 1 Scenario 2 Scenario 3

CHIRPS rainfall model GSMaP rainfall model IMERG rainfall model
SPP NSE PBIAS R2 SPP NSE PBIAS R2 SPP NSE PBIAS R2

Calibrated 2015 CHIRPS 0.86 −0.16 0.89 GSMaP 0.96 −0.03 0.97 IMERG 0.91 −0.11 0.92
Validated 2017 CHIRPS 0.78 0.17 0.83 GSMaP 0.80 0.25 0.89 CHIRPS 0.80 0.17 0.85
Validated 2017 GSMaP 0.80 0.16 0.84 IMERG 0.78 0.16 0.84 GSMaP 0.82 0.16 0.86
Validated 2017 IMERG 0.79 0.15 0.82 CHIRPS 0.77 0.26 0.88 IMERG 0.81 0.16 0.85
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Figure 8: Continued.
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dataset to optimize the parameters and calibrate the model
was better when compared with the CHIRPS precipitation
model. A graphical presentation of scenario 2 is shown in
Figure 9. It depicted a trend identical to scenario 1, but a bit
improved simulation was observed in predicting low and
high fows.

For the third calibration scenario, the statistical per-
formance indicators R2, NSE, and PBIAS for model cali-
bration were observed at 0.92, 0.91, and −0.11, respectively,
which exhibited excellent performance of this model
according to the calibration rating described by [52]. Te R2

of the GSMaP, IMERG, and CHIRPS datasets were 0.87,
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Figure 8: Graphical representations of calibration and validation scenario 1. (a) Calibration-CHIRP. (b) Validation CHIRPS. (c) Validation
GSMaP. (d) Validation IMERG.
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Figure 9: Graphical representations of calibration and validation scenario 2. (a) Calibration-GSMaP. (b) Validation CHIRPS. (c) Validation
IMERG. (d) Validation GSMaP.
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0.85, and 0.84, respectively, which depicts better GSMaP
product performance for the third scenario also. A graphical
presentation of this scenario, Figure 10, shows identical
performance in forecasting low and high fows.

It was noted that GSMaP outerperformed in terms of
parameter optimization and fne-tuning of the IFAS model
during the calibration procedure with R2, NSE, and PBIAS

values of 0.97, 0.96, and −0.03, respectively. For PBIAS
evaluation, GSMaP produced a lower value of −0.03,
compared to the other two products, CHIRPS and IMERG
simulated moderately higher values of −0.11 and −0.16,
respectively. IMERG and CHIRPS were rated in the second
and third positions for performance evaluation of model
calibration. In the case of the application and validation of
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Figure 10: Graphical representations of calibration and validation scenario 3. (a) Calibration-IMERG. (b) Validation CHIRPS. (c)
Validation GSMaP. (d) Validation CHIRPS.
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Figure 11: Assessment of the used SPPs in terms of hydraulic
signature through FDC.
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the hydrological model for the high monsoon food of 2017,
GSMaP outperformed in each scenario. Overall, the hy-
drological performance of GSMaP was more satisfactory
than that of IMERG and CHIRPS, IMERG was ranked
second, while the CHIRPS exhibited a lower performance.

4.5. Hydrological Signature-Based Assessment. Te hydro-
logical performance of all selected satellite precipitation
datasets was evaluated through FDC, in which daily ob-
served stream fows were taken as the baseline and the
variation in simulated fow was determined.Te FDC results
displayed that the selected satellite dataset has relatively
inferior performance in capturing extreme fooding con-
ditions. While considering the medium fow, all datasets
showed excellent performance in the range of 20% to 40%
exceedance time, as displayed in Figure 11.

Similarly, these precipitation datasets do not yield sat-
isfactory results for the simulation of low fows. For all
precipitation datasets at the catchment outlet stage, an
exceedance fow analysis was used to estimate the de-
pendable fow exceedance of Q5, Q10, Q25, Q50, and Q70.
Q5 denotes a fow that exceeds 5% of the analysis time, and
so forth. Extreme food events are revealed by 5% and 10%
stream fows, while 50% dependability designates the me-
dian fow, 70% dependable fow resembles the water
availability for agriculture, and higher dependable fows
correspond to the water availability for domestic supplies.
Te performances of SPPs to generate high, medium, and
low fows was analyzed through these dependable fows. It
was found that all SPPs data sets’ performance was lower,
corresponding to Q5 and Q70. Te SPPs datasets can
generate medium fow in the range of Q25-Q50 Figure 12.

5. Conclusion

Te present study evaluated three high-resolution multi-
satellite precipitation estimation products statistically and
hydrologically in the Chenab River catchment. Te con-
sistency of rain gauge data observed by PMD was examined
by double mass analysis. Numerous statistical indicators
were applied at daily, monthly, and seasonal scales to detect
and quantify errors associated with these products. Tree
diferent calibration scenarios were established for the hy-
drological assessment to analyze the satellite precipitation
datasets. A sensitivity analysis was performed to study the
most sensitive parameters of the distributed IFAS model.
Te hydrological signature was used to assess the potential of
satellite products to generate high, medium, and low fows.
Te existence of about 62 percent of the catchment area in
Indian-held Kashmir and the occurrence of only four
gauging stations in the rest of the catchment area are the
major limitations of the study towards hydrological and
statistical assessment of the satellite products in the study
area, respectively. From the fndings of this study, it was
observed as follows:

(1) PMD rain gauge-based precipitation data are con-
sistent and can be used for the assessment of satellite-
based precipitation datasets.

(2) Statistical evaluation revealed that the efcacy of
GSMaP has been better, while CHIRPS showedmore
biases. Te performance of SPPs improved at 10-
daily and monthly time scales than at the daily time
scale. Higher values of uncertainties (bias and
RMSE) were observed during the monsoon season
than during the western disturbances. Missed and
false alarms were the main errors associated with
SPPs due to spatial mobility and the sudden bursting
of clouds, specifcally during the monsoon season.

(3) Te stativity analysis revealed that the aquifer tank
parameters were found to be the most sensitive. Te
base fow coefcient (AGD) was found to be the most
sensitive parameter in calibrating the IFAS model to
simulate fows using SPPs.

(4) Te model calibration and validation scenarios in-
dicated that the GSMaP precipitation dataset has
better capability to calibrate and validate the model
compared to IMERG and CHIRPS, with the highest
R2, NSE and lower PBIAS values. It was also observed
that the SPPs have relatively poor performance in
capturing extreme fooding events. While consid-
ering the medium fows, in the range of 20%–40%
exceedance time, all datasets showed excellent
performance.

Findings of this study suggested that direct utilizations of
satellite-based precipitation products were not promising at
daily scales and bias correction is recommended. For food
modeling, the hydrological IFAS model should be calibrated
based on peak fow, considering the combination of sta-
tistical and error indicators. Further studies may be carried
out to assess the efectiveness of the available sensitivity
analysis techniques in this study area.

Acronyms

SPPs: Satellite precipitation products
IMERG: Integrated Multi-satellite Retrieval for GPM
GSMaP: Global Satellite Mapping of Precipitation
CHIRPS: Climate Hazards Group Infrared Precipitation

with Station
DMC: Double mass curve
POD: Probability of detection
CSI: Critical success index
FAR: False alarm ratio
CC: Correlation coefcient
RMSE: Root mean square error
B: Bias
IFAS: Integrated Flood Analysis System
FDC: Flow duration curve
R2: Coefcient of determination
AGD: Base fow coefcient
NSE: Nash−Sutclife efciency
PBIAS: Percentage bias
PMD: Pakistan Metrological Department
WMO: World Meteorological Organization
FFD: Flood forecasting division
JAXA: Japan Aerospace Exploration Agency
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NASA: National Aeronautics and Space Administration
PMW: Passive microwave
IR: Infrared
CPC: Climate prediction center
GPM: Global precipitation measurement
CCD: Cold cloud duration
DEM: Digital elevation model
ISCGM: International Steering Committee for Global

Mapping
DSMW: Digital soil map of the world
FAO: Food and Agriculture Organization
PWRI-
DHM:

Public Works Research Institute distributed
hydrological model

IWRM: Integrated water resources management
MPIs: Model performance indicators.
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