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Te doubt in the calculation algorithm of the standardized precipitation index (SPI), which is widely preferred in the evaluation
and monitoring of drought, still remains up-to-date because its calculation process is performed in the form of standardization or
normalization with a default probability distribution. Terefore, the success of this index is directly afected by the choice of the
probability distributionmodel.Tis study is based on the efect of three diferent parameter estimationmethods on the calculation
process, as well as the comparison of the SPI results calculated based on the default Gamma distribution and the distribution with
the best ability to represent the 3-and 12-month consecutive summed rainfall data among the 15 candidate distributions namely
Gamma (GAM), Generalized Extreme Value (GEV), Pearson Type III (P III), Log Pearson Type III (LP III), two-parameter
Lognormal (LN2), three-parameter Lognormal (LN3), Generalized Logistic (GLOG), Extreme Value Type I (EVI), Generalized
Pareto (GPAR), Weilbul (W), Normal (N), Exponential (EXP), Logistic (LOG), four-parameter Wakeby (WK4), and fve-
parameter Wakeby (WK5) distributions. Approximately 68.4% and 18.4% of the 3-month data considered had the best ft to the
Weibull and Pearson III distribution, while approximately 24% and 18% of the 12-month data had the best ft to the Weibull and
Logistic distribution. On the other hand, it was found that the default Gamma distribution calculated the extreme drought
categories signifcantly more than the best-ft distribution model. In terms of parameter estimation methods, L-moments for 3-
month series and maximum likelihood approaches for 12-month series were most dominant.

1. Introduction

Te fast expansion of technical advancements following
the industrial revolution has led to excessive use of natural
resources, in addition to human population growth,
which is the primary reason of global ecosystem de-
teriorating. Since the middle of the 20th century, global
warming has been the most signifcant and dangerous
signal of human-oriented ecological disturbance [1]. Tis
global threat, which emerged as a result of the increase in
greenhouse gas emissions into the atmosphere, caused
a serious increase in the earth’s air temperature [2–4]. In
the context of global warming, the normal functioning of
the hydrological cycle has been disrupted, resulting in

serious changes in the distribution and amount of rainfall
on the earth. Natural catastrophes, including fooding,
drought, and hurricane, have grown as a result of this
unfavorable outcome; yet, major hazards have emerged in
relation to water resources and agriculture [3, 5, 6]. Tis
threat afecting the globe continues to manifest itself
through extreme weather in diferent regions [7–10]. All
components of the environment are negatively impacted
by the drought, which results from a prolonged decrease
in precipitation from normal levels. It also poses a major
danger to the social and economic situations of humanity
[11–13]. Characteristics such as the slow development of
the drought and its continuation for many years caused
this natural disaster to be regarded as the riskiest threat to
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human and agriculture compared to other natural di-
sasters experienced on a global scale [14].

Te variability in climate in Turkey, especially in the
context of precipitation and stream fow, has been revealed
by various studies. During the dry season, theMediterranean
region, including Turkey, had a signifcant decrease in mean
precipitation and an increase in precipitation variability,
according to [15–17]. It has been discovered that there are
changes in precipitation caused by the efects of global
warming, especially in the eastern and southeastern portions
of Turkey [18]. It has been observed that there are visible
spatial and temporal variations in precipitation [19]. A trend
study revealed a considerable decrease in precipitation,
particularly in the winter [20], and a global climate model
predicts major drops in annual streamfow and precipitation
[21–23]. It was discovered that streamfows were signif-
cantly on the decline in the west and southwest of Turkey,
[24] and in the middle of Turkey [25], the common opinion
put forward in these studies is that there will be signifcant
decreases in precipitation and streamfow, while an increase
in precipitation is expected only along the Black Sea coast.
Considering the detrimental consequences of climate change
on Turkey’s water supplies, it is obvious that the agricultural
sector will be most severely impacted [26, 27]. Approxi-
mately 34.3% of Turkey’s population is engaged in agri-
cultural activities. On the other hand, 26.4% of
112 billion·m3 (≈29.6 billion·m3) of usable water potential in
Turkey is used for irrigation [28].

It is conceivable that the typical process of moisture
creation has been impacted by the phenomena of global
climate change, particularly given its detrimental efects on
temperature and precipitation. Terefore, this variation in
moisture conditions will surely disturb the ecosystem’s
natural structure, especially with regard to concerns such as
agriculture, water resources, and desertifcation. Wang [29]
reported that fuctuation in moisture played a key role in
analyzing drought conditions in a region. In terms of
evapotranspiration, rainfall, soil moisture content, and
groundwater, drought is a complex process [13]. Successfully
defning and predicting drought, which is formed under the
infuence of many parameters that contribute to its emer-
gence, is just considered difcult. In addition to drought
prediction indicators such as the Reconnaissance Drought
Index (RDI), Standardized Precipitation Evapotranspiration
(SPEI), and Palmer Drought Severity Index (PDSI), which
take into account many climate and soil-related parameters,
there is also the widely used Standardized Precipitation
Index (SPI) which defnes drought with only one climate
parameter, precipitation [7, 14, 30–32].

Te SPI designed by McKee et al. [30] is based on the
probability of precipitation time series at a given time scale.
Te SPI was set up for multiple time scales to determine the
impact of drought on diferent water resources such as soil
moisture, streamfow, groundwater, and reservoir storage.
Rainfall defciencies lasting 1 to 6months give rise to me-
teorological and agricultural droughts, while exhausting or
running dry of rivers, reservoirs, and groundwater due to
precipitation defciencies of up to 24months or longer are
associated with hydrological drought.Temerit of this index

compared to others is that only rainfall parameter is needed
as input, and it can be easily calculated at diferent time
scales. One of the obvious weaknesses of the SPI index is that
it only quantifes the lack of precipitation [31, 32]. Another
drawback is that at least 30 years’ monthly rainfall data are
required [33] for drought monitoring over a selected time
period. Gutman [34] suggested that SPI calculation from
1month up to 24months was statistically sufcient. In the
study of Edwards [35], the calculation process of SPI was
based on the two-parameter Gamma distribution and the
standard normal distribution whose mean value and stan-
dard deviation are zero and one, respectively. Te as-
sumption that the rainfall data to be subjected to the SPI
calculation ft the two-parameter Gamma distribution was
related to the fnding of Tom [36], who reported that
rainfall series followed the Gamma distribution well. In fact,
this assumption is most widely used in SPI-based drought
monitoring models in the literature. Although there is
a generalization that the rainfall data ft the Gamma dis-
tribution well, the diferences in the occurrence conditions
of this climatic event are dependent upon their frequency
distribution characteristics. For this reason, there would
always be a doubt in the SPI calculations based on the as-
sumption. Moreover, some researchers [37–40] expressed
the inadequacy of the Gamma distribution originally sug-
gested by McKee et al. [30]. For the more reasonable analysis
of drought with the SPI, the preference of the Pearson Type
III distribution, which was the three-parameter version of
the two-parameter Gamma distribution, approach, recom-
mended by Guttman [34], was also criticized [37, 39]. In this
context, it is important for reliable decisions to determine
the theoretical distribution that could best represent the data
to be analyzed in the monitoring and evaluation of the
drought levels in a given region, based on SPI. However,
some researchers have taken into account a limited number
of theoretical distributions for the studied region data in the
SPI calculation. Yılmaz et al. [41] used Normal, Lognormal,
Gamma, Logistic, Log-logistic, and Weibull distributions to
determine the distribution suitable for the data in the study
area while describing the meteorological drought in the
upper Coruh basin. Mahmoudi et al. [42] highlighted that
the generalized extreme value distribution at diferent time
scales was a more accurate alternative for the SPI calculation
compared to the default Gamma distribution. Pieper et al.
[43] argued for the use of exponentiated Weibull distribu-
tion when calculating SPI, instead of the default Gamma
distribution.

Te drawbacks outlined above in the use of the SPI in
monitoring and evaluation of drought still remain up-
to-date before being a reasonable index, and these distri-
bution models should be well evaluated in the context of
making successful decisions. From this perspective, it be-
comes very crucial to select the favorite probability distri-
bution model to be used in the SPI calculation process. Te
purpose of this study was to identify the best suitable the-
oretical probability distribution for rainfall data in the phase
of drought monitoring and assessment using the SPI cal-
culation method in three basins in Turkey with various
meteorological features. While making this attempt, many
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parameter estimate approaches have been incorporated into
the scenario. Te attempt was made to identify the difer-
ences between the SPI values calculated using the frequently
used default Gamma distribution and the closest distribu-
tion to the supplied data.

Te rest of the paper is organized as follows. Description
of the study area is given in Section 2.1, methodology is given
in Section 2. Te results are presented in Section 3, dis-
cussion is provided in Section 3.2, and concluding remarks
are provided in Section 4.

2. Research Methodology/Research Design

2.1. Description of the Study Area. Te study area includes
three catchment basins in Turkey, where diferent climatic
types are experienced, namely Yeşilırmak, Kızılırmak, and
Konya Closed Basins. Yeşilırmak River is the second longest
river in Turkey with a length of 519 km and has three main
tributaries, namely Çekerek, Kelkit, and Tersakan. Te river
originates within the borders of Sivas province, and its fow
fnally ends in the Black Sea. Te basin area is about
36114 km2 (about 5% of Turkey’s surface area) and the
average annual precipitation is 528mm. Te Black Sea cli-
mate is dominant in the parts of the basin close to the Black
Sea coast, and the continental climate is dominant in the
inner regions. Black sea coast experiences a humid sub-
tropical climate, with abundant precipitation, warm winters,
and humid summers. It is under the infuence of polar
continental air accompanied by strong northeasterly winds,
and frequent precipitation in winter. Te average temper-
ature of the basin is around 12°C [44]. Te Kızılırmak River,
which has a length of 1151 kilometers, is Turkey’s longest
river and corresponds to 11% of Turkey’s surface area in
terms of the area it covers. Te basin is located between
Yeşilirmak and Konya Closed Basins with its geographical
location. Te annual average precipitation and temperature
of the basin are 445mm and 13.7°C. Te Kızılırmak River,
similar to the Yeşilırmak River, originates within the borders
of Sivas province and drains into the Black Sea in Bafra
district of Samsun province. Although the continental cli-
mate is experienced in the majority of the basin, the Black
Sea climate is dominant in its parts close to the Black Sea.
Te distribution of precipitation in the basin varies con-
siderably, which is 334.1mm inNiğde and 781.7mm in Bafra
[25]. Konya Closed Basin covers an area of 53850 km2

(approximately 7% of Turkey’s surface area). Te annual
average total precipitation in the basin was recorded between
286mm (Karapınar) and 740mm (Seydişehir). When the
precipitation observed in Seydişehir is excluded, the regional
average of precipitation is around 345mm. Tis basin in-
cludes the area (around Salt Lake) where precipitation oc-
curs the least in Turkey. Te basin which is a dominant
continental climate has arid and semiarid characteristics
with low precipitation and high evaporation [45].

In the study, the monthly rainfall data measured between
1975 and 2020 at the precipitation stations operated by the
General Directorate of State Meteorology Afairs in the
basins in question were used as input data. For the study, 38
rainfall stations with at least 30 years of continuous

precipitation data were included in the study (Table 1).
Figure 1 shows the geographic locations of stations in the
three basins. Missing data at stations were completed with
the linear regression approach.

2.2. Datasets

2.2.1. Standardized Precipitation Index (SPI) Calculation
Algorithm. As it is well known, the original SPI calculation
technique involves ftting data to a standardized normal
distribution with a mean of zero and a variance of one by
subtracting the mean of the series from each value of the
rainfall series and dividing the diference by the series’
standard deviation [30]. Terefore, each calculated Z-value
represents the SPI value. However, performing the calcu-
lation from the SPI original relationship is only possible by
confrming the data is normally distributed. Considering
that the hydrometeorological data are generally not ap-
proximately normally distributed, the SPI calculation pro-
cess is mostly realized based on an alternative distribution,
namely the two-parameter Gamma distribution [46]. Tis
presupposition-based SPI calculation process was described
in detail by Edwards [35]. Te SPI calculation algorithm is
formulated in the following relationship over a distribution
that most approximately fts the data studied:

SPI � Φ− 1
FCDF xt(  , (1)

where xt is the observed or consecutive summed rainfall for
the considered time scale (t); FCDF is the cumulative
probability distribution; and Φ−1 is the inverse of the
standard normal distribution, also named z-distribution,
with zero mean and one variance. Drought classes were
tabulated based on SPI (Table 2) [30].

In this study, the theoretical probability distribution
models presented in Table 3 were applied to the rainfall data
formed by sequentially summing for diferent time scales (3-
month and 12-month) in order to remove the concern about
the two-parameter Gamma distribution, which is widely
accepted in the SPI calculation algorithm. In addition, the
parameters of the considered distribution models were es-
timated by the method of moments (M), maximum likeli-
hood (ML), and L-moments (LM). Te distribution model
that most approximates the available data was also chosen
based on the Kolmogorov–Smirnov test [47]. By comparing
the distributions of the two datasets, the Kolmogor-
ov–Smirnov test is used to determine whether probability
distributions are appropriate for the series. Te null hy-
pothesis (Ho) is that the two dataset values are from the same
continuous distribution. Te alternative hypothesis (Ha) is
that these two datasets are from diferent continuous dis-
tributions.Te hypothesis test can be carried out at a specifc
statistical signifcance level (e.g., 5% taken is this study). If
the calculated values of the KS test statistic are lower than
those of the theoretical values at the chosen signifcance
level, then the model distribution is taken to be acceptable
for estimation. Te three distinct parameter estimation
techniques (M, ML, and LM) utilized to derive the pa-
rameters of the 15 theoretical probability distributions given
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in Table 3. Teoretical probability distributions used in this
study are Gamma (GAM), Generalized Extreme Value
(GEV), Pearson Type III (P III), Log Pearson Type III (LP
III), two-parameter Lognormal (LN2), three “-parameter
Lognormal (LN3), Generalized Logistic (GLOG), Extreme
Value Type I (EVI), Generalized Pareto (GPAR), Weibull
(W), Normal (N), Exponential (EXP), Logistic (LOG), four-
parameter Wakeby (WK4), and fve-parameter Wakeby
(WK5) distributions. Detailed information about these
distributions and the estimation of their parameters by
moments, maximum likelihood and L-moment techniques
can be found in [48].

Among the candidate distributions, the one that most
closely follows the data is determined by the following re-
lationship based on the Kolmogorov–Smirnov approach.
For this purpose, the nonexceedance probability (Fi) for each
observation (xi) of the existing data sorted in ascending
order is calculated with a plotting position formula, and at
the same time, the probability (FDIST

i ) of the observation in
question in the considered theoretical distribution is also

estimated. Te Kolmogorov–Smirnov test statistic Δ is given
in the following equation:

∆ � Max F
DIST
i − Fi



. (2)

In equation (2), DIST corresponds to the candidate
theoretical distribution. Te critical value of the Δcr for
a given signifcance value (i.e., 5% for this study) is com-
pared. If Δ<Δcr, then the null hypothesis that the given
distribution is a good ft is accepted, otherwise null hy-
pothesis is rejected. If there are more than one value less than
“∆_cr” in the theoretical distributions considered, it is de-
cided that the theoretical distribution with the smallest “∆”
value follows the data most closely and is the most ap-
propriate distribution.

Tis methodological approach would provide the op-
portunity to judge the confusion that occupies the minds on
the Gamma distribution. For this purpose, in addition to
being analyzed statistically to determine the diference be-
tween the 3-month SPI and 12-month SPI series, which are

Table 1: Some features of the rainfall stations in the study area.

Basin Rainfall station Longitude (E) Latitude (N) Elevation (meter) Observation period Mean (mm)

Yeşilirmak

1 Samsun 36°15′ 41°21′ 4 1975–2020 703.2
2 Merzifon 35°27′ 40°53′ 754 1975–2012 439.5
3 Corum 34°56′ 40°32′ 776 1975–2020 453.1
4 Amasya 35°50′ 40°40′ 409 1975–2020 463.4
5 Tokat 36°33′ 40°20′ 611 1975–2020 442.3
6 Zile 35°53′ 40°18′ 719 1984–2020 444.7
7 Sebinkarahisar 38°25′ 40°17′ 1364 1984–2020 436.5
8 Turhal 36°06′ 40°23′ 528 1984–2020 413.1
9 Susehri 38°04′ 40°10′ 1164 1985–2020 566.1

Kızılırmak

10 Kastamonu 33°47′ 41°22′ 800 1975–2020 511.3
11 Cankiri 33°37′ 40°36′ 755 1975–2020 420.2
12 Sivas 37°00′ 39°45′ 1294 1975–2020 455.4
13 Kirikkale 33°31′ 39°51′ 751 1975–2020 390.2
14 Yozgat 34°49′ 39°50′ 1301 1975–2020 604.5
15 Kırsehir 34°09′ 39°10′ 1007 1975–2020 393.1
16 Gemerek 36°05′ 39°11′ 1182 1975–2020 417.2
17 Nevsehir 34°42′ 38°37′ 1260 1975–2020 429.2
18 Kayseri 35°30′ 38°41′ 1094 1975–2020 410.6
19 Bafra 35°55′ 41°33′ 103 1990–2020 487.7
20 Ilgaz 33°38′ 40°55′ 885 1985–2020 340.3
21 Tosya 34°02′ 41°01′ 870 1983–2020 464.2
22 Osmancik 34°48′ 40°59′ 419 1984–2020 415.6
23 Zara 37°44′ 39°53′ 1338 1985–2020 500.4
24 Keskin 33°37′ 39°40′ 1140 1986–2020 409.0
25 Cicekdagi 34°25′ 39°36′ 900 1984–2020 355.9
26 Kaman 33°42′ 39°22′ 1075 1975–2020 469.1
27 Bogazliyan 35°15′ 39°12′ 1070 1975–2020 367.9
27 Urgup 34°55′ 38°37′ 1068 1975–2020 370.9
29 Develi 35°29′ 38°22′ 1204 1975–2020 370.6

Konya Closed

30 Konya 32°34′ 37°59′ 1031 1975–2020 336.1
31 Karaman 33°13′ 37°12′ 1018 1975–2020 348.0
32 Eregli 34°03′ 37°32′ 1046 1975–2020 312.4
33 Nigde 34°41′ 37°57′ 1211 1975–2020 347.6
34 Kulu 33°04′ 39°05′ 1005 1975–2020 388.0
35 Seydişehir 31°21′ 38°04′ 1158 1975–2020 772.3
36 Cumra 32°47′ 37°34′ 1014 1975–2020 330.3
37 Karapinar 33°32′ 37°43′ 996 1975–2020 307.1
38 Aksaray 34°00′ 38°22′ 970 1975–2020 358.4
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Figure 1: Study area and stations: Yeşilırmak Basin, Kızılırmak Basin, and Konya Closed Basin (shown as within the green, red, and blue
boundaries, respectively).

Table 2: Drought classes based on SPI values.

SPI SPI category Abbreviation
>2 Extremely wet EW
1.5 to 1.99 Very wet VW
1.0 to 1.49 Moderately wet MW
−0.99 to 0.99 Near normal NN
−1.0 to −1.49 Moderately dry MD
−1.5 to −1.99 Severely dry SD
<−2 Extremely dry ED

Table 3: Teoretical probability distribution models considered in the study.

Distributions (dist.)
Parameter estimation approaches (PEA)

Maximum likelihood (ML) Moments (M) L-moments (LM)
Generalized Extreme Value (GEV) ✓ ✓ ✓
Pearson Type III (P III) ✓ ✓ ✓
Tree-parameter Lognormal (LN3) ✓ ✓ ✓
Generalized Logistic (GLOG) ✓ ✓ ✓
Extreme Value Type I (EVI) ✓ ✓ ✓
Generalized Pareto (GPAR) ✓ ✓ ✓
Weibull (W) ✓ ✓ ✓
Normal (N) ✓ ✓ ✓
Exponential (EXP) ✓ ✓ ✓
Logistic (LOG) ✓ ✓ ✓
Two-parameter Lognormal (LN2) ✓ ✓ ✓
Gamma (GAM) ✓ ✓ ✓
Log Pearson Type III (LP III) ✓ ✓ ✓
Four-parameter Wakeby (WK4) — — ✓
Five-parameter Wakeby (WK5) — — ✓
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calculated based on the Gamma distribution and the the-
oretical distribution that most closely fts the data, the areal
changes of these two series were also revealed on the basis of
the studied area. Calculations and statistical analysis were
carried out by Excel spreadsheet software, and ArcGIS
software was used to plot the fgures.

3. Results

Te main aim of this study was to detect the diference
between the SPI (Standardized Precipitation Index) values
dealing with the consecutively summed rainfall series for 3-
month and 12-month belonging to 38 precipitation stations,
which were calculated based on the default Gamma distri-
bution and theoretical probability distribution that most
approximately ft the studied data. Terefore, frst of all,
among the theoretical distributions in Table 3, the distri-
bution that best fts the formed rainfall data by sequentially
summing for the 3-month and 12-month time scales was
selected based on the Kolmogorov–Smirnov method. In
Table 4, the most suitable probability distribution model for
two data sets of each station and the parameter estimation
approach (PEA) are presented. As can be seen from Table 4,
26 of 38 stations belonging to 3-month precipitation data are
closest to the Weibull (W) distribution model. On the other
hand, Pearson III (P III) model in the data of seven stations
and Generalized Extreme Value (GEV) model in the data of
two stations were found to be the most appropriate dis-
tributions. Surprisingly, the 3-month data of only one sta-
tion provided the best ft for the two-parameter Gamma,
two-parameter Lognormal, and three-parameter Lognormal
models. Among the parameter estimation methods con-
sidered, the L-moments approach had a clear advantage in
being preferred over the other two. Te L-moment method
came to the fore in 21 rainfall data.

For the 12-month time scale, the rainfall series of the
stations in the study provided the best ft with the W and
LOG distribution models at 9 and 7 stations, respectively. In
addition, each of the N, LN 3, and GAM theoretical
probability distributions showed the most approximate ft to
the data of the four stations, whereas the LN 2 distribution
model achieved the most successful ft at three stations, and
the P III, GLOG, and GEV distribution models at two
stations. Te EVI theoretical probability distribution model
also showed the most approximate ft for only one station
data. Tese fndings indicated that the 12-month rainfall
data of 38 stations showed more frequency distribution
characteristics than the 3-month rainfall data. While the
maximum likelihood parameter estimation method was
more accepted than the moment and L-moments methods,
the remaining other two approaches could not outcompete
each other in almost all cases. In fact, these fndings provided
for both time scales were explicit proof that how much the
concern over SPI values calculated based on the default
Gamma model was justifed. Although the Weibull model
approved to be the most suitable for the time scales in
question was more preferred than the others, the six and ten
separate distribution models for the rainfall data sets of the
3-month and the 12-months, respectively, showed the most

approximate ft. Terefore, instead of performing the SPI
calculation algorithm with the Gamma model based on the
fnding of [36], it would be more realistic to reach reliable
results by including the distribution model that best fts the
data studied and even the parameter estimation method.

Te comparison of the results of each SPI-drought
category calculated based on the best-ftted distribution
model selected for the considered data and the Gamma
distributionmodel are presented in Figure 2. For SPI-3 at the
stations in the study area, it was found that the extreme
drought and extreme wet categories, abbreviated as EW and
ED, were experienced remarkably more in the most suitable
theoretical distribution model and Gamma model, re-
spectively. Moreover, the lead in this diference was more
pronounced in the ED drought category. Terefore, the

Table 4: Teoretical distribution models most approximately ft-
ting the rainfall data of 3-month and 12-month for the sites.

Rainfall station Dist. PEA Dist. PEA3-month 12-month
Samsun P III ML N ML
Merzifon W ML LN 3 ML
Corum W LM P III ML
Amasya W LM LN 3 M
Tokat W LM W M
Zile W LM GAM LM
Sebinkarahisar W M LOG ML
Turhal W LM LOG ML
Susehri W LM N ML
Kastamonu LN 2 LM LN 2 ML
Cankiri P III M N ML
Sivas P III M N LM
Kirikkale W LM LOG ML
Yozgat W LM GAM ML
Kırsehir W M GAM M
Gemerek W LM LOG LM
Nevsehir W LM GAM LM
Kayseri W LM LOG LM
Bafra P III ML LN 2 ML
Ilgaz W LM W M
Tosya GEV M W LM
Osmancik P III ML W M
Zara W M LOG LM
Keskin W LM LN 3 ML
Cicekdagi W LM EV I M
Kaman W M W M
Bogazliyan GEV LM LOG ML
Urgup W LM W LM
Develi LN 3 ML GLOG ML
Konya P III ML W LM
Karaman P III ML P III ML
Eregli W M W M
Nigde W LM LN 3 ML
Kulu W LM GEV M
Seydişehir GAM ML GLOG ML
Cumra W M W M
Karapinar W LM LN 2 LM
Aksaray W LM GEV M
∗Abbreviations of distributions used in this study: W: Weibull; P III:
Pearson Type III; GEV: Generalized Extreme Value; GAM: Gamma; LN2:
two-parameter Lognormal, LN3: three-parameter Lognormal; N: Normal;
LOG: Logistic; GLOG: Generalized Logistic; EVI: Extreme Value Type1.
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Figure 2: Comparison of SPI3 and SPI12 drought categories calculated based on Gamma distribution and Most Suitable distribution.
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Gamma probability distribution model has detected a much
greater number of dry periods.Te fact that serious attention
should be paid to the correctness of making projections for
the future (especially in the decisions made on agricultural
drought) with results based on Gamma distribution should
be brought to the agenda by the addressees of the subject
again. TeMD drought category became numerically higher
in almost all stations (except Samsun and Kastamonu sta-
tions) based on the best-ft distribution model. Te SD
drought category was predicted in greater numbers at six
stations with the Gamma distribution model.

Te ED drought category for SPI-12 was numerically
determined more in the Gamma model as it was for SPI-3.
However, this numerical superiority was not evident com-
pared to SPI-3. On the other hand, when all the remaining
drought categories were evaluated one-by-one, a clear dif-
ference could not be detected between the results provided
from the best-ft distribution model and the Gamma model.
However, it is obvious that there is a partial advantage over
the Gamma distribution with the most appropriate distri-
bution model. Similar results were also obtained in the 12-
month rainfall series, although not as pronounced as in the
3-month rainfall series. Spatial variability of the best-ft
probability distributions over the study area is given in
Figure 3.

Table 5 shows the percentiles of the best distributions in
the study area for the SPI 3 and SPI 12 drought calculations.
Te Weibull distribution was the dominant distribution for
SPI 3, dominating 68.42% of the entire study area. Te P-3
distribution was the second most used distribution with an
area of 18.42%, and the GEV distribution was the third most
used distribution with a 5.26% area. While GAM, LN-2, and
LN-3 were the least common distributions with a usage area
of 2.63%, LOG, NORM, and EV-1 distributions were not
found in any area as the most appropriate distribution. On
the other hand, in the SPI 12 drought calculation, the
dominant best distribution was the Weibull distribution
with a rate of 23.68% in the study area, as in the SPI 3
calculation. Te LOG distribution, which is not seen in the
SPI 3 calculation, took the second place as the best distri-
bution in an area of 18.42%. Tis was followed by LN-3
distribution with 13.16%, GAM and NORM with 10.53%. P-
3, GEV, GLOG, and LN2 distributions were seen in an area
of 5.26%, and the least common distribution was EV1 with
2.63%. In the SPI3 and SPI12 drought calculations, although
diferent distributions emerged as the best distribution on an
aerial basis, the Weibull distribution appears to be the most
appropriate distribution in common.

Comparison of the results of SPI3 and SPI12 droughts
based on the Gamma distribution and Most Suitable
Distribution for selected times is given in Figure 4. Te
spatial distribution of the SPI 3 drought in October 1993 for
the investigated basins is given in Figure 4(a) for the
Gamma distribution and in Figure 4(b) for the Most
Suitable Distribution. When these two graphs are exam-
ined, it is seen that there is a clear diference between the
dry and wet regions in the areal distribution due to the
diference in the calculation method. In the calculations
made with the MSD method, it is seen that more areas are

afected by drought compared to the Gamma method.
While the areas falling into the ED, SD, and MD classes
were 13.2%, 7.9%, and 7.9% for the Gamma distribution;
for MSD, it was 23.7%, 26.3%, and 15.8%, respectively. In
wetlands, the classes with EW, VW, and MW were 5.3%,
0%, and 2.6% when calculated by the Gamma distribution,
while these classes were found to be 2.6%, 2.6%, and 0%
when calculated by the MSD method.

SPI12 calculations for the period of September 2012 are
given in Figure 4(c) for the Gamma distribution and in
Figure 4(d) for the MSDmethod. In this period, it was found
that more areas were in drought classifcation in the MSD
method (%31.6) compared to the Gamma method (%18.4).
For ED, SD, and MD drought classes, the areas of the basins
examined in the Gamma method were 2.6%, 10.5%, and
5.3%, while these areas were 15.8%, 7.9%, and 7.9% in the
MSD method, respectively.

According to the Gamma distribution, it was ob-
served that the total area in the wet period was higher
than that calculated by MSD. While the areal percentages
were 5.3%, 7.9%, and 13.1% in the calculations made
according to the Gamma method for the EW, VW, and
MW classes; these areas were found to be 5.3%, 5.3%, and
5.3% in the MSD method, respectively. It was found that
more areas (%26.3) are in the Wet period in the Gamma
distribution method compared to the MSD method (%
15.8).

4. Discussion

Te basis for reliable SPI calculation depends on choosing an
appropriate probability distribution for precipitation.
McKee et al. [30] proposed SPI and assumed that cumulative
precipitation follows a Gamma distribution (GAM). In
many parts of the world, the gamma distribution has been
chosen and found to be suitable for SPI computation, in-
cluding Stagge et al. [39] for Europe, Okpara et al. [49] for
West Africa, Blain et al. [50] for Brazil, and Zhao et al. [51]
for China.

Various distributions, including various types and
parameters of probability distributions, would result in
various SPI values. Guttman [34] suggested Pearson Type
III distribution for SPI calculations for the United States.
Sienz et al. [32] showed that the Weibull-type distribution
fts the monthly precipitation in Europe much better than
the Gamma distribution. Pieper et al. [43] recommended
the exponential Weibull distribution as the basis for SPI
calculations. Wang et al. [52] investigated fve candidate
distributions to describe cumulative precipitation series
for SPI analysis for China. Tey concluded the Gamma
distribution is the optimal choice for calculating SPI with
time scales from 1month to 12month in China among the
fve candidate distributions namely Gamma, Weibull,
Generalized Extreme Value, Pearson Type III, and
Tweedie distributions. Tey stated that the uncertainty in
the SPI calculation decreased with the increase of the time
scale and recording length, mainly as a result of the de-
crease in the confdence interval width of the Gamma
distribution parameters.
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Kömüşçü et al. [53] investigated the drought climatology of
Turkey by applying SPI and found that drought events paint
a diverse but consistent picture with varying timescales, such as
severe droughts occurring in shorter time periods typical of the
interior of the country. Sonmez et al. [54] used SPI to in-
vestigate Turkey’s vulnerability to meteorological drought.
Tey discovered that for SPI 3 mild droughts occurred

frequently in short time steps and for SPI 12moderate droughts
occurred more frequently and afected roughly two-thirds of
the country. For SPI12, there have been less documented severe
droughts. Te inferences of Sonmez et al. [54] coincides with
the result of the present study.

In dry and semiarid regions, Mahmoudi et al. [42]
intended to modify the SPI calculating procedure. Tey
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Figure 3: Spatial variability of the best-ft probability distribution models observed in the study region for (a) SPI3 and (b) SPI 12 drought
calculations.
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came to the conclusion that there was no single distribution
function that could be recommended as a workable re-
placement for the Gamma distribution for calculating the
Standardized Precipitation Index (SPI) at various time
scales, so they each proposed a diferent distribution for
a particular time period.

Weibull and Pearson Type III distributions (68.42% and
18.42% as areal distributions) were found to be the most
suitable distributions in this study for SPI 3; Weibull and
Logistic distributions (23.68% and 18.42% as areal distri-
butions) were found to be the most suitable distribution for

SPI12. On the other hand, it was discovered that the default
Gamma distribution was the most appropriate distribution,
accounting for just 2.63% of the total area for SPI3 and
10.53% for SPI12. Te goodness-of-ft results for the 3-and
12-month precipitation series indicate that using Tom’s
[36] advice for SPI calculations may not produce the best
results. Similar results were reported by Akturk et al. [55] for
the Pearson Type III distribution, which was determined to
be the second most acceptable distribution in the fndings of
the present study. Akturk et al. [55] used the Normal,
Lognormal, two-parameter Gamma, and Pearson Type III

Table 5: Areal percentage of the best ft distributions given in Figure 3.

Probability distribution Area for SPI 3
(%)

Area for SPI 12
(%)

Weibull 68.42 23.68
P-3 18.42 5.26
LOG 0 18.42
LN-3 2.63 13.16
GAM 2.63 10.53
GEV 5.26 5.26
NORM 0 10.53
GLOG 0 5.26
LN-2 2.63 5.26
EV1 0 2.63
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Figure 4: Comparison of spatial distributions of SPI3 and SPI12 drought calculations according to Gamma distribution and most suitable
distributions (MSD) for selected months: (a) SPI3 with Gamma for October 1993, (b) SPI 3 with MSD for October 1993, (c) SPI 12 with
Gamma for September 2012, and (d) SPI12 with MSD for September 2012.
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probability distributions in the research of the most ap-
propriate probability distributions in the drought analysis of
the Kızılırmak Basin; they came to the conclusion that the
Pearson Type III probability distribution is the most suitable
distribution for monthly precipitation in the majority of the
stations.

In light of all of these fndings, it is important to un-
derline that the theoretical probability distribution model
that can best describe the data in accordance with the
conditions of each location should be used to develop an
efective SPI drought forecast.

5. Conclusion

Drought, which is one of the most important natural di-
sasters afecting our globe in terms of both the frequency of
its experience and its area of infuence, has considerable
damage to water resources, agriculture, and the economy. In
fact, it is predicted that the severity and duration of the
natural dry processes experienced in some parts of our globe
would increase further with the efect of global climate
change, and even new places would be added to these areas.
It is estimated that the southern and central regions of
Turkey would also be under the infuence of drought. Tis
study was conducted over determining the theoretical
probability distribution models that most approximately
follow the 3- and 12-month series formed by sequentially
summing the precipitations of three diferent basins in
Turkey, the climate structure of which is diferent from each
other. And then, Standardized Precipitation Index (SPI)
results calculated using the distribution model chosen for
each series were compared with those of the traditionally
accepted two-parameter Gamma distribution. In addition to
the selection of the theoretical distribution model, which has
the ability to best represent the existing data, the efects of
the use of three diferent approaches in the estimation of the
parameters of the models on the results were also examined.

Approximately 68.4%, 18.4%, and 5.26% of the 3-month
summed rainfall series formed with the rainfall data of 38
rainfall stations in the study area provided the most ap-
proximate ft to the Weibull, Pearson Type III, and Gen-
eralized Extreme Value distributions, respectively.
Surprisingly, the default Gamma and the two- and three-
parameter Lognormal distribution models showed the best
ft at only one station. On the other hand, the rainfall series
generated for a 12-month time period produced the best ft
to the Weibull and Logistic distribution models at ap-
proximately 24% and 18% of the stations considered, re-
spectively. Te default Gamma distribution, on the other
hand, had the ability to best represent the rainfall series
created at four stations. Based on the goodness-of-ft results
of the 3- and 12-month rainfall series, it could be expressed
that making SPI calculations with Tom’s [36] suggestion
obviously leads to questionable results. Moreover, the 3-
month rainfall series gave the best ft for only six of the
candidate distributions considered, while the 12-month
rainfall series provided the best ft for the ten theoretical
distributions. Tis fnding underlines that the frequency
distribution shapes of the 12-month rainfall series are more

variable than those of the 3-month rainfall series in the
studied region.

For the 3-month series, the extreme drought category
based on the SPI was experienced signifcantly more with
the default Gamma distribution than that calculated from
the best-ftted distribution model. However, the opposite
situation turned in favor of the best-ftted distribution
model in the extreme wet drought category. In fact, this
result explains that more severe dry periods are calculated
with the default Gamma distribution. In the light of all
these fndings, it can be emphasized that SPI drought
estimation should be made through the theoretical
probability distribution model that can best represent the
data in accordance with the conditions of each studied
region. Tis would be a factor in increasing the success of
the decisions to be taken.
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[45] S. Doğan, Spatio-Temporal Analysis of Drought Character-
ization in Konya Closed Basin, Ph.D. Tesis, p. 107, Te
Graduate School of Natural and Applied Science of Selçuk
University, Konya, 2013.

[46] J. T. Shiau, “Efects of gamma-distribution variations on SPI-
based stationary and nonstationary drought analyses,” Water
Resources Management, vol. 34, no. 6, pp. 2081–2095, 2020.

[47] N. Seckin, R. Yurtal, T. Haktanir, and A. Dogan, “Comparison
of probability weighted moments and maximum likelihood
methods used in food frequency analysis for Ceyhan river
basin,” Arabian Journal for Science and Engineering, vol. 35,
pp. 49–69, 2010.

[48] A. R. Rao and K. H. Hamed, Flood Frequency Analysis, CRC
Publications, New York, NY, USA, 2000.

[49] J. N. Okpara, E. A. Afesimama, A. C. Anuforom et al., “Te
applicability of standardized precipitation index: drought
characterization for early warning system and weather index
insurance in West Africa,” Natural Hazards, vol. 89, no. 2,
pp. 555–583, 2017.

[50] G. C. Blain, A. M. H. de Avila, and V. R. Pereira, “Using the
normality assumption to calculate probability-based stan-
dardized drought indices: selection criteria with emphases on
typical events,” International Journal of Climatology, vol. 38,
pp. e418–e436, 2018.

[51] R. Zhao, H. Wang, C. Zhan, S. Hu, M. Ma, and Y. Dong,
“Comparative analysis of probability distributions for the
Standardized Precipitation Index and drought evolution in
China during 1961–2015,” Teoretical and Applied Clima-
tology, vol. 139, no. 3-4, pp. 1363–1377, 2020.

[52] W.Wang, L. Qiu, R. Sa, S. Dang, F. Liu, and X. Xiao, “Efect of
socioeconomic characteristics and lifestyle on BMI distri-
bution in the Chinese population: a population-based cross-
sectional study,” BMC Public Health, vol. 21, no. 1,
pp. 1369–1383, 2021.
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