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Te main visibility forecast factors were identifed with the support of data from routine meteorological observations from the
Mianyang Airport and the Mianyang Environmental Monitoring Station from 2015 to 2018, and a visibility grading forecast
model was established and tested by dint of the multiple linear regression and the KNN algorithm based on big data mining
technology, and the variation characteristics of visibility in winter at the Mianyang Airport were studied. Te results showed that
(1) in addition to having a signifcant positive correlation with wind speed, the visibility in winter at the Mianyang Airport has
a signifcant negative correlation with relative humidity, dew point temperature, AQI, PM2.5 concentration, PM10 concentration,
and CO, and it has the strongest correlation with relative humidity, and the correlation coefcient is −0.76. (2) Te multivariate
linear regression model and the KNN model were adopted for grading forecasting experiments on visibility, and the results
revealed that both models could be used for visibility grading forecasts. Temultiple regression model secures an accuracy of over
70% for forecasts of level 1–5 visibility. In terms of the KNN model, the forecast accuracy is the best when K= 3 or K= 5, notably
for level-2, level-4, and level-5 visibility.Te forecast accuracy rate is 100% for level-2 visibility, but the forecast for level-1 visibility
is poor. (3) Te minimum value of the average daily visibility of the Mianyang Airport in winter appeared at 09 : 00 and the
maximum value appeared at 17 : 00. Te level-1 visibility occurred and developed before 09 : 00 and faded and vanished between
08 : 00 and 15 : 00.

1. Introduction

Atmospheric visibility is closely related to life because low
visibility can cause fight delays and induce trafc accidents,
which directly afect the safety of railway, road, sailing, and
air trafc [1–3]. Te visibility forecast is a key part of the
meteorological forecast of civil aviation airports and must be
included in each forecast message. Low visibility makes it
difcult for pilots to fnd the runway to land [4], which is
a crucial factor afecting the safety and efciency of fight and
fight training, so it is of great signifcance to improve the
accuracy of airport visibility forecasts. Visibility in civil
aviation is defned as the degree of turbidity of the atmo-
sphere or the transparency of the atmosphere. In the day-
time, visibility refers to the maximum distance from which
a person with normal vision (visual contrast threshold of
0.05) can see or identify a moderately sized black target from

the sky background under the weather conditions at that
time. In the nighttime, visibility refers to the maximum
distance from which a person with normal vision (visual
contrast threshold of 0.05) can see or identify a moderately
sized black target from the sky background or a luminous
object of moderate intensity, under the assumption that the
overall illumination increases to normal daytime levels [5].

As industry and transportation develop rapidly, the
emission of atmospheric pollutants has intensifed, and
a large number of dust, smoke, or salt particles suspended in
the atmosphere seriously impact the visibility, making the
study of the changing trend of visibility a popular topic
worldwide [6–12]. Visibility is afected not only by local
pollution but also by meteorological factors and particles
[13–22]. Wen and Yeh [23] pointed out that the concen-
tration of atmospheric pollutants has a substantial infuence
on visibility, and wind speed is an important meteorological
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parameter afecting atmospheric turbidity for it facilitates
the difusion of air pollutants. Li et al. [24] explored the
association between visibility and relative humidity, wind
speed, temperature, and air pressure to analyze the corre-
lation between atmospheric visibility and meteorological
elements in Dalian. Li et al. [25] discovered that atmospheric
visibility varies with relative humidity and particulate
concentration on a monthly and daily basis. Li et al. [26]
noted that the decline in visibility in the Sichuan Basin is
mainly caused by PM. While analyzing the causes of impact
on visibility, some scholars have also built visibility fore-
casting models. Li et al. [27] employed the statistical-
dynamic method and developed a visibility forecasting
equation on the basis of the meteorological concept model.
Liang and Hou [28] used the forecast factor index method to
forecast visibility, and concluded that visibility had a strong
correlation with humidity, temperature, and wind speed.
Some scholars used diagnostic analysis methods to develop
visibility forecasting equations. Hu et al. [29] adopted
neural network step-by-step classifcation modeling to
forecast visibility. Shu et al. [30] employed the least squares
method to create a dynamic-statistical model of visibility
forecasting in Shanghai with the support of historical data
on visibility and atmospheric pollutants. Zhou et al. [31]
used MM5 numerical forecasting products to establish
regression equations and provide low-visibility grading
forecasts. Te weather research and forecasting (WRF)
model was utilized by Li et al. [32] to statistically simulate
fog production.

Although scholars both at home and abroad have
conducted a lot of research on visibility forecasting with
diferent methods, the accuracy of current visibility forecast
can still not reach 100% due to the complexity of the
weather, and it is necessary to continuously explore fresh
ideas and methods for visibility forecast research in order to
improve the accuracy of forecasting. In view of the com-
plexity of visibility forecasting and various impact factors of
visibility in diferent regions, the visibility grading forecast of
the fight training airport in the Civil Aviation Flight
University of China will be studied in this paper. Te fight
training airport at the Civil Aviation Flight University of
China is located in the Mianyang city, Sichuan Province,
which is the same airport as the Mianyang Airport (here-
inafter referred to as Mianyang Airport), and mainly un-
dertakes fight teaching tasks for primary teaching aircraft,
medium-sized teaching aircraft, and high-level teaching
aircraft. Since the airport is in the Sichuan Basin, the relative
humidity is high, and low visibility events are common in the
winter, which afects the safety and efciency of fight
training [33], so it is necessary to study the factors afecting
visibility in winter, build a forecast model, and provide
a reference for fight training support. In this paper, with the
support of data from routine meteorological observations
from the Mianyang Airport and the Mianyang Environ-
mental Monitoring Station, the visibility grading forecast
model in winter is constructed by dint of multiple linear
regression and the KNN algorithm based on big data mining
technology, according to the fight training needs. Te two
forecast models are tested and comparatively analyzed, in

order to provide a reference for the visibility grading forecast
at the training airport and an objective product for visibility
forecast and early warning.

2. Materials and Methods

2.1. Sources of Materials. Te meteorological observation
data used in this paper are collected from the hourly
monitoring data provided by the Automated Weather
Observing Systems (AWOS) from 2015 to 2018, including
air pressure, corrected sea level pressure, temperature, rel-
ative humidity, dew point temperature, total cloud cover,
low cloud cover, wind (wind direction and wind speed), and
visibility. Te height of the air pressure data is the runway
elevation. Te height of the corrected sea level pressure data
is the sea level height. Te height of the temperature data is
1.5meters above the ground. Te height of the relative
humidity data is 1.5meters above the ground. Te height of
dew point temperature data is 1.5meters above the ground.
Te height of wind speed data is 10meters above the ground.
Environmental data were collected from the Mianyang
Environmental Monitoring Station from 2015 to 2018, in-
cluding data from four monitoring sites: Fule Mountain
(104.778°E, 31.4747°N), High-tech Zone Water Utility
(104.6717°E, 31.4656°N), Mianyang No. 3 Waterworks
(104.7283°E, 31.5072°N), and Mianyang Municipal People’s
Congress (104.7536°E, 31.4539°N), and hourly data of en-
vironmental factors, including AQI (air quality index),
PM2.5, PM10, NO2, SO2, CO, and O3.

In this paper, the quality of the aforementioned data is
well controlled, the data format is unifed, the missing
measurement and abnormal data are eliminated, and the
interpolation method is also used to interpolate the data.
Due to the inconsistencies in data dimensions, the data are
standardized in this paper.

2.2. Research Methods

2.2.1. Multiple Linear Regression Model. Te linear re-
gression model with the dependent variable y and the in-
dependent variables x1, x2, . . ., xp is

y � β0 + β1x1 + β2x2 + · · · +βpxp + ε, (1)

where β0, β1, . . ., βp denote unknown parameters, β0 is the
regression constant, β1, . . ., βp refer to the regression co-
efcient, and ε signifes a random error. When p≥ 2, the
model is called a multivariate linear regression model.

2.2.2. KNN Algorithm. In recent years, the KNN algorithm
has attracted much attention in the feld of meteorology. As
one of the ten classic algorithms of data mining, it is
a nonparametric supervision algorithm proposed by Cover
and Hart [34], and a nonparameter estimation technology
for classifcation through the calculation of the distance
between diferent eigenvalues of objects. Tis rapidly de-
veloping practical data mining technology has applications
in precipitation forecasting [35], wind forecasting [36–38],
and cloud classifcation [39]. Te idea is that if the majority
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of K most similar (the closest proximity) samples in the
feature space belong to a certain category, then the sample
also belongs to that category, where K is usually an integer
not greater than 20. In the KNN algorithm, the selected
neighbors are objects that have been correctly categorized.
Te principle of KNN is to calculate the distance between
the sample to be labeled and each sample in the dataset,
and take the nearest K samples. Te category of samples to
be labeled is determined through a vote based on K nearest
samples.

Te K nearest neighbor algorithm system design is as
follows: 1. calculate the distance. In this paper, the Eu-
clidean distance method is used to measure the distance.
2. Choose a neighbor. For each sample to be classifed, the
distance between it and the training sample is calculated,
and the nearest K samples are selected as their neighbors.
K is determined by cross-validation. 3. Determine the
category. According to the categories of K neighbors, the
categories of samples to be classifed are determined by
majority voting.

Te concrete steps are as follows: suppose there is a set of
historical weather sample sets defned as S. S consists of i
weather samples, and each weather sample consists of m
attribute variations and 1 label quantity. Its mathematical
expression is

S �

X11, X12, X13, · · · , X1m, L1􏼂 􏼃

X21, X22, X23, · · · , X2m, L2􏼂 􏼃

[· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·]

Xi1, Xi2, Xi3, · · · , Xim, Li􏼂 􏼃

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (2)

In this paper, the attribute variable Xij represents six
factors, namely, AQI, PM2.5, PM10, relative humidity,
dew point temperature, and wind speed. Li is called the
label quantity, and the label quantity refers to the visi-
bility level. Te mathematical model for predicting vis-
ibility level by dint of the KNN algorithm is as follows: we
suppose that the set of six elements of AQI, PM2.5, PM10,
relative humidity, dew point temperature, and wind
speed on the forecast day is Yi � (y1, y2, . . ., ym), which is
called the prediction sample. When conducting the
forecast, we frst fnd K nearest neighbors that are most
similar to the prediction sample Yi in the training sample
set S (K is usually an odd number); Ten, we fnd the set of
K label quantities (visibility levels) L � (L1, L2, . . ., Lk).
Finally, in accordance with the majority rule in voting, Li
was selected as the prediction result of the prediction
sample Yi.

2.3. Visibility Grading Standard. Visibility is a major factor
infuencing general aviation fight training, and its value can
determine whether captain training or solo training is
conducted. Winter has the highest number of low-visibility
days and has the greatest impact on fight training. In order
to better provide fight training support and accurate visi-
bility forecast, the visibility is graded according to the air-
craft fight standards. Visibility grading forecast has emerged
as a new topic in recent years [31, 40, 41], but there are no

grading standards in place. In this paper, visibility is divided
into fve levels according to the aircraft fight standards
(Table 1), with 800m, 1,600m, 2,000m, and 5,000m as the
demarcation values based on the level of visibility.

3. VisibilityGrading ForecastingMethods of the
Mianyang Airport in Winter and
Its Characteristics

3.1. Correlation Analysis of Visibility with Each Parameter in
Winter. Since low visibility events occur most frequently in
winter (December, January, and February) and afect the
safety and efciency of fight training, this paper focuses on
the winter visibility at the Mianyang Airport. 14 meteoro-
logical factors and environmental factors were selected for
analysis on their correlation with corresponding visibility,
and the correlation coefcients were obtained. Tose factors
with correlation coefcients greater than or equal to 0.3 were
taken as high-impact physical quantities and passed the
signifcance level test of a� 0.05.

Figure 1 shows the correlation coefcients between
winter visibility and meteorological factors at the Mianyang
Airport, and the analysis results reveal that the correlation
coefcients between visibility and relative humidity, dew
point temperature, and wind speed are high. Among all
factors, relative humidity has a strong negative correlation
with visibility, and the correlation coefcient is −0.76.
Visibility and dew point temperature are strongly adversely
connected (the correlation coefcient: −0.55), while visibility
and wind speed are signifcantly positively correlated (the
correlation coefcient: 0.33).

Relative humidity has a strong negative correlation with
visibility, and with the increase in relative humidity, visibility
gradually decreases. Tis is because with the increase in
relative humidity, the radius of wet particles increases, the
extinction increases, and the visibility decreases. Dew point
temperature has a strong negative correlation with visibility,
and with the increase in dew point temperature, visibility
gradually decreases. Tis is because the dew point tem-
perature is high and the water vapor content is high, which
will lead to a decrease in visibility. Relative humidity and
dew point temperature have the greatest correlation with
visibility, which also shows that the change in visibility in
this airport is most infuenced by these two factors and it is
also the focus of visibility forecast. Other factors do not
change much, so the correlation is also small.

Figure 2 presents the correlation coefcients between
visibility in winter at the Mianyang Airport and environ-
mental factors in four diferent monitoring sites in Mia-
nyang city. Te analysis shows that the environmental
factors of the Municipal People’s Congress are more in-
dicative of the visibility of Mianyang Airport, and the
Municipal People’s Congress is located 3.09 km to the
northeast of the Mianyang Airport. To be specifc, the fol-
lowing indexes have a strong correlation with visibility at the
Municipal People’s Congress: AQI has a signifcant negative
correlation with visibility and the correlation coefcient is
−0.59; PM2.5 concentration has a signifcant negative
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correlation with visibility and the correlation coefcient is
−0.61; PM10 concentration has a signifcant negative cor-
relation with visibility and the correlation coefcient is
−0.54. Visibility correlates more signifcantly with PM2.5

concentrations than with PM10 concentrations. Visibility is
also signifcantly inversely correlated with CO, with a cor-
relation coefcient of −0.5.

Figure 3 is a scatter plot for the relationships between
visibility and various meteorological factors. Figure 3(a)
shows that the relationship between visibility and relative
humidity can be represented by y� −0.0031x+ 97.568 (y is
visibility and x is relative humidity). As the relative humidity
increases, the visibility gradually decreases, and the relative
humidity directly improves the scattering efciency by af-
fecting the moisture absorption growth of the particles, thus
reducing the visibility. Figure 3(b) shows that with the in-
crease in dew point temperature, which indicates the in-
crease in water vapor content, visibility gradually decreases,
and the ftting relationship can be represented by
y� −0.0006x+ 5.8168 (y is visibility and x is dew point
temperature). Figure 3(c) demonstrates that as the wind
speed increases, the better the difusion conditions become,
and the visibility gradually increases. Lower wind speeds do
not promote the dispersion of pollutants and result in lower
visibility. When the wind speed is less than or equal to 2m/s
(that is, a small wind speed in the traditional sense), the
visibility is generally less than 10 km, and when the wind
speed is greater than 3m/s, the visibility is better.

Figure 3(d) shows that AQI and visibility can be ftted
through the following relationship formula:
y= 157.68e−1E−4x (y is visibility and x is AQI index), and R
square is 0.3937, indicating that the ftting efect is great. It
can also be found from the fgure that as the AQI index
increases, the visibility decreases. When the AQI is less than
100, the visibility slowly decreases as the index increases, and
conversely, when the AQI is more than 100, the visibility
decreases drastically as the index increases. Figure 3(e)
demonstrates that the relationship between PM2.5 and vis-
ibility can be represented through the following formula:
y= 122.59e−1E−4x (y is visibility and x is PM2.5 concentra-
tion), and R square is 0.4208, indicating that the ftting efect
is great. It can also be found from the fgure that as the PM2.5
concentration increases, the visibility decreases. Excessive
PM2.5 concentration may lead to low visibility. When the
PM2.5 concentration is less than 70 μg/m³, the visibility
slowly decreases as the concentration increases, and con-
versely, when the PM2.5 concentration is more than 70 μg/
m³, the visibility decreases drastically as the concentration
increases. Figure 3(f) shows that PM10 and visibility can be
ftted through the following relationship formula:
y= 163.09e−1E−4x (y is visibility and x is PM10 concentration).
It can also be found from the fgure that as the
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Figure 1: Correlation coefcients between visibility and meteo-
rological factors.
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Figure 2: Correlation coefcients between visibility and envi-
ronmental factors.

Table 1: Visibility grading standard.

Visibility level Meteorological visibility (m) Aircraft fight standard
1 vis≤ 800 When visibility is less than or equal to 800m, all aircraft cannot take of

2 800< vis≤ 1,600 When visibility is greater than 800m, twin-engine turbo, three-engine turbo, and
four-engine turbo aircrafts can take of

3 1,600< vis≤ 2,000 When visibility is greater than 1,600m, one-engine and twin-engine aircrafts can
take of

4 2,000< vis≤ 5,000 When visibility is greater than 2,000m, students can participate in the fight training
5 vis> 5,000 When visibility is greater than 5,000m, the student can fy an aircraft alone
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PM10concentration increases, the visibility decreases. When
the PM10 concentration is less than 100μg/m³, the visibility
slowly decreases as the concentration increases, and conversely,
when the PM10 concentration is more than 100μg/m³, the
visibility decreases drastically as the concentration increases.
Figure 3(g) shows that the relationship between CO and vis-
ibility can be represented by y=4E− 9x2− 0.0001x+1.6092 (y
is visibility and x is CO concentration). It can also be found
from the fgure that visibility below 10km decreases as the CO
concentration increases.

3.2. Multiple Linear Regression Models and Tests. Based on
the results of the correlation analysis between visibility and
each factor, the multivariate linear regression model is used
to establish the visibility grading forecast equation, and after
repeated introduction and deletion of parameters, six pa-
rameters are selected for modeling optimization for corre-
sponding visibility level, and the visibility grading forecast
model is obtained (Table 2), where Y is the forecast value of
visibility, X1 is AQI, X2 is PM2.5, X3 is PM10, X4 is relative
humidity, X5 is the dew point temperature, and X6 is the
wind speed.

A comparative analysis of forecast and observation was
carried out by dint of the visibility grading forecast model.
As can be seen in Figure 4, the trend of the forecast and that
of the observation are consistent, indicating that the visi-
bility grading forecast model has a better simulation efect.

In order to objectively evaluate the visibility forecast
results, based on visibility observations, the forecast accuracy
rate PC, the underreport rate PO, and the false report rate
FAR are calculated to evaluate the forecasting capability of
the model. Te formulas are as follows:

PC �
NA

NA + NB + NC( 􏼁
× 100%,

PO �
NB

NA + NB( 􏼁
× 100%,

FAR �
NC

NA + NC( 􏼁
× 100%,

(3)

where NA is the correct number of forecasts, NB is the
number of missing reports, and NC is the number of false
reports.

Table 3 shows that the visibility grading forecast model
has an accuracy of 75% for level-1 visibility forecasting, 70%
accuracy for level-2 visibility forecasting, 75% accuracy for
level-3 visibility forecasting, 84.6% accuracy for level-4
visibility forecasting, and 95.8% accuracy for level-5 visi-
bility forecasting. Te rate of missing and false reports is less
than 30%. Level-5 visibility forecasting is more accurate
because level-5 visibility is better, with a value greater than
5,000m. Tis kind of weather is generally relatively stable
and it is less afected by the changes of meteorological factors
and environmental factors. Level-2 visibility forecasting is
the lowest, because level-2 visibility is relatively low, with the
value between 800m and 1,600m. At this time, the weather
is unstable, and it is in the stage of inversion layer

destruction, which is greatly infuenced by the changes in
meteorological factors and environmental factors, so the
forecast is more difcult and the forecast is the lowest.

Based on the multivariate linear regression visibility
grading forecast model, the forecast efect is good, and it is
obviously better than the nongrading model. In the ex-
periment, the visibility nongrading forecast model has an
accuracy of 16.7% for level-1 visibility forecasting, 20%
accuracy for level-2 visibility forecasting, 16.7% accuracy for
level-3 visibility forecasting, 55.9% accuracy for level-4
visibility forecasting, and 90.5% accuracy for level-5 visi-
bility forecasting. So, the visibility grading forecast model
has a higher accuracy and it can provide a reference for
visibility grading forecasting, and this is also a basic method
for the interpretation and application of current numerical
weather prediction.

3.3. KNNModel and Test. Due to the chaotic and nonlinear
nature of atmospheric motion, it is difcult to accurately
describe and simulate weather models with one equation or
a set of simple linear or nonlinear regression equations. In
this paper, we also try to use the KNN algorithm to establish
a grading visibility forecasting model.

In this paper, the K value is determined by cross-
validation. Table 4 shows the classifcation accuracy when
K� 3, 4, and 5. Te results demonstrate that when K� 3 or
K� 5, the cross-validation accuracy rate of visibility fore-
casting is 70%, and the rate is only 63.5% when K� 4. When
K� 3 or K� 5, the accuracy rate is better, in comparison to
the rate when K� 4. Terefore, K� 3 is used to build the
KNN model.

To understand the predictive performance of the KNN
classifer on the visibility of each level, Table 5 further shows
the cross-validation results of the KNN classifer for each
level of visibility classifcation. Te horizontal axis in the
table represents the forecast of visibility at all levels, the
vertical axis represents the observation of visibility at all
levels, and the cross line represents the forecast accuracy.

It can be seen from the table that the KNN classifer
performs better in high-visibility weather. Te accuracy rate
is as high as 75% for the observation visibility greater than
5,000m (level 5), and as high as 77.8% for observation
visibility greater than 2,000m but not greater than 5,000m
(level 4). In medium-visibility weather, the KNN classifer
forecasts a one-level lower visibility. When the observation
visibility is level 3, the forecast is level 2, so we can conclude
that the visibility forecast value is lower than the observation.
Te KNN classifer performed very well in low-to-medium-
visibility weather. When the observation visibility is greater
than 800m but not greater than 1,600m (level 2), the ac-
curacy rate reaches as high as 100%. Te KNN classifer
performs poorly in low-to-medium-visibility weather.When
the observation visibility is not greater than 800m (level 1),
the accuracy rate is only 33.3%.

Te possible reason for poor calculations for low-
visibility weather is that there are many infuencing fac-
tors in low-visibility weather. (1) In the vertical space, in
addition to infuencing factors such as temperature,
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pressure, humidity, wind, and AQI, the temperature profle
within the boundary layer is also a signifcant infuencing
factor. For example, fog and heavy pollution weather at
airports are often accompanied by the phenomenon of
“temperature inversion,” which puts a lid on the vertical
difusion of pollutants. (2) In the horizontal space, in ad-
dition to local pollutants and water vapor and other infu-
encing factors, pollutants or water vapor transportation in
the surrounding area may also have an impact on local
visibility. (3) From the perspective of the time series, the

continuous accumulation of pollutants or water vapor also
has a greater infuence on the low-visibility weather. For
instance, on day 1, day 2, and day 3, all meteorological
factors (high humidity and small wind) are the same, but the
visibility gradually decreases as time goes by. What was not
taken into account in the analysis include temperature in-
versions in the vertical space, contaminant transport in the
horizontal direction, and cumulative efects in terms of time
series, which may become possible causes of unsatisfactory
forecasts for the low-visibility weather.
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Figure 4: Forecast and observation comparison through the visibility grading forecast model.

Table 3: Visibility grading forecast model test.

Visibility level PC (%) PO (%) FAR (%)

1 75 25 0
2 70 0 30
3 75 25 0
4 84.6 8.3 8.3
5 95.8 4.2 0

Table 2: Visibility grading forecast model.

Level Visibility grading forecast model
1 Y� 16937.11− 3.50972X1 + 25.05609X2 −16.386X3 −165.969X4 + 32.58018X5 + 95.8339X6
2 Y� 5183.243− 20.0912X1 + 7.546235X2 + 13.8712X3 − 41.6568X4 + 33.85167X5 + 20.06746X6
3 Y� 3196.879− 30.872X1 + 43.75235X2 − 5.32392X3 − 9.30138X4 + 4.731934X5 − 73.6623X6
4 Y� 12996.76−16.4763X1 − 3.28072X2 + 3.422158X3 − 87.6827X4 − 76.9059X5 − 64.8086X6
5 Y� 18171.71− 189.568X1 + 94.9773X2 + 47.38879X3 − 71.2293X4 − 345.517X5 + 446.3217X6

Table 4: KNN algorithm accuracy through cross-validation when diferent values are taken (unit: %).

K value K� 3 (%) K� 4 (%) K� 5 (%)
Accuracy 70.0 63.5 70.0

Table 5: Cross-validation results of KNN classifers for all levels of visibility (unit: %).

Forecast observation Level 1 (%) Level 2 (%) Level 3 (%) Level 4 (%) Level 5 (%)
Level 1 33.3 33.3 0.0 33.3 0.0
Level 2 0.0 100.0 0.0 0.0 0.0
Level 3 0.0 100.0 0.0 0.0 0.0
Level 4 14.8 7.4 0.0 77.8 0.0
Level 5 0.0 0.0 0.0 25.0 75.0
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3.4. Analysis of Visibility Characteristics of the Mianyang
Airport inWinter. Based on the visibility data, the variation of
average daily visibility in winter at the Mianyang Airport is
analyzed (Figure 5).Tedaily variation of average visibility at the
Mianyang Airport is obvious, with the minimum value of daily
visibility appearing at 9 : 00 (Beijing time, the same as below) and
the maximum value appearing at 17 : 00. Te average low value
of visibility appeared at 4 : 00 to 9 : 00 in the morning. Te
visibility began increasing slowly from 9 : 00, reached the
maximum value at 17 : 00, and then decreased slowly.

Te weather that afects visibility in Mianyang Airport in
winter is mainly radiation fog. Radiation fog has obvious daily
variation, which mainly occurs in the morning and generally
lasts until noon and afternoon. Te formation of radiation fog
is mainly due to the ground radiation cooling at night, so it is
easier to produce radiation fog in the morning, resulting in low
visibility. As the sun rises, the intensity of solar radiation in-
creases, the ground temperature increases, the cooling efect of

ground radiation begins to weaken, the dew point defcit in-
creases, the water vapor content near the ground decreases, the
intensity of radiation fog decreases, and the visibility is greatly
improved. At the same time, the height of the inversion layer
rises further, which is benefcial to the difusion of water vapor
in the lower layer, and also reduces the relative humidity and
increases the visibility. Terefore, the visibility at noon is
generally greater than that in the morning, until it reaches its
maximum at 17 : 00.

Te visibility at all levels in winter was analyzed
(Figure 6). Days of level-5 visibility were the least, which
accounted for 5% of the total. Te proportion of days with
level-4 visibility was 31%, which is the highest, followed
by days with level-3 visibility at 29%, days with level-2
visibility at 24%, and days with level-1 visibility at 11%.
Tis indicates that low visibility does not occur very
often, but it is the most critical level afecting fight
training.
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Figure 5: Daily variation of average visibility in winter.
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Since level 1 is the most important level for fight
training, so we analyzed the occurring and disappearing of
the visibility below 800m, and the period of visibility that is
most likely to develop or fade in a day, which lays
a groundwork for the visibility forecast below 800m.

As can be seen from Figure 7, visibility below 800m
mainly occurred and developed before 09 : 00, and the oc-
currence frequency is the highest at 03 : 00, indicating that
low visibility tends to occur in the early morning. Tere are
three peak periods (01 : 00, 03 : 00, and 07 : 00) for visibility
occurrence below 800m. As for the visibility disappearing
time below 800m, 08 : 00 to 15 : 00 is the peak period for
visibility to diminish and dissipate, with 09 : 00 being the
time for most dissipation, and most of low visibility dissi-
pates before 15 : 00.

Visibility below 800m occurs 24 times in total, and its
duration is analyzed (Figure 8). Te longest duration was
14 hours, which occurred on December 8, 2016, followed by
13 hours on December 4, 2016. In December 2016, low
visibility lasted longer and occurred in more days in De-
cember 2016 than in other months.

4. Conclusions

In this paper, the relationship between winter visibility and
meteorological factors and environmental factors is studied.
Te authors construct a visibility grading forecast model in

winter by dint of the multiple linear regression and the KNN
algorithm based on big data mining technology, and per-
form the testing and comparative analysis. At the same time,
the visibility characteristics in winter at the Mianyang
Airport are analyzed. Te conclusions are drawn as follows:

(1) Mianyang Airport’s winter visibility has a signifcant
correlation with relative humidity, dew point tem-
perature, wind speed, AQI, PM2.5 concentration,
PM10 concentration, and CO. It has a signifcant
positive correlation with wind speed, and a signif-
cant negative correlation with relative humidity, dew
point temperature, AQI, PM2.5 concentration, PM10
concentration, and CO, of which relative humidity
has the largest impact on the visibility with a cor-
relation coefcient of −0.76. Te correlation co-
efcient of dew point temperature is −0.55, the
correlation coefcient of wind speed is 0.33, the
correlation coefcient of AQI at the Municipal
People’s Congress is −0.59, the correlation coefcient
of PM2.5 concentration is −0.61, the correlation
coefcient of PM10 concentration is −0.54, and the
correlation coefcient of CO is −0.5.

(2) Te multivariate linear regression model and the
KNN model were adopted to conduct grading
forecasting experiments on visibility, respectively,
and the results showed that both models can be used
for visibility grading forecasts, but the forecast efect
for diferent levels of visibility is diferent. Te
multiple regression model can provide great level-1,
level-2, level-3, level-4, and level-5 visibility fore-
casts, with an accuracy rate of more than 70%. Te
KNN model has a better grading accuracy rate at
K� 3 or K� 5 than at K� 4, and the KNN model can
better forecast level-2, level-4, and level-5 visibility.
Note that, the accuracy rate of level-2 visibility is
100%. However, the forecast performance is poor in
the case of low visibility (level 1). In practice, the two
models can complement each other to further in-
crease the accuracy of the forecast.

(3) At the Mianyang Airport, the minimum value of
average daily visibility in winter appeared at 09 : 00,
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Figure 7: Occurrence time-frequency (a) and disappearing time-frequency (b) of visibility below 800m.

20
15
.1
2.
10

20
15
.1
2.
11

20
15
.1
2.
22

20
15
.1
2.
30

20
15
.1
2.
31

20
16
.1
.3

20
16
.1
.4

20
16
.1
.5

20
16
.1
.1
1

20
16
.2
.2
5

20
16
.2
.2
6

20
16
.1
2.
2

20
16
.1
2.
3

20
16
.1
2.
4

20
16
.1
2.
7

20
16
.1
2.
8

20
16
.1
2.
9

20
16
.1
2.
10

20
16
.1
2.
13

20
16
.1
2.
16

20
17
.1
.5

20
17
.1
.2
3

20
17
.2
.1
1

20
17
.2
.1
2

time

0
2
4
6
8
10
12
14
16

ho
ur
s

Figure 8: Visibility duration below 800m.
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the maximum value appeared at 17 : 00, and the
average low value of visibility appeared from 04 : 00
to 09 : 00 in the morning. According to the statistical
analysis of visibility at all levels in winter, level-5
visibility days account for the least proportion of the
total, and most are level-4 visibility days. Level-1
visibility occurred and developed before 09 : 00, 01 :
00, 03 : 00, and 07 : 00 and these were the peak time
for the occurrence of level-1 visibility, and 08 :
00–15 : 00 was the peak period for the visibility to
diminish and dissipate. Te maximum duration of
level-1 visibility was 14 hours.

In the future, we will also work in the following areas:
frst, collecting vertical space data and including the tem-
perature inversion into forecast factors; second, taking into
account the transport, convergence, and dispersion of
surrounding pollutants and water vapor; third, considering
the cumulative efect of pollutants and water vapor, in hope
of improving the efects of the KNN classifer and increasing
the forecast accuracy.
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