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Te univariate analysis of hydrological extremes is a well-established practice in developing countries such as Ethiopia. However,
for the design of hydrological and hydraulic systems, it is essential to have a thorough understanding of food event characteristics,
including volumes, peaks, time of occurrence, and duration. Tis study utilizes copula functions for bivariate modeling of food
peak and volume characteristics, examining the performance of four Archimedean copulas in the Guder basin located in Ethiopia
from 1987 to 2017. Flood peak and volume were extracted using the theory of runs for analysis of their joint characteristics with the
truncation level chosen as equal to the lowest annual maximum event. Univariate distributions with the best ftness on both
variables were determined, and results showed that gamma andGEV-ftted food peaks and lognormal-ftted food volumes are the
most suitable. Four Archimedean copulas were evaluated, and the Gumbel-Hougaard copula was found to be the best ft for the
data based on graphical and measurable tests. Bivariate probability and return period were computed in “AND” and “OR” states.
Te joint return period for food peak (97.49m3/s) and volume (77.35m3/s) was found to be 15 years in the “AND” state and
approximately 4 years in the “OR” state. Te study also evaluates univariate and conditional return periods, comparing them with
the primary one. Te copula method was an efective method for distributing marginal variables, highlighting its potential as
a valuable tool in food management.

1. Introduction

Te increase in water demand caused by population growth
and industrial development has caused issues related to
water resource development and optimal use to gain re-
searchers’ attention more than ever in recent decades.
Floods are a recurrent natural disaster all over the world,
causing substantial socioeconomic consequences and hu-
man victims [1, 2]. As a result, developing models that
allow for accurate projections of the extent of such cata-
strophic occurrences is crucial for achieving the con-
struction and management of hydraulic structures such as
dams, as well as acceptable food risk assessments. In

practice, such magnitudes are typically assessed using
univariate food frequency studies, which are primarily
concerned with peak fows [3], [4] [5]. In addition to the
uncertainty involved with the occurrence in both space and
time, these events may frequently have varied degrees of
association. As a result, using a univariate food frequency
analysis may result in an incorrect evaluation of the risks
associated with the event. However, a review of the liter-
ature suggests that the bulk of research uses a univariate
approach [6–8] rather than a more realistic approach that
acknowledges the multivariate nature of the underlying
phenomenology. In order to more properly refect the risk
associated with such events, it is required to analyze their
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simultaneous occurrence in order to better grasp their
probabilistic properties [9].

Recently, researchers have widely used a new method
known as the copula function in the multivariate frequency
analysis of hydrological phenomena [10, 11]. Copula
functions are not constrained by the limitations of ordinary
bivariate distribution functions and can be used to create
multivariate distribution functions by connecting diferent
univariate marginal distribution functions. Furthermore,
copulas can more accurately describe dependence structures
among variables ([12], [13–17]).

Copulas have been introduced as an efcient tool for
quantifying the dependence structure between correlated
quantities. Many studies have demonstrated the fexibility
provided by copulas in forming joint distributions
[15, 18–23]. Copulas were frst used in hydrological studies
by De Michele and Salvadori [24] in rainfall frequency
analysis. Naz et al. [15] used copula functions to investigate
the food at Tarbela Dam, Pakistan, and developed a method
for forecasting foods along the Indus River. Other studies
have also been used in food analysis [17, 25–27].

Siraj et al., [27] tested ten bivariate copulas from three
diferent copula families on food data from the Sava River in
Slovenia. Te Gumbel-Hougaard copula was found to be the
most appropriate for the peak and volume of the food, as
well as the peak and duration factors, whereas the student’s t
copula was found to be the most appropriate for the peak
and duration pair of factors. Ganguli and Reddy [28] used
a trivariate copula to break down the three food factors,
peak, volume, and duration. Based on the goodness-of-ft
and tail-dependence tests, as well as a graphical in-
vestigation, the best choice among Clayton, Gumbel-
Hougaard, Frank, and the student’s t copula has been
made. It was deduced that the student’s t copula was the best
ft for their data. Recently, another system’s entropy copula
implied for a multivariate examination of commonly
infuencing factors was tested on three food factors (P, V,
and D) at two distinct Chinese stations [29].

Amini et al. [30] applied the vine copula structures for
multivariate analysis of food characteristics in the Armand
watershed, Iran, using the hydrographs of 68 food events.
Te study found Johnson SB, lognormal (3P), log-logistic,
and lognormal (3P) best-ftted marginal distributions for
food duration, peak discharge, time to peak, and food
volumes, respectively. Tey found that the Frank copula has
the best-ftting copula at most of the edges and nodes. Zhang
and Singh [18] investigated the relationship between food
peak, volume, and duration using four families of Archi-
medean copulas: Ali-Mikhail-Hagh, Frank, Gumbel-
Hougaard, and Cook-Johnson. Te margins were exam-
ined using the extreme values distribution type I and the log-
Pearson type III. Teir results showed that there are sig-
nifcant associations between food peak and volume, as well
as food volume and duration. Tey realized that the
Gumbel-Hougaard family would be more appropriate to
explain the variable dependence structure.Te copula model
was also used to calculate the conditional return period. [31]
developed a new method for calculating bivariate design
events using copulas that allow for simultaneous and

nonsimultaneous occasions of the variables under consid-
eration. Copulas were also used in food frequency analysis
by diferent researchers [1, 19, 20, 28, 29–33]. Stamatatou
et al. [34] compared univariate and joint bivariate return
periods of foods that rely on diferent probability concepts
in the Yermasoyia watershed, Cyprus. Te pair of peak
discharge and corresponding volume was estimated and
compared using annual maximum series (AMS) and partial
duration series (PDS) approaches.

According to research, only one comprehensive study on
this topic has been conducted previously, which was per-
formed by Haile in 2022. Terefore, the novelty of this
research in Ethiopia is that it provides valuable insights into
a relatively new research area that can contribute to better
food risk management strategies. Multivariate food fre-
quency analysis can model the complex relationships be-
tween food variables and provide a comprehensive
understanding of the risk associated with foods, leading to
accurate estimation of food hazards, identifcation of
sources of food risk, and ultimately, better food risk
management strategies. Terefore, further research in this
area has the potential to address the current data gap in
Ethiopia and contribute to the development of efective food
risk management policies and practices. As a result, the aim
of this study was to create a copula-based probability model
for bivariate analysis of the Guder watershed’s 30-year fow
(1987–2017). Archimedean copulas such as the Clayton
copula, Frank copula, Gumbel-Hougaard copula, and Ali-
Mikhail-Haq copula have all been examined. Goodness-
of-ft statistics, upper tail-dependence coefcients, and
graphical analysis were used to compare the copulas. Te
primary, conditional, and Kendall return periods have also
been computed for a better knowledge of the river fow in the
study area in order to comprehend the danger of food
occurrences.

2. Materials and Methods

2.1. Description of Study Area. Guder watershed has
a drainage area of 7011 km2 and is located in central Ethiopia
in the Blue Nile basin’s south-eastern region. It may be
found in the Oromia regional state between 7°30 to 9°30 N
latitudes and 37°00′ to 39°00′ E longitudes. Tikur Incinis,
Ambo, Cheliya, Dendi, Jima Rare, Mida Kegn, Gojo,
Guduru, Liban Kutaye, Tokke Kutaye, and Ababo Guduru
are the districts covered by the Guder watershed (Figure 1).
It is bounded to the east by the Muger subbasin, to the south
by the Awash basin, and to the west by the Fincha subbasin.
Te Guder River rises in the mountains to the south of the
villages of Ambo and Guder. Te river runs from south to
north and empties into the Abbey River. Te main
tributaries of the Guder River include Huluka, Tarantar, and
Debris Rivers [16, 35–39].

2.2. Methodology. Te primary goal of this study is to apply
the copula method and evaluate its results. Initially, ap-
proaches for specifying the marginal distribution functions
for the various variables were used. Tis includes data
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analysis and generation of food characteristics [36, 40, 41],
modeling extremes for the selected parameters using
threshold peaks, and fnally determining the appropriate
distributions for each variable of interest. Following that, the
return periods for each variable were calculated using the
standard univariate approach. Copula represents the cor-
related variable’s joint distributions. As a result, it is critical
to examine the relationship between the variables. A scat-
terplot of the data, a scatterplot of the variables’ standardized
ranks, and a Chi-plot can be used to perform a graphical
analysis of dependence. Te Chi-plot is a plot of a rank-
based measure of each observation’s location versus
a measure of the Chi-squared test of independence. If the
transformed data are scattered above (below) the region
defned by the Chi-plot’s confdence interval [42, 43], the
dependence is positive (negative).

To quantify the dependence between variables, de-
pendence measures such as Kendall’s rank correlation co-
efcient (or Kendall’s tau), and Spearman’s rho can be
computed [16, 44]. Under the null hypothesis that the value of
the association measures is 0, the p values associated with
these measures can be calculated. If the p value is less than the
signifcance level, statistical independence is rejected. Ken-
dall’s tau is regarded as the most important measure of as-
sociation in the theory of copulas, particularly Archimedean
copulas, where its relationship with the generating function is
used for copula parameter estimation. One of the most
common methods for estimating the parameter (θ) of the

Archimedean copula is the inversion of Kendall’s tau. Te
relationship shown in Table 1 between Kendall’s tau and the
parameter is used to estimate in this method. Because this
relationship is dependent on the copula functions generating
function ϕ, diferent values of θ are obtained for diferent
copula models for diferent copula models [14, 15, 17, 36].

τ � 1 + 
1

0

ϕ(t)

ϕ′(t)
dt, (1)

where ϕ and ϕ′ are the generating function and derivative of
the Archimedean copula’s generating function, respectively.
Because this relationship is dependent on the generating
function ϕ of the copula function, diferent values of θ are
obtained for the various copula models listed in Table 1.
Table 1 describes the key characteristics of the Archimedean
copula families used in this study.

Following the selection of the best-performing copula
approach, the bivariate distributions had to be created.
According to Sklar’s theorem [47], a copula is a joint dis-
tribution function of typical uniform random variables that
may link marginal distribution functions with multivariate
probability distributions. Let FX,Y be a joint distribution
function of FX and FY marginal distribution. Te copula C

can be described as follows:

FX,Y(x, y) � C FX(x), FY(y)( . (2)
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Figure 1: Map of the study area [16, 36, 37].
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If FX, FY, and C are distribution functions, then FX,Y

given by equation (2) is a joint distribution function with
marginal FX and FY.

Evaluation of the joint distributions is greatly simplifed
when copulas are employed to construct the bivariate dis-
tribution, which is demonstrated in the following. Te joint
distribution function, defned in equation (3), is the

probability that both Q and V are less than or equal to
specifc thresholds of q and v, respectively; that is,

P(Q≤ q, V≤ v) � F(q, v) � C(F(q), F(v)) � C(u, v).

(3)

In practice, the probability of both Q and V exceeding
their respective thresholds can also be defned by copulas:

P(Q> q, V> v) � 1 − F(q) − F(v) + C(F(q), F(v)) � 1 − u − v + C(u, v). (4)

Te conditional distribution of V given Q≥ q and the
conditional distribution of Q given V≥ v can also be esti-
mated as the following equations:

F(v | Q≥ q) �
P(Q ≥ q, V< v)

P(Q≥ q)
�

F(v) − C(F(q), F(v))

1 − F(q)
�

v − C(u, v)

1 − u
, (5)

F(q | V≥ v) �
P(Q< q, V≥ v)

P(V≥ v)
�

F(q) − C(F(q), F(v))

1 − F(v)
�

u − C(u, v)

1 − v
. (6)

Te resulting joint probabilities of copula are expressed
as a function of univariate marginal distributions. Terefore,
for specifed univariate marginal distributions, the joint
distributions can be described simply through the use of
copulas.

Te copula-based return periods were computed after
demonstrating the joint distribution. Te joint (primary)
return periods known as “OR” mode and “AND” mode
[31, 48, 49] were computed in this study and are defned as
follows:

TOR �
E(t)

1 − C(u, v)
,

TAND �
E(t)

1 − u − v + C(u, v)
,

(7)

where u and v are uniformly distributed U(0, 1). Te U
represents FX(x), and V represents FY(y), and they were
created by applying the probability integral transform to X
and Y, a transformation that allowed us to simplify our work
by using an equivalent set of values that follow the standard
uniform distribution.

In addition, the return period can also be defned by
the event for Q given V≥ v or the event for V given Q≥ v

that is called the conditional return period for Q given
V≥ v and the conditional return period for V given Q≥ q,
respectively:

TQ|V≥v �
E(t)

[1 − v][1 − u − v + C(u, v)]
,

TV|Q≥q �
E(t)

[1 − u][1 − u − v + C(u, v)]
.

(8)

On the other hand, a secondary return period, also
known as Kendall’s return period, is defned as follows:

TK �
E(t)

KC(t)
�

E(t)

1 − KC(t)
, (9)

where KC is Kendall’s distribution function for the theo-
retical copula function.

As a reminder, u � FQ(q), and v � FV(v); hence, the (u,
v) pairs that satisfy the above equations form the associated
bivariate return period curve for a given return period value.
In other words, for a given copula value C(uv) � t, the (u, v)
pairs located in the copula level curve equals t are associated
with the return period value.

3. Results and Discussion

Te technique described in the methodology section was
used to evaluate the design variables that could be used in the
analysis of hydraulic or hydrologic problems on the Guder
River. In this case, both the food peak and the food volume
are important; thus, assuming the two variables are related,
the copula approach would be more signifcant than the
single-variable approach. Te threshold was chosen in ac-
cordance with the partial duration series methodology in
order to generate a larger sample of extreme events than in
the previous analysis [31, 40]. Te food volume V was then
estimated by locating the food volume that corresponded to
the chosen food peak events. More specifcally, the trun-
cation line is taken as 40 and 60m3/s for station-1 and
station-2, respectively; i.e., food events are defned as a daily
stream fow equal to or greater than 40 and 60m3/s. Eighty-
seven and hundred ffty-four food data are abstracted from
the recorded daily stream fow data (1987–2017) for the two
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stations, respectively. Te observed number of pairs (n) is 87
for station 1, consisting of peak discharge (Q) and volume
(V), with a mean interarrival time e(t) of 0.35 years. On the
other hand, for station 2, there are 154 pairs with a mean
interarrival time of 0.20 years. Te location and scale pa-
rameters for both variables are depicted in Table 2 at the two
stations.

3.1. Univariate Analysis. A univariate food frequency
analysis was performed after the extreme events were
chosen. Te datasets were subjected to various probability
models that were best ftted by gamma and generalized
extreme value (GEV) distributions for peak discharge at
stations 1 and 2, respectively, and lognormal for food
volumes at both stations.Te parameters of the distribution
were estimated using the maximum likelihood method,
which will also be used in the estimation of copula pa-
rameters [16, 48]. Following that, the Kolmogor-
ov–Smirnov (K-S) goodness-of-ft and graphical tests were
developed to identify the distributions that produced an
adequate ft to the data. After performing graphical and
goodness-of-ft (GOF) tests and computing K-S values for
each accepted model, the best-ft distributions were chosen
(Figure 2). Te maximum likelihood (ML) method was
used to estimate model parameters (Table 3). Finally, once
a suitable model had been identifed, the univariate return
periods for 2, 5, 10, 25, 50, and 100 years were calculated
and are shown in Table 4. In the lower return periods, the
estimated univariate return values difer only for the peak
discharge variable.

3.2. Bivariate Analysis. Following the univariate analysis,
Kendall and Spearman’s correlation coefcient was used to
perform a formal assessment of the dependence between the
pairs of variables under consideration. Te frst station
yielded Kendall and Spearman’s correlation coefcient
values of 0.60 and 0.79, while the second station yielded
a value of 0.67 and 0.85, respectively, highlighting the strong
correlation between the two variables (Table 5).

Te scatter plot of the u and v is displayed in Figures 3(a)
and 3(b) for both station-1 and station-2, respectively, where
a strong correlation between the two variables is readily
apparent. Te scatter plot of the pseudo-observations is
plotted in Figures 3(c) and 3(d) for station-1 and station-2,
respectively; this shows a positive relation of dependence
between variables. Te values of Kendall’s τ and Spearman’s
ρsrank-based nonparametric measures of dependence vali-
date the results provided by the graphical information and

also supported by the Chi-plot (Figure 4). Te Chi-plot
shows that the majority of the values are located above
the region defned by the confdence intervals, indicating
that the positive dependency between the two variables
(peak and volume) is strong.

Nonparametric estimation method is used to estimate
copula parameters and to identify copula-based bivariate
food frequency analysis of food peaks and volumes [44, 50].
Te four commonly used Archimedean copula families are
considered as candidates for joint food frequency analysis.
Tese are Ali-Mikhail-Haq, Clayton, Frank, and Gumbel-
Hougaard copula. Te feasible copulas were checked by
testing the admissible range of dependence supported by
each one via Kendall’s τ value. As a result, the Ali-
Mikhail-Haq (τ ∈ [0.1817, 1/3]) was eliminated (Figures 5
and 6).

Te parameter estimated by Kendall’s τ is given in Ta-
ble 6 for each copula method.Te goodness of ft of observed
data to the theoretical bivariate distribution obtained by
using copula functions is tested by AIC [51] and KS
methods. Table 7 shows that AIC and KS values for bivariate
distributions are obtained by using diferent copula func-
tions for food peaks and volumes. Considering both tests,
the Gumbel-Hougaard copula was selected as the best copula
model for station-1 and station-2. Based on this, joint cu-
mulative density function (JCDF), conditional probability,
and corresponding return periods for diferent combina-
tions of food peaks and volumes are calculated.

In other defnition, if the plot is in agreement with
a straight line passing through the origin at a 45-degree
angle, then the generating function is satisfactory [46], [52].
Te 45-degree line indicates that the quantiles are equal.
Otherwise, the copula function needs to be reidentifed.

3.2.1. Joint and Conditional Density Function

(1) Joint Cumulative Density Function (JCDF). Te JCDF of
food peaks and volumes is calculated based on Gumbel-
Hougaard copula methods for station-1 and station-2,

Table 1: Copula function, generating function ϕ(t), and the functional relationship of Kendall’s tau with the copula parameter for
Archimedean copulas [10, 45] [46].

Copula methods C(u, v) ϕ(t) Parameter estimation
Ali-Mikhail-Haq uv/1 − θ(1 − u)(1 − v), θ ϵ [− 1, 1] ϕ(t) � ln(1 − θt)/t τ � 3θ − 1/3θ − 2/3(1 − 1/θ)2 ln(1 − θ)

Clayton (u− θ + v− θ − 1)− 1/θ, θ≥ 0 t− θ − 1/θ τ � θ/θ + 2
Frank − 1/θ ln[1 + (e− θu − 1)(eθv − 1)/e− θ − 1], θ≠ 0 e− θt − 1/e− θ − 1 τ � 1 − 4/θ[1 − D1(θ)]

Gumbel-Hougaard exp − [(− lnu)θ + (− lnv)θ] 
− 1/θ

, θ≥ 1 (− ln t)θ τ � 1/1 − θ

Note. Dk(x) is the Debye function, for any positive integer k, and determined by Dk(x) � (k/x2) 
x

0(tk/et − 1)dt.

Table 2: Location and scale parameters for variables food peak (Q)
and volume (V).

Stations Variables Location parameters Scale parameters

1 Q 81.93 19.88
V (106) 33.75 51.78

2 Q 89.21 17.03
V (106) 12.19 25.38
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respectively, in which u and v were estimated by corresponding
marginal distributions of food peak and volume. Te contour
lines demonstrate that, given a fxed occurrence probability of
a food event, one can obtain various occurrence combinations

of food peaks and volumes, and vice versa, which cannot be
obtained by single-variable food frequency analysis (Figure 7).
Tese results should be useful for hydrological structure design
studies.
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Figure 2: Comparison of the observed food variable and their ftted distributions: (a) gamma distribution for food peak of station-1, (b)
lognormal distribution for food volume of station-1, (c) gamma distribution for food peak of station-2, and (d) lognormal distribution for
food volume of station-2.

Table 3: Estimated parameter for ftted distribution and goodness of ft.

Station Flood peak KS Flood volume KS
1 Gamma distribution (β�17.4, α� 4.71) 0.0909 Lognormal distribution (μ�16.23, σ � 1.64) 0.0613
2 GEV (u� 77.4437, α� 11.3452, k� 0.0546) 0.0973 Lognormal distribution (μ�14.8152, σ � 1.538) 0.0617
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(2) Conditional Density Function. Te conditional proba-
bilities Fq/v and Fq/v are estimated based on (5) and (6) and
are depicted in Figure 8 for both stations.

(3) Joint Return Periods. Te TOR (equation (7)), TAND
(equation (7)), and TK (equation (9)) joint return periods

associated with the theoretical events with a peak equal to qT

and volume equal to vT for univariate return periods T equal
to 5, 10, 50, and 100 years are estimated for both the Station-
1 and Station-2, being qT and vT the quantiles obtained from
the ftted marginal distributions. Te results presented in
Table 8 indicate that although TOR values linked to the

Table 4: Results of univariate return periods 5, 10, 25, 50, and 100 for food peak and volume.

Return period (years)
Station 1 Station 2

Flood peak Flood volume (106m3) Flood peak Flood volume (106m3)
5 97.49 77.35 93.78 25.92
10 108.09 100.14 101.47 34.75
25 120.46 124.42 110.74 44.16
50 129.06 140.11 117.31 50.23
100 137.20 154.2 123.60 55.69

Table 5: Value and p value of the rank-based nonparametric measures of dependence: Kendall’s τ and Spearman’s ρ.

Dependence measure Station-1 Station-2
Kendall’s τ 0.60 0.670
Spearman’s ρ 0.79 0.85

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

u1

u2

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

u2

u1

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S i/n
+1

Ri/n+1

(c)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Ri/n+1

S i/n
+1

(d)

Figure 3: (a, b) Scatter plot of (u, v); (c, d) scatter plot of pseudo-observations derived from the observed data for station-1 and station-2,
respectively.

Advances in Meteorology 7



-1 -0.5 0 0.5 1
λi

1

-1

0.8

-0.8

0.6

-0.6

0.4

-0.4

0.2

-0.2

0

Station-1
χ i

-1 -0.5 0 0.5 1
λi

1

-1

0.8

-0.8

0.6

-0.6

0.4

-0.4

0.2

-0.2

0

Station-2

χ i

Figure 4: Chi-plot for station-1 and station-2.

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Nonparametric

Cl
ay

to
n

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Nonparametric

G
um

be
l H

ou
ga

ar
d

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Nonparametric

Fr
an

k

(c)

Figure 5: Comparison of nonparametric and parametric K(z) for station-1.
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Gumbel copula are greater than those linked to the Clayton
copula, TAND and TK values are much higher. It can also be
seen that the greater the return period, the larger the dif-
ference between joint return periods related to each copula.
Terefore, as expected for not being an extreme-value

copula, the Clayton copula underestimates the risk associ-
ated with the TAND and TK joint return period. Hence, this
analysis supports the fact that not taking into consideration
the upper tail dependence in joint extreme events modeling
can lead to underestimate the risk [53] [46],
[13–15, 17, 31, 38].

Shiau et al. [52] predicted, in reference to “OR” and
“AND” cases and food peak and volume, that “the use of
TOR or TAND as the design criterion depends on what sit-
uations will destroy the structure. TOR can be used to cal-
culate the average recurrence interval when either the food
peak or food volume exceeds a certain magnitude. TAND, on
the other hand, is used when the food volume and food peak
must exceed a certain magnitude that will cause damage.” TK

was proposed by Salvadori [24] and is thus widely used (e.g.,
[48, 50, 54–56]). Based on the following arguments, the idea
behind TK is to overcome an apparent shortcoming of TOR
and TAND. Diferent pairs of (U, V), e.g., (u, v), (u,, v,), and
(u,,, v,,), lying on the same level curve of a bivariate joint
distribution, have the same joint probability, i.e.,
P[Q≤ q∩V≤ v] � P[Q≤ q′ ∩V≤ v′] � P[Q≤ q″ ∩V≤ v″],
but they defne diferent and partially overlapping
P(Q> q, V> v) critical regions. As a result, we have infnite
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Figure 6: Comparison of nonparametric and parametric K(z) for station-2.

Table 6: Estimated value of the copula parameter (θ).

Copula θ (station-1) θ (station-2)
Ali-Mikhail-Haq Not applicable Not applicable
Clayton 3.24 4.37
Gumbel-Hougard 2.62 3.19
Frank 8.56 10.92

Table 7: AIC and KS test values for copulas.

Station Test Gumbel-Hougaard Clayton Frank

Station-1 AIC − 129.53∗ − 117.4652 − 75.1834
KS 0.0575∗ 0.0628 0.1735

Station-2 AIC − 141.076∗ − 131.47 − 125.43
KS 0.0413∗ 0.0684 0.052

Note. ∗ represents the chosen copula.
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OR (AND) critical regions with the same joint probability,
making a choice between them impossible (e.g.,
[27, 54, 57]). Because the lack of correspondence between
each TOR(TAND) value and a unique critical region is in-
correct from a measure theoretic standpoint, Salvadori [24]
introduced TK, which is based on the Kendall distribution
(or measure) KC and measures the chance of observing an
event in one of the two distinct subregions defned by
a level curve characterized by a distinct value of joint
probability. Te contours for joint return periods TOR and
TAND are depicted in Figure 9.

Based on the contours of the joint return periods, given
a return period, one can obtain various combinations of

food peaks and volumes, and vice versa. Tese various sce-
narios can be very useful for hydrologic engineers to carry out
efective hydrologic engineering management and designs,
such as spillways and food control reservoirs, in which a design
food hydrograph (DFH) is needed [58]. Te DFH is char-
acterized by its peak, volume, duration, and shape, as addressed
in previous studies [59–61] [62]. Various pairs of food peak
and volume values associated with a given return period, say
100 years, provide onemore possible choice on which the DFH
should be selected. Te variability of design food events under
bivariate food frequency analysis allows a better selection of
the most crucial case according to a specifc water resources
planning, management, or design problem, which cannot be
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Figure 7: JCDF of peak and volume: (a) P(Q≤ q, V≤ v) for station-1, (b) P(Q> q, V> v) for station-1, (c) P(Q≤ q, V≤ v) for station-2, and
(d) P(Q> q, V> v) for station-2.
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achieved via single-variable frequency analysis.Te conditional
joint return periods were computed using the copula-based
distributions selected for each set of correlated food variables.
Te conditional joint returns periods TQ|V≥v and TV|Q≥qof
food peak given food volume and food volume given peak
based on the conditions Q≥ q and V≥ v were computed using
equation (8).

Figure 10 shows the conditional joint return periods for
the Guder River at Station-1 and Station-2 for the above-

mentioned conditions. Te fgures show that the conditional
return period is signifcantly afected by the nature of
conditioning. Taking the conditional return period of the
Guder River Station-1 and 2 as an example, the return period
of a specifed value (say, food peak) when the conditioning
is in terms of a fxed value (say, food volume) is found to be
lower than the return period when the conditioning is in
terms of a value less than or equal to the fxed value. On the
one hand, for low specifed food volume values, no
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signifcant diferences were found under these two condi-
tions, i.e., in terms of a fxed volume value and a volume less
than or equal to the fxed volume value. On the other hand,
signifcant diferences were found under these two

conditions if a specifed peak discharge value was high.
Furthermore, if the return period of a larger specifed value is
desired, then larger diferences are obtained under the two
conditions. A decreasing trend of the return period is

Table 8: Comparison between joint return periods associated with the theoretical events.

Station Copula T � TQ � TV

qT

(m3/s)
vT

(106m3) t TOR TAND Kc(t) TK

1 Gumbel-Hougaard

5 97.49 77.35 0.7437 4 15 0.9382 16
10 108.09 100.14 0.8397 6 34 0.9614 26
25 120.46 124.42 0.9020 10 107 0.9764 42
50 129.06 140.11 0.9255 13 258 0.9820 56
100 137.20 154.20 0.9392 16 625 0.9853 68

2 Gumbel-Hougaard

5 93.78 25.92 0.7688 4 24 0.9686 32
10 101.47 34.75 0.8995 10 92 0.9863 73
25 110.74 44.16 0.9271 14 176 0.9901 101
50 117.31 50.23 0.9538 22 462 0.9937 159
100 123.60 55.69 0.9805 51 3418 0.9973 376
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Figure 9: Joint return period of food peak and volume: (a) TOR for station-1, (b) TAND for station-1, (c) TOR for station-2, and (d) TAND for
station-2.
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obtained for the same specifed value under diferent con-
ditions. Tis can be explained by the correlation structure of
food peak and volume, which are positively correlated. Te
positive correlation results in a less likely occurrence of high
specifed discharge for low conditioning volume than would
be the case for high specifed discharge under high condi-
tioning volume.

Te conditional return period was always higher than the
primary return period TAND and TOR. Te secondary return

period was higher than the primary return period TOR and
lower than the return period TAND. Tese relationships are
in accordance with the diferent fndings ([46],
[13–15, 17, 38]).

From Table 8, it is evident that the return period for the
AND operation is consistently larger than the return period
for the OR operation. Additionally, the univariate return
period values always fall between these two primary return
period notations. Tis fnding aligns with the results
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Figure 10: Conditional return period for Guder River: (a) F(q | V≥ v) for station-1, (b) F(v | Q≥ q) for station-1, (c) F(q | V≥ v) for station-
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reported by [46]. Te study’s results highlight the utility of
copulas as a valuable mathematical tool for modeling various
multidimensional hydrological processes, including foods
and sediment transport-related processes.

4. Conclusions

In this study, a bivariate food frequency analysis was carried
out using a large number of bivariate copulas as well as various
statistical and graphical tests. Te annual maxima series and
peaks of threshold approaches were used to collect the data
samples, and the corresponding univariate and bivariate return
periods were evaluated and compared as the next step. Overall,
the results agreed with [46], [13–15, 17, 31, 38] who demon-
strated that the relationship between univariate and joint return
periods can be written as TOR <TUN <TAND.

Te examination of correlation in the two samples of data
confrmed that the hydrological variables were signifcantly
dependent on one another. It is worth noting that, while the
association pattern changed when diferent sampling methods
were used, the return period estimates did not difer signif-
cantly. Overall, the presence of dependence among hydro-
logical variables, as well as the demands of the common
problems at hand, points to the need for multivariate distri-
butions to be constructed, particularly when dealing with
design values. As a result, more research should be conducted
to investigate the signifcance of copula application in hy-
drological analysis, specifcally in return period estimation.

Tese fndings could be useful for hydrological system de-
sign studies, and the same approach could be extended to any
station in Ethiopia. Te general conclusion is that univariate
frequency analysis cannot ofer an adequate probabilistic eval-
uation of correlated multivariate hydrological events, which can
result in overestimation or underestimation of their magnitude.
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