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Te Didesa catchment, which is the second largest subbasin of the Abay basin, signifcantly contributes to the Blue Nile’s outfow.
Understanding the dynamics of water availability under the changing climate in such a basin assists in the proper planning of land
use and other development activities. Tis study presents changes in climatic elements such as rainfall, temperature, and
evapotranspiration using observation data and regional climate models (RCMs) under two representative concentration pathways
(RCPs) for three future periods. We use a calibrated hydrological model to further assess climate change’s efects on streamfow.
We select three RCMs and their ensemble’s mean by evaluating their performance with respect to observations. We apply the
modifed Mann–Kendall test to detect trends in each dataset. Te result shows that annual mean maximum and minimum
temperatures increase in the catchment for the 2021–2040, 2041–2070, and 2071–2100 periods as compared to baseline
(1989–2018) under both RCP4.5 and RCP8.5 scenarios. Annual mean maximum temperature and potential evapotranspiration
experienced a signifcant decreasing trend during the year from 1989 to 2018. Furthermore, there was an increasing trend in
annual rainfall from 1989 to 2018, which could be related to the cooling of sea surface temperature over the equatorial Pacifc. We
detect an increasing trend in temperature in both scenarios and all periods; however, no clear trend pattern is found in rainfall.Te
result from hydrological model simulations reveals that the meanmonthly streamfow slightly increases in the winter season while
it decreases during the main rainy season. Further study of detailed weather systems, which afect the subbasin’s climate, is
recommended.

1. Introduction

About half of the global population is experiencing severe
water scarcity due to climatic and nonclimatic factors for
some part of the year. Te hydrological cycle is intensifed
due to anthropogenic climate change, which is afecting the
physical aspects of water security. Tis has exacerbated
water-related vulnerabilities caused by other socioeconomic
factors [1]. Te recent drying trends since the 1980s match
the warming observed across the continent of Africa [2],
including Ethiopia [3].

Te change in climate is a major challenge that afects the
hydrological cycle. Besides, the Intergovernmental Panel on
Climate Change (IPCC) assessment report shows that the

global average temperature would rise with an increasing
total carbon dioxide concentration. Furthermore, climate
change induces changes in tributary fow characteristics and
changes in rainfall patterns, afecting the interception
process and changing the evapotranspiration process [4, 5].

Developing countries are likely among the most vul-
nerable to the impacts of the changing climate due to the lack
of economic development and institutional capacity [6]. Te
impacts of climate change have the potential to weaken and
even reverse the progress made in improving the socio-
economic well-being of African countries [7].

Ethiopia and other developing nations will be more
susceptible to the efects of climate change. A large part of
the country is arid and semiarid, making it highly prone to
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drought and desertifcation. Terefore, the country should
be concerned about climate change and its efects. According
to Wara et al. [8], the change in climate is projected to cause
more frequent and intense ENSO events, leading to wide-
spread drought in the area. Hence, assessing vulnerability to
climate change impact and preparing adaptation options as
a part of the national program are very crucial [9].

Despite the observed drying trends and frequent
droughts in recent years in Ethiopia (e.g., [3, 10], and [11]),
only a few studies assessed the impact on water availability in
watersheds which is caused by climate change. In addition,
there has been some inconsistency in the fndings of these
investigations. For example, Dile et al. [12] and Adem et al.
[13] projected an increase in streamfow at the end of the 21st
century in the Gilgel Abay catchment, Abay basin. On the
contrary, Setegn et al. [14] projected a decrease in the
streamfow of the Lake Tana catchment for the same period.
Te Didesa catchment is a subbasin of the Abay basin having
the second largest area and contributing about 10.9% to the
outfow of the Blue Nile River. Terefore, a detailed analysis
of the impact of climate change using recent climate models
and appropriate hydrological models is essential.

Many earlier researchers used diferent climate models
to understand climate change’s efects on surface water
availability both for the baseline and future periods [15]. Te
diference in results of the climate change’s efects on
streamfow for the same basin is due to the choice of the
general circulation model (GCM) and downscaling tech-
nique, and the selection of the hydrological model [16].
Terefore, the selection of recently developed climate
models with appropriate downscaling techniques is vital.

Te impact of climate change can vary in diferent
catchments with relatively small areas due to local climate
and catchment characteristics. Altered frequency and
distribution of rainfall events, with associated conse-
quences, have efects on discharge rates and streamfow
characteristics of the river basin [17]. Climate change
impact includes changes in the magnitude of runof,
changes in the frequency of foods and droughts, rainfall
patterns, extreme weather events, and the amount of
surface water availability [18].

Tis study aims to assess the change in climatic elements
such as rainfall, temperature, and potential evapotranspi-
ration and evaluate their impacts on streamfow in current
and projected future periods in the Didesa catchment.
Terefore, we identify changes and trends from observations
and modelling. Tis study strongly assists in planning land
use and other development activities in a way that fts the
dynamism of water availability under the changing climate.

2. Materials and Methods

2.1. Study Area. Te study is carried out in the Didesa
catchment, which is part of the Abay basin and lies between
latitudes of 7.7°N and 10°N and longitudes of 35.5°E and
37.3°E. Its catchment area is 17,645.5 km2, with an average
length of 1368.3 km and a width of 1453.1 km. Te elevation
varies between 852m and 3041m above mean sea level
(amsl), with both fat and steep slopes (Figure 1). Te

catchment is characterized by warm, humid tropics, with
a long rainy season (locally known as Kiremt) lasting from
June to September with an average annual rainfall between
1450mm and 2050mm.

Te dry season, which is locally called Bega, extends from
November to February. Te annual maximum and mini-
mum temperatures in the subbasin vary between 21°C to
30°C and 10°C to 20°C, respectively, during the period of
1989–2018. Annual mean rainfall peaks in the months of
June to September, which is the main rainy season for the
area (Figure 2).

From a hydrogeological point of view, sedimentary
rocks are exposed to the land surface due to regional
tectonic activity in the Didesa catchment. Alluvial soils and
eluvial soils are developed from granitoid, basalt, Mesozoic
sandstone, and Paleozoic sediments in the catchment. Te
yields of the wells in these aquifers range from 0.5 to about
10 l/s [19].

2.2. Data. We obtain daily rainfall and maximum and
minimum temperature data from the Ethiopian Meteorol-
ogy Institute (EMI). Flow, digital elevation model (DEM),
land use land cover, and soil data are acquired from the
Ministry of Water and Energy, Ethiopia. We get RCMs
output for historical and projected future climate under two
diferent RCPs (RCP4.5 and RCP8.5) from the Coordinated
Regional Climate Downscaling Experiment (CORDEX)
project (https://esgf-node.llnl.gov/search/esgf-llnl/). Tis
study uses Climate Limited-Area Modelling Community
(CCML-4), Regional Atmospheric Climate Model (RAC-
MO22T), Max Planck Institute Regional Model
(REMO2009), and their Ensemble’s mean. Te periods are
divided into historical (1989–2018) and three projected
future periods: near-term (2021–2040), mid-term
(2041–2070), and long-term (2071–2100).

2.3. Methods. We use the physically based soil and water
assessment tool (SWAT) model [20] to determine climate
change’s efects on streamfow due to its simple and powerful
tools for modelling [21]. We employ measured fow from
2000 to 2013 years for model calibration and validation. Te
soil, land use/land cover, DEM, and climate data are inputs
to the model for simulating catchment surface runof.

During the data preparation phase, we convert the point
rainfall to its corresponding area estimate using theTiessen
polygon method [22]:

R � 
n

i�1

Ri × Ai

A
, (1)

where Ri is the rainfall measure at a station i, Ai is the area of
subcatchment covered by a station i, and A is the total area of
the catchment.

We compute the potential evapotranspiration using the
Hargreaves method as in Droogers and Allen [23] and
Byakatonda et al. [24]:

ET0 � 0.000938Ra Tmean + 17.8( 
����������
Tmax − Tmin


, (2)
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where Tmean is the daily mean temperature in °C, Tmax is the
daily maximum temperature in °C, Tmin is the daily mini-
mum temperature in °C, and Ra is the extraterrestrial

radiation (in MJ·m− 2·day− 1). Te mean extraterrestrial ra-
diation (Ra) is estimated from the latitude of the station and
the month of the year.
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Figure 1: Didesa catchment: (a) its location with respect to Ethiopian river basins and (b) its elevation and meteorological stations
distribution.
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Figure 2: Climate of the Didesa catchment averaged over the period of 1989–2018: (a) temperature climatology and (b) precipitation
climatology for the catchment.
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Outputs of regional climate models cannot be directly
used for impact assessment as the computed variables may
difer systematically from the observed ones [25, 26].
Terefore, we apply bias corrections to compensate for any
tendency to overestimate or underestimate the downscaled
variables. We use power transformation for rainfall bias
correction. It is a nonlinear method, which corrects both the
mean and variance of rainfall as explained by Terink et al.
[27]. We apply the correction method by comparing the
daily observed rainfall at each station with the outputs of
RCMs. On the other hand, we apply the variance scaling
method to correct biases in temperature [28]. Te tem-
peratures are bias corrected by the following equation:

Tcorr � Tobs +
σTobs

σTrcm
Trcm − Trcm( , (3)

where Tcorr is the bias-corrected temperature; Trcm is the raw
temperature from the RCM model; σTobs and σTrcm are the
standard deviations of the observed and the RCM model
output temperature while Tobs and Trcm are the mean
temperatures from the observation and the RCM model,
respectively.

We evaluate the RCMs using statistical measures such as
bias, root mean squared error (RMSE), and coefcient of
variation (CV) and their performance to reproduce the
annual cycle of rainfall. Te equations of these statistical
measures are as follows:

Bias �
(M)

(O)
, (4)

where M is the model output, O is observation, and N is
number of observation.

A value of 1 is the perfect score. A bias value above/below
1 indicates an aggregate model overestimation/
underestimation.

RMSE �

����������

(O − M)
2

N



, (5)

CV �
σ
x

× 100%, (6)

where σ is the standard deviation and x is the mean of the
data under consideration.

We employ the modifed nonparametric MK trend test
to assess trends in diferent climatic elements. Studies widely
use the MK trend test as it does not require the data to be
normally distributed [24]. It requires the time series data to
be serially independent [29]. Tus, an autocorrelation test is
applied to determine the presence of serial correlations in
the time series data. To remove autocorrelation from time
series data, trend-free prewhitening (TFPW), the most used
technique, was used [29, 30]. Te computation of MK
statistics uses S statistics. Te S statistics is given by the
following equation:

S � 
n− 1

i�1


n

j�i+1
sgn Xj − Xi , (7)

where Xj and Xi are the time series observations in chro-
nological order, and n is the length of the time series, while
sgn is given by the following equation:

sgn Xj − Xi  �

+1 if Xj − Xi > 0,

0 if Xj − Xi  � 0,

− 1 if Xj − Xi < 0.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(8)

Positive values of the S statistic indicate an increasing
trend while negative values indicate a decreasing trend [24].
Te variance (V) of S is calculated as follows:

V(S) �
1
18

n(n − 1)(2n + 5) − 

q

p�1
tp tp − 1  2tp + 5 ⎡⎢⎢⎣ ⎤⎥⎥⎦,

(9)

where n is the length of time series, tp is the number of ties
for pth value, and q is the number of tied values [29]. Te
standardized test statistics Z is then computed using S and
the variance V(S) as given by equation 19:

Z �

S − 1
�����
V(S)

 if S> 0,

0 if S � 0,

S + 1
�����
V(S)

 if S< 0.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(10)

Positive Z values designate an increasing trend in the
time series whereas negative Z values indicate a negative
trend. Given a confdence level, α a statistically signifcant
trend is said to be existing in a time series data if
|Z|>Z1− (α/2).Te level of signifcance employed in this study
is α� 0.05, and from the standard normal table, the value of
Z1− (α/2) at the level of signifcance α� 0.05 is 1.96.

Tis study classifes the catchment into multiple sub-
watersheds, which are further subdivided into a hydrologic
response unit (HRU) with unique characteristics of land use
management, topography, and soil (Figure 3). SWAT sim-
ulates hydrological parameters at each HRU using the water
balance equation:

SWt � SWo + 
t

i�1
Rday − Qsurf − Ea − Wseep − Qgw ,

(11)

where SWo and SWt denote the initial and fnal volumes of
water in the soil (mm); Rday, Qsurf , Ea, Wseep, and Qgw are the
rainfall amounts, surface runof amount, evapotranspiration
amount, infltration amount, and return fow amount on day
i (mm) in respective order; and t is the time in days. By using
the Soil Conservation Service-Curve Number (SCS CN)
method [31], SWAT can be used to evaluate the relative
impact of climate change at the catchment level [32, 33].

Te subbasin runof is routed to obtain the total runof
for the entire basin. Surface runof is computed by using SCS
CN as in the following equation:
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Qsurf �
Rday − 0.2S 

2

Rday + 0.8S 
, (12)

where Qsurf is the daily surface runof (mm), Rda y is the
rainfall depth for the day (mm), and S is the retention
parameter (mm).Te retention parameter (S) is calculated as
in the following equation:

S � 25.4
1000
CN

− 10 , (13)

where S is drainable volume of soil water per unit area of
saturated thickness (mm/day), and CN is curve number.

Water yield is the aggregate sum of water leaving the
HRU and entering the main channel during the time step
[34]. Te total water yield is computed as follows:

Wyld � Qsurf + Qgw + Qlat − Tloss, (14)

where Wyld is the measure of water yield (mm), Qsurf is the
surface runof (mm), Qlat is the lateral fow contribution to
streamfow (mm), Qgw is the groundwater contribution to

streamfow (mm), and Tloss is the transmission losses (mm)
from tributary in the HRU by means of transmission
through the bed.

After having all the necessary spatiotemporal data re-
quired by the SWAT, we quantify model sensitivity to pa-
rameter changes, as it is a vital step before model calibration.
Hydrological parameters are selected for sensitivity analysis
for the simulation of streamfow with default lower and
upper bound parameter values. In addition to hydrological
parameters, the observed monthly fow values are used.

Te SWAT model is calibrated and validated with the
streamfow observed at the gauging station during the baseline
period. We use two-thirds of the data for calibration
(2000–2009) and one-third for validation (2010–2013). During
the calibration process, the model parameters are subjected to
adjustments to obtain model results that correspond better to
the measured data sets. Calibration and validation stages are
done under SWAT-CUP software support.

We evaluate the model performance using the coefcient
of determination (R2), the Nash–Sutclife efciency (NSE),
and the percent bias (PBIAS), which are time series-based
metrics during the calibration and validation periods.

8°
0'0

''N
9°

0'0
''N

8°
0'0

''N
9°

0'0
''N

36°0'0''E 37°0'0''E

0 20 40 80 Kilometers

N

Met. station

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

ARJO

GIMBIE
DIDESSA

NEKEMT

Bedele

36°0'0''E 37°0'0''E

Sub-Basin

Figure 3: Subbasin delineation of the Didesa catchment.
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n
i�1 Qobs − Qobs(  Qsim − Qsim(  
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n
i�n Qobs − Qobs( 
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n
i�n Qsim − Qsim( 

2 ,

NSE � 1 −


n
i�1 Qobs − Qsim( 

2


n
i�1 Qobs − Qobs( 

2 ,

PBIAS �


n
i�1 Qobs − Qsim( 


n
i�1Qobs

× 100%,

(15)

where Qobs and Qsim represent observation and simulated
discharge, respectively,

3. Results and Discussion

3.1. Evaluation of Climate Model Performance. We present
the evaluation results of the climate models’ outputs with
respect to the observed data in Table 1 and Figure 4. All
RCMs reasonably predicted themonthly rainfall distribution
patterns with gauged rainfall in the catchment with only
a slight underestimation of the observation (Figure 4). We
also use the models’ ability to reproduce the long-termmean
annual rainfall (annual RF) of the catchment for the best
model selection.Te observed mean annual rainfall has been
1977.7mm, while it is 1775.1mm, 1794.9mm, 1807.4mm,
and 1852.2mm for the REMO2009, RACMO22T, the en-
semble’s mean, and CCML-4, respectively (Table 1). Te
comparison shows good agreement with a slight un-
derestimation. Te accuracy of the models is not the same in
reproducing the rainfall, with CCML-4 performing best
(BIAS� − 6.3%) while REMO2009 performs the worst
(BIAS� − 10.2%). Te result indicates that the degree of
rainfall variability is almost similar in all models; CCML-4
model (CV� 10.8%), RACMO22Tmodel (CV� 11.2%), and
REMO2009 model (CV� 13.0%). As there are some dif-
ferences between model output and observation, the biases
should be corrected before applying for impact assessment.
Tese climate models were reported to perform well in the
wide area of East Africa in a previous study [35].

3.2. Trends in Observed Data. In the Mann–Kendall trend
test, when P< α (α� 0.05 in this study), the null hypothesis
(Ho) is rejected; this indicates the existence of a trend in the
data under consideration. However, when P> α, the null
hypothesis is accepted, which shows that the trend is in-
signifcant. Sen’s slope is employed to compute the mag-
nitude of the trend, where positive and negative values
indicate increasing and decreasing trends, respectively. Te
trends are signifcant when they are associated with P values
less than 0.05.

Te trend analysis for the annual total rainfall amount
indicates an increasing value of 7.3mm per year from 1989
to 2018 (Figure 5(c)). Te MK test statistics (S) indicates that
there is a nonsignifcant increasing trend in rainfall at
a signifcance level of 0.05 with a P value of 0.54 (Fig-
ure 5(c)). Te increasing trend could be related to the
cooling of sea surface temperature over the equatorial Pa-
cifc, which is reported to have a positive impact in

increasing rainfall amount over west Ethiopia [36, 37]. Diro
et al. [36] found that a warm (cold) sea surface temperature
anomaly over the equatorial Pacifc is associated with rainfall
defcit (excess) in western Ethiopia during the main rainy
season. Similarly, Dufera et al. [37] indicated that there is
a negative correlation between sea surface temperature over
the equatorial Pacifc and drought magnitudes in western
Ethiopia during the same season. However, further in-
vestigation of the weather systems is required to fully address
the cause of the current wetting trend in the subbasin.

Mean annual maximum temperature shows a signifcant
decreasing trend with a negative Sen’s slope value and a P

value of 0.02 at a signifcance level of 0.05 (Figure 5(a)) over
the period from 1989 to 2018. In addition, the minimum
temperature shows a nonsignifcant decreasing trend over
the same period (Figure 5(b)). Te statistics for the trend of
minimum temperature is − 0.19, 0.30, and − 0.02 for Kendall’s
tau, P value, and Sen’s slope, respectively. Te weather
systems afecting the area’s climate should be further in-
vestigated in future studies.

3.3. Trends in Projected Climate. As indicated in Table 2, the
trend in annual rainfall is not clear. Te selected models do
not consistently show similar trend patterns. Furthermore,
the identifed trends are insignifcant in both scenarios and
all periods except RACMO22T under RCP8.5 in the near-
term period. Te RACMO22T shows an increasing signif-
cant trend under the mentioned scenario and period.

Te mean monthly changes in maximum temperature
for the future period are shown in Table 3. Te trend in
maximum temperature shows an increasing trend in both
scenarios and all future periods. Te mean minimum
temperature also shows similar trend patterns (Table 4). An
increasing rate of evapotranspiration, a decreasing avail-
ability of water resources, and an increasing water demand
are expected when the temperature is increasing [38].

3.4. Future Climate Change Patterns. Te projected climate
can be used as input for process-based hydrologic models to
assess the impact of climate change on streamfow. We
compute the projected change in temperature, rainfall, and
potential evapotranspiration under RCP4.5 and RCP8.5
scenarios in three diferent future times. In the near-term
period, the projected change of rainfall from CCLM-4 and
REMO2009 indicates a decrease in the amount for themonths
from February to December under the RCP4.5 scenario
(Figure 6). However, it is not consistent under RCP 8.5.

Te projected change of mean monthly maximum
temperature is 0.53°C (2021–2040), 1.9°C (2041–2070), and
2.6°C (2071–2100) for RCP4.5, and it is 1.61°C (2021–2040),
1.8°C (2041–2070), and 2°C (2071–2100) for RCP8.5. Te
mean minimum temperature change per annum over the
catchment for the short-term, mid-term, and long-term
periods is 0.93°C, 1.8°C, and 2°C, respectively, under the
RCP4.5 whereas it is 1.05°C, 1.5°C, and 2.4°C under RCP8.5.
Te seasonal mean maximum temperature changes are
0.76°C, 1.48°C, and 0.53°C for Bega, Belg, and Kiremt sea-
sons, respectively.
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Te mean change of potential evapotranspiration is
mostly positive ranging from 5 to 80 percent in both sce-
narios and all time periods except some cases during the
months of January to May, where the change in potential
temperature reaches up to 40 percent (Figure 7). Tis could
be related to the increase in temperature.

3.5. Sensitivity Parameters Analysis. In the analysis, we
identify the sensitive parameters of the streamfow.We select
parameters for sensitivity analysis to simulate streamfow
with default lower and upper bound parameter values as in
[39]. Te parameters are ranked according to the magnitude
of P value and the corresponding t-stat (Table 5). For the
global sensitivity analysis, curve number (CN2), base fow
alpha factor (ALPHA_BF), groundwater delay time
(GW_DELAY), threshold depth of water in the shallow
aquifer required for return fow to occur (GWQMN.gw),
groundwater re-evaporation coefcient (GW-REVAP.gw),
saturated hydraulic conductivity (SOIL_K), soil evaporation
compensation factor (ESCO), depth from the soil surface to
the bottom of layer (SOIL_Z), deep aquifer percolation
fraction (RCHRG_DP), initial depth water in the aquifer
(SHALLST_N), manning roughness value for the main
channel (CH_N2), channel efective hydraulic conductivity
(CH_K2), threshold depth of water in the shallow aquifer for
“revap” to occur (REVAPMN.gH), and maximum canopy
storage (CANMX) are highly sensitive parameters and
ranked from 1 up to 15, respectively. Terefore, curve
number (CV), base fow alpha factor (ALPHA_BF), and

GW_DELAY are the most sensitive parameters. Te t-stat
provides a measure of the sensitivity parameters (large
absolute values are more sensitive), whereas the P value
indicates the signifcance of the sensitivity. Te P value
closer to zero means the parameters have more signifcance.

3.6. Calibration. Te parameter ranges are modifed auto-
matically based on the correlation between the simulated
and observed streamfow while ensuring sufcient param-
eter space as well as fast convergence. After automatically
calibrating, the fnal results of the calibration are obtained by
multiplying, adding, or subtracting the default values by
a necessary factor guided by a manual calibration helper.Te
values of the parameters are varied iteratively within the
allowable range until the simulated fow matches the ob-
served streamfow. Figure 8 compares the observed and
simulated fow during calibration. At the end of the iteration,
the model performance efciency results in R2, NSE, and
PBIAS values of 0.74, 0.71, and 14.5, respectively.

3.7. Validation. After calibrating and getting acceptable
values of R2, NSE, and PBIAS, validation of the simulated
streamfow without further adjustment of the calibrated
parameters is performed. Te results of the validation show
good agreement between the simulated and measured
monthly fow with the R2 value of 0.70, NSE value of 0.67,
and PBIAS value of − 4.0. Te monthly validated result of
streamfow is presented in Figure 9.

Table 1: Climate models’ performance evaluation.

Observed CCML-4 RACMO22T REMO2009 Ensemble’s mean
Annual RF (mm) 1977.7 1852.2 1794.9 1775.1 1807.4
Bias (%) . . . − 6.3 − 9.2 − 10.2 − 8.6
RMSE (mm/yr) . . . 33.5 48.9 54.2 45.5
Standard deviation 598.9 199.5 200.4 231.4 210.5
CV (%) 30.3 10.8 11.2 13.0 11.6
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Figure 4: Comparison of mean annual cycle rainfall between models and observation.
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Figure 5: Trends in observed data of all stations in the Didesa catchment (1989–2018): (a) maximum temperature, (b) minimum
temperature, and (c) rainfall. Temperatures are presented as annual mean maximum temperature and annual mean minimum temperature
while rainfall is presented as annual total rainfall.
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Te model performance result shows a good correlation
between the measured and simulated streamfow. Moriasi
et al. [40] recommend that model performance can be
considered satisfactory for fow simulations if monthly
R2> 0.60, NSE >0.50, and PBIAS ≤ ±15% for watershed-scale
models. Te performance of the model is presented in
Table 6.

3.8. Streamfow under Current Climate. Figure 10 shows the
monthly, seasonal, and annual mean streamfow
(2000–2013). August and September are months with high
rainfall and show peak streamfow with values of 299m3/s
and 306m3/s, respectively (Figure 10(a)). Summer is the
longest rainy season in the catchment with a maximum

mean seasonal streamfow rate of 204m3/s followed by the
winter and spring (Figure 10(b)).

3.9. Climate Change Efects on Water Balance Components.
Te mean monthly rainfall and evapotranspiration in the
Didesa catchment during the base period are 156mm and
113mm, respectively (Figure 11). Te surface runof
amount, lateral fow, groundwater contribution, and
transmission loss are about 60mm, 10mm, 45mm, and
7mm, respectively, for the catchment resulting in a total
water yield of 108mm.

Under a short-term period, the change in average
annual components of water balance including rainfall,
groundwater fow, and potential evapotranspiration

Table 2: Mann–Kendall trend test for annual rainfall. S is Sen’s slope, P value (two-tailed) test statistics. A signifcance level, α� 0.05, is used.
Te (− ) sign represents a decreasing trend.

Models
RCP 4.5 RCP 8.5

Near-term Mid-term Long-term Near-term Mid-term Long-term
P S P S P S P S P S P S

CCLM-4 0.5 − 3.1 1.0 0.1 0.2 − 5.6 0.6 − 2.7 0.1 − 9.0 0.2 − 5.3
RACMO22T 0.1 8.7 0.4 − 4.2 0.5 6.5 0.01 10.9 0.1 9.7 0.2 8.7
REMO2009 0.1 5.7 0.4 4.1 0.6 4.5 0.9 0.2 0.5 4.5 0.1 9.5
Ensembles 0.3 2.4 0.7 − 1.0 0.6 4.0 0.3 2.4 0.1 3.0 0.8 5.9

Table 3: MK trend test for maximum temperature (°C) per year for near-term, mid-term, and long-term projections under both RCP
scenarios in the Didesa catchment.

Models CCLM-4 RACMO22T REMO2009 Ensembles

RCP 4.5

Near-term P value 0.01 0.0001 0.0002 0.0001
S-slope 0.03 0.05 0.05 0.05

Mid-term P value 0.002 0.0002 0.01 0.0001
S-slope 0.04 0.07 0.05 0.05

Long-term P value 0.51 0.02 0.40 0.01
S-slope 0.01 0.03 0.01 0.05

RCP 8.5

Near-term P value 0.002 0.0001 0.002 0.0001
S-slope 0.05 0.07 0.04 0.05

Mid-term P value 0.0001 0.0001 0.0001 0.0001
S-slope 0.11 0.10 0.09 0.10

Long-term P value 0.0001 0.0001 0.0001 0.0001
S-slope 0.12 0.11 0.10 0.33

Table 4: MK trend test for minimum temperature (°C) per year for near-term, mid-term, and long-term projections under both RCP
scenarios in the Didesa catchment.

Models CCLM-4 RCMO22T REMO2009 Ensembles

RCP 4.5

Short term P value 0.0001 0.001 0.001 0.0001
S-slope 0.03 0.03 0.02 0.02

Mid-term P value 0.002 0.0002 0.01 0.0001
S-slope 0.04 0.07 0.05 0.02

Long-term P value 0.72 0.64 0.25 0.30
S-slope 0.00 0.00 0.01 0.02

RCP 8.5

Short-term P value 0.001 0.01 0.001 0.0001
S-slope 0.03 0.02 0.03 0.02

Mid-term P value 0.0001 0.0001 0.0001 0.0001
S-slope 0.11 0.10 0.09 0.02

Long-term P value 0.0001 0.0001 0.0001 0.0001
S-slope 0.05 0.05 0.04 0.13
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Figure 6: Projected change of average monthly rainfall distribution for near-term (2021–2040) under (a) RCP4.5 and (b) RCP8.5.
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Figure 7: Projected change of mean monthly potential evapotranspiration for short-term (2021–2040), mid-term (2041–2070), and long-
term (2071–2100) under (a) RCP4.5 and (b) RCP8.5.
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Table 5: Te maximum and minimum ranges of the parameter values and their ftted values obtained during the calibration and validation
periods.

No. Parameter name Fitted value Min_value Max_value t-stat P value
1 R__CN2.mgt 41.5 350.0 98.0 0.3 0.05
2 V__ALPHA_BF.gw 0.4 0.0 1.0 − 0.4 0.47
3 V__GW_DELAY.gw 23.6 0.0 500.0 − 0.6 0.60
4 V__GWQMN.gw 1803.8 0.0 5000.0 0.9 0.12
5 V__GW_REVAP.gw 0.1 0.0 0.2 0.9 0.71
6 R__SOL_K.s 0.4 − 0.5 0.5 − 1.8 0.28
7 R__ESCO.bsn 0.5 0.0 1.0 1.0 0.62
8 R__SOL_Z.s 0.2 − 0.5 0.5 1.2 0.75
9 R__RCHRG_DP.gw 0.4 0.0 1.0 1.8 0.56
10 V__SHALLST_N 1.4 0.0 10.0 − 2.4 0.35
11 R__CH_N2.rte 0.3 0.0 1.0 2.5 0.11
12 R__CH_K2.rte 32.4 0.0 150.0 2.7 0.25
13 V__REVAPMN.gw 448.8 0.0 500.0 2.8 0.23
14 R__USLE_P.mgt 1.0 0.0 1.0 − 0.7 0.15
15 R__CANMX.hru 7.9 0.0 10.0 − 0.5 0.01
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Figure 8: Observed and simulated discharge at the outlet during calibration.
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Figure 9: Observed and simulated discharge at the outlet during validation.
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signifcantly increases by 8.8%, 11.1%, and 8.6%, re-
spectively. Similarly, the other components such as lateral
fow, percolation of water, and transmission loss signif-
cantly increase by 12.5%, 15.0%, and 34.9%, respectively,
while surface runof and total water yield decrease by − 2%
and − 4%, respectively (Figure 12). All water balance

components increase during the mid-term except surface
runof and total water yield.

3.10. Climate Change Efects on Mean Streamfow. During
the short-term period, the monthly streamfow change in the
main river is positive for January, February, April, Sep-
tember, October, and November months, while it is negative
for the other months. During the mid-term period, the
change in monthly streamfow is positive in all months
except the months of February, March, and December.
Furthermore, the change in streamfow is positive only in the
months of January, February, and April during the long-
term period (Figure 13).

Te change in streamfow in the Didesa catchment is
positive for the annual and winter seasons, while it is
negative in other seasons for short-term period as compared
to the base period. Te change in streamfow is negative
during summer and positive during winter in all time pe-
riods. Tis is not a good sign as summer is the main growing
season around the catchment (Figure 14). Tere are

Table 6: Comparison of observed and simulated fow during the calibration and validation period.

Period R NSE PBIAS
Calibration (2000–2009) 0.74 0.71 14.5
Validation (2010–2013) 0.70 0.67 − 4.0
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Figure 10: Te baseline period average streamfow of (a) monthly and (b) seasonal and annual.
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Figure 11: Mean monthly water balance components during
1989–2018.
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Figure 12: Percentage change of annual mean of water balance
components from baseline for short-term, mid-term, and long-
term periods.
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Figure 13: Monthly change in streamfow in the Didesa catchment.
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irrigation activities that have been practiced in the catch-
ment. Moreover, about 16 and 68 percent of the area are
found highly suitable and moderately suitable, respectively,
for surface irrigation [41].

4. Conclusions

Tis study presents the evaluation of the current and future
climate change’s efects on streamfow in the Didesa
catchment for 2021–2040 (near-term), 2041–2070 (mid-
term), 2071–2100 (long-term) relative to 1989–2018 using
the ensemble’s mean of four RCMs output under RCP4.5
and RCP8.5 emission scenarios. Te bias correction is
performed for future rainfall and temperature before directly
using it as input to the hydrological model. Te modifed
Mann–Kendall (MK) trend test for rainfall shows an in-
creasing trend for short-term and mid-term in all periods
under both scenarios considered except for RCP4.5 during
the mid-term period for RACMO22T and REMO2009
models. However, the CCLM-4 rainfall projection con-
trastingly shows a decreasing trend in RCP4.5 and RCP8.5
except during mid-term under RCP 4.5, where it shows an
increasing trend. Te mean change of rainfall is negative for
CCLM-4 in the short-term period for the months from
February to December, with values ranging from − 1.6% to
− 69.5% under the RCP4.5 scenario. REMO2009 model
shows a negative rainfall change in all months under RCP
4.5. Te mean minimum temperature change per annum
over the catchment for the short-term, mid-term, and long-
term periods increases by 0.93°C, 1.8°C, and 2°C, re-
spectively, from the baseline under the RCP4.5 scenario,
while it is 1.05°C, 1.5°C, and 2.4°C under RCP8.5 scenario.

July and August are months with mean peak fow in the
catchment, which corresponds to periods of high rain. Te
observed mean annual streamfow shows an increasing
trend, with peak food in 2013 (150.65m3/s) and minimum
streamfow in 2000 (22.06m3/s). Tis could be related to the

increase in rainfall during 1989–2018. Te hydrological
model performs well with R2, NSE, and PBIAS values of 0.74,
0.71, and 14.5, respectively, during calibration (2000–2009)
and 0.70, 0.67, and − 4.0 during validation (2010–2013)
periods.

Te percent changes in average annual components of
water balance are mostly positive, while total water yield
shows a decrease during short-term period. Most water
balance components increase except surface runof and total
water yield during mid-term period. Under long-term pe-
riod (2071–2100), the percent changes in average annual
water balance component show a signifcant increase except
surface runof and lateral fow.

In general, a decreasing trend in mean maximum and
mean minimum temperature, a decreasing trend in
evapotranspiration, and an increasing trend in total annual
rainfall are detected during the 1989–2018 period resulting
in increasing amount of mean streamfow. While a detailed
study of the weather systems of the catchment is recom-
mended, the increase in rainfall could be related to the
frequent cooling of sea surface temperature in the equatorial
Pacifc. On the other hand, an increase in temperature and
evapotranspiration with an indefnite pattern of rainfall is
expected in future periods. A decrease in streamfow during
the main rainy season is expected. Terefore, water resource
availability should be included in any planning, and the
resources should be used wisely.Te result from this study is
crucial to plan irrigation projects and to develop drinking
water and other activities.
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