
Research Article
Missed Approach, a Safety-Critical Go-Around Procedure in
Aviation: Prediction Based on Machine Learning-Ensemble
Imbalance Learning

Afaq Khattak ,1 Pak-Wai Chan,2 Feng Chen ,1 Haorong Peng ,3

and Caroline Mongina Matara4,5

1Te Key Laboratory of Infrastructure Durability and Operation Safety in Airfeld of CAAC,
College of Transportation Engineering, Tongji University, 4800 Cao’an Road, Jiading, Shanghai 201804, China
2Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong, China
3Shanghai Research Center for Smart Mobility and Road Safety, Shanghai 200092, China
4Department of Civil and Resource Engineering, Technical University of Kenya, P.O. Box 52428-00200, Haile Sellasie Avenue,
Nairobi, Kenya
5Department of Civil and Construction Engineering, University of Nairobi, P.O. Box 30197-00100, Harry Tuku Road,
Nairobi, Kenya

Correspondence should be addressed to Feng Chen; fengchen@tongji.edu.cn

Received 18 November 2022; Revised 11 May 2023; Accepted 30 June 2023; Published 19 July 2023

Academic Editor: Yaolin Lin

Copyright © 2023 Afaq Khattak et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te fnal approach phase of an aircraft accounts for nearly half of all aviation incidents worldwide due to low-level wind shear,
heavy downpours, runway excursions, and unsteady approaches. Adopting the missed approach (MAP) procedures may prevent
a risky landing, which is usually executed in those situations, but it is safety-critical and a rare occurrence. Tis study employed
machine learning-ensemble imbalance learning to predict MAPs under low-level wind shear conditions based on environmental
and situational parameters. Te models were developed using the 2017–2021 Hong Kong International Airport (HKIA) Pilot
Reports (PIREPs). Initially, imbalance data were applied to machine learning models such as the random forest (RF), light
gradient boosting machine (LGBM), and extreme gradient boosting (XGBoost), but these were unable to accurately predict the
occurrence of MAPs. Ten, these models were used as base estimators for ensemble imbalance learning methods, including the
self-paced ensemble (SPE) framework, the balance cascade model, and the easy ensemble model. Te SPE framework utilizing
XGboost as the base estimator performed better than other frameworks in terms of recall, F1-score, balanced accuracy, and
geometric mean. Afterwards, SHAP was utilized to interpret the SPE framework with XGboost as the base estimator. Results
showed that low-level wind shear magnitude, runway orientation, and vertical location of low-level wind shear contributed most
to MAPs. Runways 07C and 07R had the most MAPs. Most MAPs were initiated when low-level wind shear was within 500 feet of
the ground. Strong tailwind triggered MAPs more than headwind. For aviation safety researchers and airport authorities, the
framework proposed in this study is a valuable tool.

1. Introduction

At the fnal approach, phase of the aircraft, bad weather
conditions, runway excursions, and unstabilized approaches
are the primary causes of nearly half of all aviation accidents
worldwide. An unsafe landing can be avoided by initiating
amissed approach (MAP) protocol. Although the protocol is

in place to prevent unsafe landings, the complex and tough
maneuvering operations and constrained time availability
can increase potential dangers, especially in extreme weather
conditions. Airport throughput and on-time performance of
the fights are adversely afected, as is the workload of air
trafc controllers and noise levels [1–4]. Most MAPs are
made at low altitudes and slow speeds, and therefore, several
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actions must be taken instantly, such as altering the altitude,
thrust, and fight path of the aircraft to ensure no conficts
with nearby air trafc are encountered as a result. Since safe
and efective MAP execution depends on both the pilot and
the air trafc controller, their roles are crucial.

While wind shear is a local meteorological phenomenon,
it may be associated with larger-scale phenomena like
thunderstorms and cold fronts on the mesoscale or spatial
and temporal scales. Te International Civil Aviation Or-
ganization (ICAO) specifes low-level wind shear as a sus-
tained change of 15 knots or more in headwind or tailwind
within 1600 feet above ground level, and this is a crucial
weather phenomenon from an aviation perspective. It varies
the lift of the aircraft, which can cause it to deviate from its
intended approach path, having to put both incoming and
departing aircrafts in hazard [5, 6]. Tis can ultimately lead
to the execution of MAPs (Figure 1).

Low-level wind shear during the fnal approach phase
can have two potentially catastrophic efects on the air-
craft, and pilots feel enormous pressure: (1) low-level
wind shear can destabilize the glide path, and (2) it can
induce the approach speed to veer away from the pre-
defned threshold [7]. Te efects of decreasing and in-
creasing shear from the headwind on an aircraft are
depicted in Figure 2 under the assumption of no pilot
intervention and a standard instrument landing system
(ILS) approach with a glide slope of 3 degrees. Te frst
case, depicted in Figure 2(a), is the decreasing headwind
experienced by an incoming aircraft. Te aircraft’s air-
speed (its speed relative to the air fow around it) de-
creases as it gets closer to the ground, which reduces lift
and typically results in a steeper descent angle due to the
momentary force imbalance. If this occurs, the plane may
crash land short of the runway. Te pilot in this case may
increase the level of throttle to go-around (MAP) and try
for a second attempt. With the same glide slope, but now
with a rising headwind (Figure 2(b)) (3 degrees), the
aircraft’s airspeed increases in relation to the surrounding
air fow, creating more lift that tends to result in a fatter
angle of descent or even a climb. In this case, the pilot can
choose to abort the landing and proceed with a MAP.

In either case, MAP may be activated, and pilots and
controllers must be able to collaborate in order to make
MAP decisions based on anticipated weather conditions,
which is essential for the safe approach of aircraft.

Numerous works of research have examined the criteria
and variables that contribute to MAPs occurrences. Nu-
merous methods have been tried by researchers in the past
for predicting and modeling MAPs based on a wide variety
of input factors. Using statistical and machine learning
models, Zaal et al. [8] assessed the infuence of environ-
mental factors on MAPs. Tey noticed that visibility, wind
speed, and localizer deviation signifcantly impact MAP
decision-making. Chou et al. [9] used machine learning
models to analyze the causes of MAPs. Tey observed that
the categorical boosting model performed better than other
models and that factors such as visibility, wind speed, and
pressure were among the most important causes of MAPs.
Donavalli et al. [10] utilized a statistical method to evaluate

the weather factors infuencing MAPs. Te results indicated
that thunderstorms and winds exceeding 29 miles per hour
signifcantly increase the likelihood of MAP. However,
visibility did not indicate a signifcant impact. Numerous
occurrences of MAPs were attributed to adverse weather
conditions, particularly convective storms on the approach
path, according to Proud [11] who employed and compared
various MAPs detection methods.

In addition, several researchers have emphasized the
modeling of MAPs resulting from an unstable approach and
a change in runway confguration. Using the sparse variation
Gaussian process (SVGP) model, Singh et al. [12] developed
a framework to demonstrate the aircraft’s 4D trajectories
during the fnal approach phase. Te experimental analysis
revealed that SVGP delivers an interpretable probabilistic
bound for the parameters of aircrafts that can assess de-
viation and detect anomalies in real time. To predict the
occurrences of MAPs, the authors of [13] used a logistic
regression model based on principal component analysis.
Tey found that factors such as fight spacing, approach
stability, departure air trafc, and ceiling have a signifcant
impact on MAPs. A number of researchers have also in-
vestigated MAPs, focusing on the performance and behavior
of pilots and air trafc controllers. Causse et al. [14] dis-
covered that the unpleasant psychological efects are tied to
the MAPs. Te uncertainty of a decision’s outcome tem-
porarily compromises pilot decision-making and cognitive
performance. During the execution of MAPs, the authors of
[15] analyzed the anomalies in pilot fying performance,
including fight path deviations and visual scanning be-
haviors. According to Jou et al. [2], situational unawareness
by air trafc controllers was the major cause of MAP oc-
currences. Kennedy et al. [16] observed that the age and
experience of air trafc controllers have signifcant efects on
MAP decision-making.

When compared to statistical models, machine learning
models’ predictions are less translucent because of their
black-box nature, despite the fact that machine models are
more fexible. Equally important for a more accurate eval-
uation of the model’s efectiveness is a comprehensive ex-
planation of how the model would actually work. Traditional
methods for interpreting the outcomes of machine learning
models involved feature ranking analysis, such as impor-
tance scores based on permutation. Even though the feature
ranking interpretation can rank the signifcance of the
diferent factors, it cannot exhibit interactions among factors
or how much each factor infuences the model’s prediction.
Recent studies have utilized posthoc SHapley Additive ex-
Planations (SHAP) interpretation tool, which is based on the
notion of game theory, to assess the efect of diferent factors
on the outcome [17]. Using SHAP in conjunction with
machine learning models, it is possible to assess the im-
portance and relative contribution of various factors on the
prediction.Tey have been used in a variety of felds, such as
the safety assessment of infrastructure projects [18, 19];
clinical, medicine, and healthcare modeling [20–27];
transportation and trafc safety [28–38]; fnance and eco-
nomics risk analysis [39–42]; and ofshore safety
analysis [43].
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Although MAPs are exceptionally rare, being able to
foresee when they might occur in response to extreme
weather is crucial. Prior research has provided useful in-
sights into the numerous factors that contribute to MAPs;
however, to the best of our knowledge, no studies have
accounted for the impact of low-level wind shear and used
cutting-edge ensemble imbalance learning strategies in
conjunction with SHAP interpretation tool, and this area
remains largely unexplored in the existing literature. Tis
study aims to quantify the factors that contribute to Hong
Kong International Airport (HKIA)-based MAPs triggered
by extreme weather and situational factors by employing
three state-of-the-art machine learning-ensemble imbalance
learning techniques, namely self-paced ensemble (SPE)
framework [44], balanced cascade model [45], and easy
ensemble model [45] with three state-of-the-art machine
learning classifers as base estimators, namely random forest
[46], light gradient boosting machine (LGBM) [47], and
extreme gradient boosting (XGboost) [48].

Te intent of this paper has three aspects. Te outcomes
of our study would help pilots, air trafc controllers, and
aviation policymakers truly comprehend the factors that
raise the likelihood of a MAP occurring. Second, MAPs and
the conditions that lend support to them may be regarded as
unusual; therefore, analyzing the causes of MAP occurrences
can help identify specifc measures that can be taken to
lessen the frequency with which MAPs are executed. Te
number of MAPs can be reduced by implementing miti-
gation strategies such as adjusting protocols, fight training,
and technical equipment designs.

To that end, we frst examine the HKIA-based pilot
reports (PIREPs) to identify the causes of the MAPs. When
talking about pilot reports in civil aviation, the acronym

PIREP is commonly used. Pilots who experience MAP and
other forms of rough weather are directed to contact air
trafc controllers via PIREPs. Low-level wind shear con-
ditions (the magnitude, altitude, and encounter location
from the runway threshold, as well as its causes), type of
aircraft (narrow or wide-body), precipitation aspect (clear
sky or rainfall), fight (HKIA inbound international or
domestic), arrival (approaching) runway (07L, 07R, 25L, and
25R), and temporal factors including season of the year and
time of day can all contribute to MAPs. Upon establishing
which factors are related to MAPs, we build machine
learning-ensemble imbalance learning models to test their
efcacy. Te SHAP interpretation method is then used to
determine how much each factor contributes to MAP
occurrence.

Te remainder of this paper is structured as follows:
Section 2 details the study’s methodology, including its data
source and analysis phases, machine learning-ensemble
imbalance learning models, and posthoc SHAP explana-
tion approach. In Section 3, we present the performance
assessment of machine learning-ensemble imbalance
learning models as well as posthoc explanation results via
SHAP. In Section 4, we summarize our fndings and discuss
their relevance.

2. Method and Data

In this study, machine learning-ensemble imbalance
learning techniques, including self-paced ensemble (SPE),
balance cascade, and easy ensemble, with state-of-the-art
machine learning models as base estimators, i.e., random
forest (RF), light gradient boosting machine (LGBM), and
extreme gradient boosting machine (XGBoost), were used
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Figure 1: Location of low-level wind events that occur near airport runways.
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Figure 2: Low-level wind shear adverse and potentially hazardous efects on approaching aircraft. (a) Final approach with decreasing shear
from headwind. (b) Final approach with increasing shear from headwind.
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to predict the MAPs at HKIA under low-level wind shear
conditions caused by see breeze and gust front. Te data
used for the research come from the HKIA-based pilot
fight reports (PIREPs) during the time period 2017–2021.
Te PIREP data were frst preprocessed for the missing
values and removed irrelevant information, such as re-
ported hazardous weather conditions during takeof. Ten,
for the development and assessment of the machine
learning-ensemble imbalance learning techniques, the data
were split into training (70%) and testing (30%) datasets. In
addition to model development, hyperparameters of
LGBM, XGBoost, and RF (base estimators) were tuned
employing Bayesian optimization in combination with 10-
fold cross-validation. Machine learning-ensemble imbal-
ance learning techniques with fne-tuned base estimators
were used for performance evaluation and model com-
parison. To further interpret the efect of each factor on the
MAP occurrences, the optimal model was used to calculate
Shapley additive values using the posthoc SHAP analysis
tool, which provides factor importance and contribution
analysis as well as factor interaction analysis. Te overall
operational conceptual framework proposed in this study is
shown in Figure 3.

2.1. Study Location. Te HKIA (IATA code: HKG, ICAO
code: VHHH) is the main airport of Hongkong, which is
located on the artifcial island of Lantau of the subtropical
coast of the Chinese mainland (Figure 4). Hong Kong’s
regular convective weather consists of tropical cyclones and
the southwest monsoon. In addition to causing fight delays,
the convective weather also tends to bring thunderstorms
and downpours to the area.Tis airport is one of the airports
most susceptible to low-level wind shear. Innumerable
observation-based and simulation studies demonstrated that
HKIA’s complex land-sea contrast and intricate orography
are favorable conditions for the emergence of low-level wind
shear [49]. Approximately every 400–500 fights, a signif-
cant low-level wind shear event takes place [50]. From 1998,
when HKIA frst opened, through 2015, 97% of reports
indicated level-level wind shear between 15 and
25 knots [51].

2.2. Data Processing from Pilot Reports (PIREPs). Te avia-
tion sector generally abbreviates pilot reports as PIREPs.
Pilots alert air trafc controllers when they encounter po-
tentially dangerous weather conditions. Turbulence, icing,
and the status of the fight path are typical aspects covered in
PIREPs. Since HKIA is particularly prone to low-level wind
shear, specifc information about its occurrence is also
provided in HKIA-based PIREPs. Tis includes the type of
aircraft and the fight, the vertical low-level wind shear
encounter locations (such as 200 ft, 500 ft, and 1000 ft), the
horizontal encounter locations of low-level wind shear from
the threshold of runway (such as 1 MF, 2 MF, and 3 MF), the
magnitude of low-level wind shear, and the date and time of
the occurrence of low-level wind shear. Te pilot may also
report MAP in the HKIA-based PIREPs if it is executed due
to low-level wind shear caused by sea breeze, or gust front, as

shown in Table 1. It should be noted that the shear from
a headwind and a tailwind is represented by plus and
minus signs.

From 2017 to 2021, PIREPs depicted a total of 1731
occurrences of low-level wind shear on both outbound and
inbound fights. However, 1388 (80.418%) were indicated
by HKIA inbound fights, while 343 (19.81%) were con-
frmed by HKIA outbound fights out of a total of 1731
occurrences. In this research, we focused on the factors that
contribute to MAP during low-level wind shear events, so
we only kept data from arriving fights and eliminated the
data that was reported by outbound fights. As this study
considers only low-level wind shear-induced MAPs, the
data reported by approaching fights were kept in the
dataset while that from outbound fights were excluded. In
addition, the dataset was preprocessed to clean up the
extraneous data. Once redundant and erroneous data were
excluded, a dataset containing 765 low-level wind shear
occurrences in which MAPs have been observed 184 times
was achieved. Furthermore, a binary classifcation problem
was setup by labeling all MAPs (the minority class) as “1”
and all APs (approaches being the majority class) as “0.”
Table 2 lists all the variables and provides descriptions
of each.

2.3. Machine Learning-Ensemble Imbalanced Learning
Techniques. In this study, three ensemble imbalanced
learning techniques were proposed for the prediction of
MAP occurrence: the self-paced ensemble (SPE) framework,
the balance cascade model, and the easy ensemble. Tese
ensemble-imbalanced learning techniques combine resam-
pling and ensemble learning models. We incorporated
LGBM, XGBoost, and RF as the base estimators to evaluate
the performance of ensemble imbalanced learning tech-
niques in MAP prediction. Te details of each ensemble
imbalanced learning technique are provided below while the
details of base estimators are provided in Appendix A-1.

2.3.1. Easy Ensemble Approach. Easy ensemble is
a straightforward approach and is known for its high per-
formance. It is essentially an integration of an under-
sampling technique and a base estimator. First, bootstrap
samples several subsets of a majority class independently and
then builds and learns a base estimator for each subset. Te
fnal robust ensemble is built by adding all of the generated
classifers. Te working procedure of EasyEnsemble is de-
scribed as follows in Algorithm 1) [45]:

2.3.2. Balance Cascade Approach. In this approach, multiple
balanced subsets of data are generated, and a weak classifer
is learned for each subset. Tis approach reduces the ma-
jority of class training sets at each step by removing all
correctly classifed instances. In two ways, it difers from
EasyEnsemble. First, the weights are modifed in accordance
with the false positive rates that a classifer must achieve.
Second, instances that have been correctly classifed are
eliminated.Tis sequential dependence focuses primarily on
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minimizing redundant information in the majority class.
Following Algorithm 2) [45] is a description of the balance
cascade’s operational procedure.

2.3.3. Self-Paced Ensemble Approach. In this study, we also
proposed a newly developed SPE framework [44], which is
an ensemble-based imbalance learning framework.Te basic
concept regarding hardness harmonize and self-paced factor
is highlighted as follows, which is then followed by the SPE
algorithm.

(1) Hardness Harmonize. Each instance from the majority
class is sorted into one of the “β” bins according to its
hardness value. Every kth bin indicates a distinct degree of
hardness. Te dataset is then rendered more equitable by
under-sampling instances from the majority class while
preserving the same total hardness contribution in each bin.
Harmonize is the term used to describe this approach in the
“gradient-based optimization” literature.Te initial iteration
employs a similar strategy to harmonize the hardness.
Nevertheless, hardness harmonize is not always used in all
iterations. Te main cause of this is that as the ensemble
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classifer learns to ft the training set, the number of trivial
instances rises. Consequently, there remains a signifcant
amount of trivial instances after merely harmonizing the
hardness contribution. Tese less instructive instances sig-
nifcantly slow down later iterations of the learning process.
Instead, “self-paced factors” have been developed to enable
under-sampling to be performed at a user-defned pace.

(2) Self-Paced Factor. Specifcally, the sample probability of
bins with a huge population is gradually reduced after
harmonizing the hardness contribution of each bin. A self-
regulating factor (Ω) sets the rate of decay. In the presence of
a largeΩ, the simple hardness contribution harmonize takes
a back seat to a heightened focus on the harder samples.
Outliers and noise have less of an efect on themodel’s ability
to generalize in the early stages of training because the
framework prioritizes informative borderline samples. To
avoid over-ftting, the framework keeps a respectable frac-
tion of trivial (high confdence) instances as the “skeleton,”
even in later iterations when Ω is large. In Algorithm 3, we
examine how the SPE framework works in detail. It is
important to note that in each iteration, the hardness value is
updated to choose the most useful data instances for the
current ensemble. Te development of the self-paced factor
has been modulated by means of the tangent function. As
such, in the frst iteration, the self-paced factor is zero, and in
the last iteration, it is infnite (see Algorithm 3 [44]).

2.4. Performance Metrics. Overall classifcation accuracy is
a common model performance metric that is calculated as
the ratio of the total number of correct predictions to the
total number of predictions. Tis metric tends to favor the
majority class; therefore, it could be misleading if the data
were not evenly distributed. Tis precludes the use of
classifcation accuracy as a performance metric. Several
other performance metrics, besides accuracy, can be used to
deal with this issue.

For the binary classifcation task, assume that n1 denotes
the sample size of the majority class and n2 represents the
minority class. Te total number of records of both majority

and minority classes in the training set is n. Te binary
classifer determines the likelihood that each instance is
positive or negative. Tus, it produces four distinct results:
true positive (∆p), true negative (∆n), false positive (∇p),
and false negative (∇n), as illustrated in the confusionmatrix
(Figure 5). Some important measures, including balanced
accuracy, recall, precision, F1-score, and the geometric mean
(G-mean), can be determined from the results of the con-
fusion matrix, which are shown by the following equations:

Balanced accuracy �
∆p + ∆n/∆p + ∇n + ∆n + ∇p􏼐 􏼑

2
, (1)

Precision �
∆p

∆p + ∇p

, (2)

Recall �
∆p

∆p + ∇n

, (3)

F1 − score �
∆p

∆p +(1/2) ∇p + ∇n􏼐 􏼑
, (4)

G − mean �

������������������
∆p

∆p + ∇n

􏼠 􏼡
∆n

∇p + ∆n

􏼠 􏼡

􏽳

. (5)

2.5. Posthoc Interpretation of Ensemble Imbalance Learning
Model. In order to interpret the ensemble imbalance
learning model, the SHAP interpretation tool is one of the
posthoc explanation tools that were developed by Lundberg
and Lee [17]. Te fundamental concept underlying the in-
terpretation by the SHAP tool is to calculate the marginal
contribution of each factor to the model’s outcome and to
interpret the results in both a global and a local context. A
prediction value is computed for each instance during the
training of the model, and the SHAP value corresponds to
the value given to each factor in the instance. Equation (6) is
used to calculate each factor’s contribution, which is rep-
resented by the Shapley value.

Table 1: Sample data obtained from the PIREPs of HKIA.

Date Time Landing
runway Flight

Type
of

aircraft

Magnitude
of LLWS

H-location
of LLWS

V-location
of LLWS PPT LLWS

causes MAP

2017-06-15 2:52 25RA CX616 A333 − 30 knots 2 MF 600 ft No Gust
front Yes

2018-04-21 1:15 07LA KA451 A333 20 knots 3 MF 1000 ft Yes See
breeze Yes

— — — — — — — — — — —
— — — — — — — — — — —

2019-04-12 8:19 07LA HX337 A333 20 knots 2 MF 300 ft No Gust
front Yes

— — — — — — — — — — —
— — — — — — — — — — —

2021-09-04 8:14 25LA CX445 A359 15 knots RWY 200 ft No Sea
breeze Yes

Notes. LLWS: low-level wind shear; H-location: horizontal encounter location; V-location: vertical encounter location; PPT: precipitation.
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φi � 􏽘
Υ⊆Π i{ }

Υ!(n − |Υ| − 1)!

n!
[f(Υ∪ i{ }) − f(Υ)], (6)

where φi is the contribution of ith input factor from the
dataset.Π is the set of all the input factors from the dataset.Υ
is the subset of given predicted factors from the dataset.

f(Υi) and f(Υ) are the outcomes with and without ith factor
from the dataset, respectively.

Using an additive factors imputation strategy, the SHAP
tool generates an interpretable machine learning model. Te
outcome of the model is represented as a linear sum of all the
input factors, as shown by the following equation:

(1) Input: Minority class in the training data (A), majority class in the training data (B), number of subsets T to sample from
majority class instances set N, and the number of iterations kj required to learn the “base estimator” Hj.

(2) j⇐ 0
(3) repeat
(5) j⇐ j + 1
(6) Randomly sample a subset Bj from B, |Bj| � |A|

(7) Learn Hj by using A and Bj. Hj is the base estimator with kj weak classifers hj,l and the corresponding weights distribution
ωj,l. Te ensemble’s threshold is ∆j, i.e., Hj(x) � sgn(􏽐

kj

l�1ωj,lhj,l
(x) − ∆j),

(8) Until j � T

(9) Output: Te robust ensemble model:
(10) H(x) � sgn(􏽐

T
j�1􏽐

kj

l�1ωj,lhj,l
(x) − 􏽐

T
j�1∆j),

ALGORITHM 1: EasyEnsemble Approach.

(1) Input: Minority class in the training data (A), majority class in the training data (B), number of subsets T to sample from the
majority class instances set, and the number of iterations kj required to learn the base estimator Hj.

(2) j⇐ 0
(3) Te false positive rate ∇pr⇐

��������
(|A|/|B|)

􏽰
that model Hj has to achieve. Te ∇pr is the basically misclassifcation rate of a majority

class instances to the minority class
(4) repeat
(5) j⇐ j + 1
(6) Sample a subset Bj randomly from B such that |Bj| � |A|

(7) Learn the model Hj by using minority class set A and subset Bj. Hj is the base estimator with weak classifers hj,l and
corresponding weights distribution ωj,l. Te ensembles’ threshold is ∆j, i.e., Hj(x) � sgn(􏽐

kj

l�1ωj,lhj,l
(x) − ∆j),

(8) Adjust ∆j such that false positive rate of Hj is ∇pr
(9) Discard all the instances from B that are classifed correctly by Hj

(10) j � T

(11) Output: Single robust ensemble model:
(12) H(x) � sgn(􏽐

T
j�1􏽐

kj

l�1ωj,lhj,l
(x) − 􏽐

T
j�1∆j),

ALGORITHM 2: Balance Cascade Approach.

(1) Input: Training dataset (xk, yk)n
1, hardness function (z), total number of bins (β), base estimator (ζ), the number of base

estimators (∀), minority class in the training data (A), majority class in the training data (B)

(2) Initialize:With the subsets of majority class (B′) and minority class (A), train the base estimator (ζ) by utilizing random under-
sampling approach such that |B′| � |A|

(3) for k � 1 to n do
(4) Ensemble of the base estimators Fk(x) � 1/k􏽐

k− 1
k�0ζk(x)

(5) Te majority class dataset is separated into β bins with regards to z(x, y, Fk): (b1, b2, ..., bξ)

(6) Te mean hardness contribution can be obtained in the any ith bin as zi � 􏽐s∈bi
z(xs, ys, F i)/|bi|, i � 1, 2, ..., β

(7) Te self-paced factor has been updated as Ω � tan(kΠ/2ζ),

(8) For the ith bin, non-normalized sampling weight can be obtained as θi � 1/zi +Ω
(9) From the ith bin, perform the under-sampling with θi/􏽐mθi|A| instances
(10) Using newly under-sample data subset, train ζi
(11) End
(12) Return Final robust ensemble F(x) � 1/∀􏽐∀m�1ζm(x),

ALGORITHM 3: Self-Paced Ensemble.
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g(z′)� φ0 + 􏽘
Λ

i�1
φiz′, (7)

where z′∈ 0, 1{ }Λ. If a factor is supplied z′ � 1, else z′ � 0. Λ
is the amount of the input factors that are supplied. φ0 is the
base value.

In this research, the optimal ensemble imbalanced
learning technique was interpreted using the posthoc SHAP
analysis tool, and the most important factors likely to cause
MAPs were evaluated. Additionally, the SHAP tool in this
study performed an analysis of the factor interaction.

3. Results and Discussion

Te ensemble imbalance learning techniques with various
base estimators were used in conjunction with HKIA-based
PIREPs to address the imbalance data problem and predict
the occurrence of MAP under low-level wind shear con-
ditions. Table 3 provides the aggregate statistics for all of the
factors in the HKIA-based PIREPs. We used Pearson cor-
relation analysis to look for correlations between the PIR-
EPs’ various factors. Based on Figure 6, a weak to moderate
correlation is indicated by a Pearson’s correlation coefcient
with an absolute value between 0.019 and 0.62. Although we
found a negative Pearson correlation coefcient of − 0.62
between causes of low-level wind shear and precipitation, we
decided not to rule them out of further modeling due to the
moderate nature of the relationship between the two factors.
Both of these aspects are environment-specifc and could
have a major efect if incorporated into the model. It is
pertinent to note that the analysis was conducted within the
Python programming environment. Te Python codes can
be found in Appendix B.

To commence the modeling process, the PIREPs data
were divided into two subsets: 70% of the data were used to
train the ensemble imbalance learning models, while the
remaining 30% were used for ensemble imbalance learning
models performance evaluation. Before developing the
models, hyperparameters tuning of machine learning models
(base estimators of ensemble imbalance learning) were done,

which was a critical step and can infuence generalization
capability, prevents over-ftting, and reduces model com-
plexity. Bayesian optimization strategy was employed to
obtain the optimal hyperparameters for the base estimators by
maximization of “G-mean.” A 10-fold cross-validation ap-
proach was used in conjunction with Bayesian optimization
that randomly splits the training set into 10 subsets (each
time, nine subsets were being used for training and one for
testing). Table 4 shows the hyperparameters list of diferent
base estimators of ensemble imbalance learning models with
the search space and optimal values.

3.1. Performance Assessment of Base Estimators of Ensemble
Imbalance Learning Models. In this study, the positive and
negative classes were referred to, respectively, as MAP and
AP. Initially, each base estimator (LGBM, RF, and XGBoost)
was evaluated separately, without the use of an ensemble
imbalance learning model. Using the testing dataset, the
confusion matrix (Figure 7) has been built, and the required
performance metrics of balanced accuracy, precision, recall,
F1-score, and G-mean have been derived. It is crucial to
recognize that, unlike the AP class, the MAP class is a mi-
nority class and that we are more concerned with the correct
classifcation of this class.

Only 28 out of 61 instances that were actuallyMAPs were
correctly classifed by the LGBM model based on the testing
data set, as shown in Figure 8(a). Meanwhile, 33 instances
were incorrectly classifed, resulting in a recall value of
46.24%. Despite the fact that 181 out of 194 instances of the
majority class AP were correctly classifed, we do not
concentrate on this class because it is not of interest to us. As
a result, the LGBMmodel was able to classify the majority of
instances with a higher degree of precision. However, it was
unable to efectively classify minority instances, which is the
parameter that we are interested in. Te overall balanced
accuracy was found to be quite low, equaling 41.40%%, while
the F1-score was 55.43% and the G-mean was 65.33%.
Following the evaluation of one more cutting-edge XGBoost
model, a confusion matrix was obtained. Figure 8(b)
demonstrates that 23 out of the 58 actual MAP instances
were correctly predicted as MAPs, while 35 were incorrectly
predicted as APs, resulting in a recall value of 40.21%. Te
results obtained from the XGBoost model were marginally
lower than those obtained from the LGBM model, with an
overall imbalanced classifcation accuracy of equal to 34.32%
and an F1-score of 46.65%. Te G-mean value was 60.41%.
Afterwards, the RF model was also evaluated, and a confu-
sion matrix was obtained. According to the standalone RF
model, Figure 8(c) demonstrated that only 27 instances of
actual MAPs were correctly predicted as MAPs, while 31
were incorrectly predicted as AP. Tis case also had a higher
percentage of incorrect classifcations, yielding a recall value
of 46.75%, precision of 66.42%, F1-score of 55.46%, balanced
accuracy of 41.30%, and G-mean of 66.04% as shown in
Table 5.

In all these three state-of-the-art machine learning
models as base estimators of ensemble imbalance
learning models, the percentage of correct classifcation
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Figure 5: Confusion matrix.
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Table 3: Descriptive statistics of HKIA-based PIREPs factors.

Factors Descriptions
Statistics

Mean Standard deviation Min Max

Vehicle-specifc Flight 0.554 0.497 0 1
Type of the aircraft 0.741 0.434 0 1

Runway-specifc Assigned runway for arrival 0.897 1.002 0 3

Environment-specifc

LLWS magnitude (− /+) 17.17/− 19.23 3.86/4.85 − 15/15 − 40/45
LLWS H-location 1.473 0.896 0 3

LLWS V-location (ft) 335.52 304.723 15 2000
Cause of LLWS 0.457 0.492 0 1
Precipitation 0.530 0.497 0 1

Temporal-specifc Time of day 0.623 0.482 0 1
Seasons 1.551 0.865 0 3

1 0.32 0.027 0.069 -0.013 0.011 0.097 0.043 -0.092Flight

0.32 1 -0.059 0.033 -0.068 0.053 0.049 0.017 -0.063

0.027 -0.059 1 0.21 -0.25 0.26 -0.18 -0.042 -0.31

0.069 0.033 0.21 1 -0.46 0.1 -0.12 0.035 -0.62

-0.013 -0.068 -0.25 -0.46 1 -0.084 0.07 -0.043 0.37

0.011 0.053 0.26 0.1 -0.084 1 -0.1 -0.031 -0.18

0.097 0.049 -0.18 -0.12 0.07 -0.1 1 0.083 0.27

0.043 0.017 -0.042 0.035 -0.043 -0.031 0.083 1 0.012

1 0.022 0.086 0.23 0.4 -0.31 0.1 -0.015 0.072 -0.43

0.022

0.086

0.23

0.4

-0.31

0.1

-0.015

0.072
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Figure 6: Pearson correlation matrix.

Table 4: Hyperparameters tuning of the base estimators.

Base estimators Hyperparameters Range Optimal values

LGBM

n_estimators (100–1500) 900
num_leaves (30–100) 38
Learning rate (0.001–0.2) 0.07
reg_lambda (1.1–1.5) 1.24
reg_alpha (1.1–1.5) 1.18

RF n_estimators (50–1000) 1041
max_depth (2–15) 7

XGBoost

n_estimators (100–1500) 1105
num_leaves (30–100) 46
Learning rate (0.001–0.2) 0.05
reg_lambda (1.1–1.5) 1.41
reg_alpha (1.1–1.5) 1.27
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of MAP was quite low and cannot be used for the
classifcation of MAPs as a standalone model. Te better
among these three machine learning models was RF;
however, still as a standalone classifer, it fails to show
a promising result.

3.2. Performance Assessment of Ensemble Imbalanced
Learning Models with Diferent Base Estimators. Although
we have employed state-of-the-art machine learning models
for the prediction and classifcation of MAPs, however, we
observed that with fned tuned LGBM, XGBoost, and RF, the
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Figure 7: Confusion matrix: (a) LGBM; (b) XGBoost; (c) RF.
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Figure 8: (a) Confusion matrix by SPE with LGBM as base estimator; (b) confusion matrix of SPE with XGBoost as base estimator;
(c) confusion matrix of SPE with RF as base estimator; (d) confusion matrix by balance cascade with LGBM as base estimator; (e) confusion
matrix of balance cascade with XGBoost as base estimator; (f ) confusion matrix of balance cascade with RF as base estimator; (g) confusion
matrix by easy ensemble with LGBM as base estimator; (h) confusion matrix of easy ensemble with XGBoost as base estimator; (i) confusion
matrix of easy ensemble with RF as base estimator.
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minority class MAP was poorly classifed. In order to im-
prove the accuracy of the correct classifcation of minority
class MAP, the SPE, balanced cascade, and easy ensemble
models were used with LGBM, XGBoost, and RF as their
base estimators. It is pertinent to mention that we have used
those models as base estimators with their optimal hyper-
parameters, which we previously obtained via Bayesian
optimization. First, LGBM, XGBoost, and RF were used as
base estimators for the SPE framework, and then, LGM,
XGBoost, and RF were used as base estimators for the
balance cascade and fnally for the easy ensemble model.

Figure 8 depicts the SPE, balance cascade, and easy
ensemble models’ confusion matrices; Table 6 pulls the
performance indicators from these matrices. In the case of
the SPE framework using XGBoost as the base estimator, it
was found that 48 out of 61 instances could be correctly
classifed, yielding a recall value of 79.69%. Te balanced
accuracy, precision, recall, and F1-score, as well as the G-
mean, were, respectively, 59.68%, 50.11%, 79.69%, 61.25%,
and 78.14%. Tese results were superior to those of other
models. Te next model in the sequence was the balance
cascade model, which used XGBoost as the base estimator. It
had a G-mean value of 77.31% and a balance accuracy of
59.22%. Te SPE model with LGBM as the base estimators
performed the worst out of all the models, with a G-mean
value of 70.02% and a balance accuracy of 49.33%.

As shown in Figures 9(a) and 9(b)), among three en-
semble imbalance learning models with three machine
learning base estimators, the best result was shown by the
SPE framework with XGBoost as a base estimator, resulting
in a G-mean of 78.14% and balanced accuracy of 59.68%. It
was then followed by the balance cascade model with the
XGboost model as a base estimator with a G-mean of 77.31%
and balanced accuracy of 59.22%. Te G-mean value
(74.71%) and balanced accuracy (54.22%) of balance cascade
with RF as base estimators and G-mean value (74.15%) and
balanced accuracy (53.71%) are ranked third and fourth,
respectively. Te results of the top two models based on G-
mean values and balanced accuracy are quite close to each
other and can be considered as optimal models for the
classifcation and prediction of MAPs. Furthermore, the best
model has been in conjunction with SHAP analysis for
interpretation to obtain signifcant factors as well as as-
sessment of the interaction among risk factors.

3.3. Sensitivity Analysis. Te formation of a precise MAP
prediction model is crucial because more accurate models
may more efectively describe the relationship betweenMAP

and various environmental and situational factors. Te
ability to decipher the outcomes of ensemble-imbalance
learning models is just as vital. In order to interpret the
results of the best models (SPE with XGBoost) and de-
termine the efect of the particular risk factors and their
interactions, the SHAP implementation is discussed.

3.3.1. Factor Importance and Contribution. SPE with
XGBoost as a base estimator was the optimal model for the
prediction of MAPs based on its performance measures, and
therefore, we used it to analyze the signifcance and value of
the contributions of specifc factors. It is indeed important to
note that the two concepts of “factor importance” and
“factor contribution” are not synonymous. To what extent
a given factor contributes to a model’s accuracy is indicated
by its importance. Te results can be rationally explained by
the factors identifed through the factor contributions (MAP
or AP). As shown in Figure 10(a), the SHAP global im-
portance scores are applied to the factors in the SPE with the
XGboost base estimator. Nonetheless, the result does not
reveal how much each factor contributed to the overall
probability of a MAP occurrence. It demonstrates that low-
level wind shear magnitude, with a mean SHAP value of
+0.210, is the most important factor causing the MAPs,
followed by runway orientation, with a mean SHAP value of
+0.160, and altitude of low-level wind shear, with a value of
+0.110. Similarly, the SPE with XGboost was investigated
further via a SHAP contribution evaluation utilizing SHAP
beeswarm plots (Figure 10(b)). Using the SHAP contribu-
tion plots, we arrived at a quantitative value by combining
the Shapely values and expressing them in terms of the SPE
model’s factor contributions. On the vertical axis, the input
factors are listed in order of growing infuence, from most
infuential to least. Using a horizontal axis for the SHAP
value and a color scale from blue (low signifcance) to red
(high signifcance), this graph displays the contribution of
diferent factors.

Te SHAP beeswarm plot of the SPE with XGboost as
base estimator illustrated that most of the tailwinds resulted
in the initiation of MAPs.Te aircraft in this may not be able
to touch down at the designated touchdown location. Te
result is also consistent with the fnding of previous research
conducted by [52, 53] in which it was also observed that the
strong tailwind encountered due downdraft of the thun-
derstorm andMAPs occurred.Te orientation of the runway
was the second infuential factor. Runways 07C and 07R
were more prone to MAP initiation. Some previous studies
[54–56] employing numerical simulation and wind tunnel
testing also observed that the southerly or southeasterly
gusts of wind at HKIA are more likely to trigger low-level
wind shear, which can have a signifcant impact on runways
07C and 07R. Terefore, approaching aircraft could expe-
rience a severe low-level wind shear and initiate MAP. Given
that MAPs have become a safety concern, runways 07C and
07R should not be utilized for landings during low-level
wind shear events.

Te third most crucial factor was the low-level wind
shear V Location. According to Figure 11(b), low-level wind

Table 5: Performance assessment of base estimators.

Metrics
Base estimators

LGBM XGBoost RF
Precision (%) 68.72 56.23 66.42
Recall (%) 46.24 40.21 46.75
F1-score (%) 55.43 46.65 55.46
Balanced accuracy (%) 41.40 34.32 41.30
G-mean (%) 65.19 60.41 66.04
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shear events that took place at lower altitudes were what led
to the high number of MAPs. Te outcomes are also in line
with wind tunnel tests of [57], which showed that about 55%
of the severe low-level wind shear occurs below 600 feet and
could be regarded as a critical zone for aircrafts on the fnal
approach. Te combination of bad weather, complicated
terrain, and nearby buildings would cause more turbulence
along the glide path. Because of this, the cockpit crew is
constantly in motion during the landing phase, and the
captain and copilot must make a number of split-second
decisions to complete the landing checklist. Te best course
of action in the event of an unprecedented low-level wind
shear that occurs very close to the runway is to abort the
landing attempt and perform a go-around.

It is also pertinent to mention that a previous study [58]
demonstrated that 300 ft above the ground might be the
acceptable value for MAP unless no environmental factors
are involved. However, in case of low-level wind shear
condition in the runway proximity, initiating MAP at 300 ft
above the ground might be very dangerous.

3.3.2. Factor Interaction. Te factor importance and con-
tribution (beeswarm) plot revealed no evident connection
between the shift in factor value and the change in SHAP
value. Figure 11 complemented the contribution plot by
depicting the individual interpretation outcomes for the
factors and showing how the SHAP values varied with the

Table 6: Performance assessment of ensemble imbalance learning model with diferent base estimators.

Base estimators
Performance measures

Recall (%) Precision (%) F1-score (%) Balanced accuracy (%) Geometric mean (%)
SPE framework
LGBM 75.23 40.13 52.15 49.33 70.02
XGBoost 79.69 50.11 61.25 59.68 78.14
RF 69.11 49.71 57.51 54.22 74.13
Balance cascade
LGBM 64.06 51.02 57.25 51.02 72.13
XGBoost 72.38 57.18 64.13 59.22 77.31
RF 69.11 49.71 57.53 54.22 74.71
Easy ensemble
LGBM 72.71 47.14 57.22 53.71 74.15
XGBoost 64.71 45.91 53.41 49.52 71.66
RF 62.11 55.71 58.51 52.18 72.86
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Figure 9: Optimal models: (a) top four models with higher balanced accuracy (%) and (b) top four models with higher G-mean value (%).
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eigenvalues. By analyzing the interaction plots provided by
SHAP, we were able to assess how much each input factor
had an efect on the fnal score obtained from SPE with
XGboost as a base estimator.

Te impact of low-level wind shear V_Location and
runway orientation on model predictions is shown in
Figure 11(a). From V_Location of 0 to 500 ft, the points
with high densities are those that are above the SHAP 0.00
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Figure 11: (a) SHAP LLWS V_location dependence plot, (b) SHAP LLWS magnitude dependence plot, and (c) SHAP season of year
dependence plot.
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reference line. Te majority of the points have blue labels
that indicate Runway 07C and 07R. It demonstrated that
the majority of the MAPs were seen on these runways at
a lower altitude. As a result, caution should be used when
landing on these runways at 500 feet above ground be-
cause low-level wind shear could occur. Te impact of
low-level wind shear magnitude in relation to low-level
wind shear V_Location, however, might also be of
interest.

Te relationship between low-level wind shear mag-
nitude and low-level wind shear V Location is thus shown
in Figure 11(b). All headwinds are shown on the hori-
zontal axis to the right of reference point 0, and all
tailwinds are shown to the left of reference point 0. Te
graph shows that MAPs were typically started at low al-
titude and with a tailwind most of the time. Pilots attempt

to abort the landing and proceed for a second attempt to
reduce the risk of landing short of the runway because the
recovery margin time in the event of low-level wind shear
occurring at low altitude is limited. As a result, at HKIA,
pilots are required to be more vigilant during strong
tailwind situations.

Additionally, as shown in Figure 11(c), we evaluated
the efects of the Season of the Year factor and runway
orientation. Tere were more blue dots than red, which
demonstrated that runways 07C and 07R are extremely
susceptible to the occurrence of MAPs year-round.
However, the majority of the MAPs were seen in the
summer. Te pilots’ fnal approach might have been
afected by tropical cyclones and southern monsoon
winds. Tese results are in line with earlier research
fndings as well [59–62].

Level-wise tree expansion

Leaf-wise tree expansion in LGBM

Cannot Expend
Can Expend

Figure 14: Tree expansion in LGBM.

Input: Training data: D � (Xk, Yk)􏼈 􏼉
M

1 , loss function: L(Y,φ(X)), iterations: J, ratio of big gradient data sampling: α, ratio of
slight gradient data sampling: β

(1) Using FEB approach, combine the factors that are mutually exclusive the factors, i.e., they never concurrently accept nonzero
values Xk

(2) Set φ0(X) � argminc􏽐
M
k L(Yk, c),

(3) for j � 1 to J do
(4) Compute the absolute value of gradient λk � |zL(Yk,φ(Xk))/zφ(Xk)|φ(X)�φj− 1(X),
(5) Te data set is resampled by using GOSS approach
(i) topM � α × len(D), ; randM � β × len(D),
(ii) sorted � GetSortedIndices(abs(r)),
(iii) A � sorted[1: topM],
(iv) B � RandomPick (Sorted [topM : len(D)], randM),
(v) D′ � A + B;
(6) Te Information Gains (IG) are computed: Ve(d) � 1/n[((􏽐xk ∈ Al

rk + 1 − α/β􏽐xk ∈ B1
rk)2/ne

l (d)) + ((􏽐xk ∈ Ar
rk + 1 − α/β

􏽐xk ∈ Br
rk)2/ne

r(d))],
(7) New decision tree is developed φj(X)′ on set D′

(8) Update φj(X)� φj− 1(X)+φj(X),
(9) End for
(10) Return 􏽥φ(X) � φJ(X),

ALGORITHM 4: Light Gradient Boosting Machine (LGBM).
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4. Conclusions and Future Work

Tis study presents the application of three machine
learning-ensemble imbalance learning techniques: SPE
framework, balance cascade, and easy ensemble to the
prediction of the occurrence of MAP events. For these three
ensemble imbalance learning techniques, three state-of-
the-art machine learning models, LGBM, XGBoost, and RF
were used as base estimators. To the best of our knowledge,
this is the frst work to detect, model, and interpret MAPs
occurrences from HKIA-based PIREPs data using ensemble
imbalance learning techniques in conjunction with SHAP.
Te MAPs were predicted under low-level wind shear
conditions considering both environmental and situational
factors using 2017 to 2021 low-level wind shear data from
HKIA-based PIREPS. Initially, LGBM, XGBoost, and RF
were evaluated separately to assess their performance in case
of imbalance in low-level wind shear data. Afterwards, these
models were employed as base estimators for SPE, balance
cascade, and easy ensemble and performance measures were
obtained. Regrettably, machine learning algorithms often
receive criticism for being ambiguous and challenging to
comprehend. However, the increased adaptability and quite
often improved reliability of engineering domain modeling
over more conventional predictive statistical methods do
have an impact on their universal popularity. In this re-
search, the posthoc SHAP interpretation tool was used to
decipher the best-predictive ensemble imbalance learning
model, and the impact of various factors on the likelihood of
a MAP event occurring was demonstrated. From the study,
the following conclusions can be drawn:

(i) On the testing dataset, all three machine learning
models, LGBM, XGBoost, and RF, even with well-
tuned hyperparameters showed a poor performance
in predicting MAPs under low-level wind shear
condition with G-mean value of 65.19%, 60.541%,
and 66.04%, respectively.

(ii) Te performance of each individual machine
learning varied marginally. Te G-mean of LGBM
was relatively 7.33% higher than XGBoost. Simi-
larly, G-mean of RF was 1.28% higher than LGBM
and 8.5% higher than XGboost.

(iii) Te SPE framework in conjunction with XGboost
model as a base estimators performed best among all
with the G-mean value of 78.14% and balance accu-
racy of 61.25%. It was then followed by balance cas-
cade model with XGboost as a base estimator with G-
mean value of 77.31% and balance accuracy of 59.22%.

(iv) SHAP demonstrated efcacy in interpreting the
optimal model’s outcome (SPE with XGBoost as
base estimator). Te low-level wind shear magni-
tude was the most infuential factor, followed by
runway orientation and low-level wind shear
V_Location.

(v) Most of the MAPs were observed during strong
tailwind situation. Runway 07C and Runway 07R
were observed to high highly vulnerable to MAPs.

(vi) Similarly, most of the MAPs were initiated within
a ceiling of 500ft. In case of severe low-level wind
shear, MAPs at altitudes as low as 300 ft might be
very dangerous to recover. However, in case of calm
weather conditions, 300 ft might be suitable for
initiating a go-around protocol.

Tis proposed method could be used to examine MAPs
on a large scale at other airports around the world. It serves
as a benchmark for aviation authorities and intellectuals
intrigued by air safety. Given that it is crucial for aviation
and meteorological applications to comprehend the intricate
interactions between several risk aspects that infuence the
occurrence of MAPs, researchers focusing on civil aviation
safety should take advantage of this opportunity. Besides
that, this article only addressed the issue of predicting MAPs
under low-level wind shear conditions, taking context-
specifc and environmental factors into account. Addi-
tional research could be carried out by combining a number
of diferent machine learning or deep learning approaches
with a wide variety of other potential risk factors.

Appendix

A.Machine LearningModels as Base Estimators

A1. Random Forest (RF). RF is an example of a bagging-
ensemble classifer, which trains a collection of classifers in
parallel using bootstrapping and aggregation to generate
a single fnal prediction (see Figure 12). According to
bootstrapping, multiple decision trees can be learned in-
dependently in parallel by using diferent subsets of the
training dataset and various subsets of the available factors.
Because each decision tree in a random forest is guaranteed
to be unique using bootstrapping, the random forest’s
overall variance is reduced. Te RF classifer has better
generalization because it combines the ratings of many trees
into a single verdict.

A2. ExtremeGradient Boosting (XGBoost). Extreme gradient
boosting (XGBoost) is a distributed gradient-boosted de-
cision tree (GBDT) approach that is optimized for reliability,
computational efciency, and model performance. It con-
sists primarily of an iterative decision tree algorithm with
multiple decision trees. Each tree acquires knowledge from
the residuals of all preceding trees. As opposed to adopting
the majority of random forest’s voting output results, as
shown in Figure 13 and equation (A.1), XGBoost’s predicted
output is the sum of all the results.

􏽢Yk � 􏽘
M

m�1
fm Xk( 􏼁, fm ∈ F, (A.1)

where F denotes the trees space, fm illustrates single mth

tree, fm(Xk) is the output of mth tree, and 􏽢Yk is the pre-
diction of kth sample xk. Te optimization objective function
of the XGBoost model is given by the following equation:

Obj(φ) � Γ(φ) + Θ(φ), (A.2)

Advances in Meteorology 17



where Γ(φ) � 􏽐
K
k�1l(Yk, 􏽢Yk) depicts the loss function, Yk is

the target factor, and Θ(φ) � 􏽐
M
m�1Θ(fm) penalizes the

models’ complexity. Ten, the classifer is trained in an
additive fashion. Let 􏽢Y

t

k be the predicted output of kth sample
at the tth iteration, then 􏽢Y

t

k can be illustrated as the following
equation:

􏽢Y
(t)
k � 􏽢Y

(t− 1)

k +f t xk( 􏼁. (A.3)

In this case, it minimizes the objective function, illus-
trated by the following equation:

Objt � 􏽘
K

k�1
Yk, 􏽢Yk􏼐 􏼑 + Θ ft( 􏼁

� 􏽘
K

k�1
Yk, 􏽢Y

(t− 1)

k +ft xk( 􏼁􏼒 􏼓 + Θ ft( 􏼁.

(A.4)

To quickly optimize the objective function, second-order
approximation is employed, as shown by the following
equation:

Objt � 􏽘
K

k�1
Yk, 􏽢Y

(t− 1)

k +ψkft xk( 􏼁 + ζkf
2
t xk( 􏼁􏼒 􏼓 + Θ ft( 􏼁,

(A.5)

where ψk and ζk are the frst- and second-order gradient
statistics on the loss function, respectively. Regularized
boosting and column subsampling are two techniques that
can enhance the performance of XGBoost classifer and
prevent over-ftting [48] paper provides more details).

A3. Light Gradient Boosting Machine (LGBM). Since the
gradient boosting decision tree (GBDT) struggles to handle
cases with high-dimensional input factors and large
amounts of data, the LGBM was developed to address these
issues. Unlike other boosting strategies, which divide the tree
at the level, this one does so at the leaf level because it makes
use of decision tree algorithms. Leaf-wise splitting mini-
mizes loss more than level-wise splitting when developing on
the same leaf, leading to signifcantly higher classifcation
precision than most well-known boosting algorithms.
LGBM and gradient boosting both show level-wise and
leaf-wise tree expansion in Figure 14.

Te working procedure of the LGBM framework is
described as follows:

B. Source Code

#####IMPORT LIBRARIES #####
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import time

from sklearn.ensemble import RandomForestClassifer
from lightgbm import LGBMClassifer
from xgboost import XGBClassifer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from sklearn.metrics import balanced_accuracy_score
import collections
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classifcation_report
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import
RepeatedStratifedKFold
from sklearn.metrics import roc_curve, auc
from sklearn.pipeline import make_pipeline
from imblearn.metrics import
classifcation_report_imbalanced
from sklearn.metrics import precision_score, recall_-
score, f1_score, roc_auc_score, accuracy_score,
classifcation_report
from collections import Counter
from sklearn.model_selection import KFold,
StratifedKFold
from imbalanced_ensemble.ensemble import
SelfPacedEnsembleClassifer
from imbalanced_ensemble.ensemble import
EasyEnsembleClassifer
from imbalanced_ensemble.ensemble import
BalanceCascadeClassifer
from imbalanced_ensemble.utils import evaluate_print
from sklearn.metrics import matthews_corrcoef
import shap
from imblearn.metrics import
classifcation_report_imbalanced.
####IMPORT DATA ####
data�pd.read_csv(r“D:\\pythondata\\MAP_dataset.csv”)
x�data.drop(columns�[’CLASS’])
y�data[’CLASS’]
x_train, x_test, y_train,
y_test�train_test_split (x,y,test_size�0.30,random_sta-
te�0)
plt.fgure(fgsize�(12, 8))
aa�sns.heatmap(x.corr(), annot�True)
plt.xticks(rotation�20)
plt.yticks(rotation�20)
aa.set_xlabel(“Factors”,fontsize�14,weight�’bold’)
aa.set_ylabel(“Factors”,fontsize�14,weight�’bold’)
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#####HYPERPARAMETER TUNING LGBM######
def objective(space):

model1� LGBMClassifer (learning_rate� space
[’learning_rate’],

n_estimators�int(space[’n_estimators’]),
num_leaves�int(space[’num_leaves’]), max_-

depth�int(space[’max_depth’]),
reg_lambda�space[’reg_lambda’],
reg_alpha�space[’reg_alpha’])

accuracy�cross_val_score(model1, x_train, y_train,
cv�10, scoring�“accuracy”).mean()

return {’loss’: -accuracy,“status”:STATUS_OK}
from hyperopt import hp, fmin, tpe, Trials,
STATUS_OK
space�{’learning_rate’: hp.quniform(’learning_rate’,
0.001, 0.2, 0.001),

’n_estimators’: hp.quniform(’n_estimators’,
200,1500,100),

’num_leaves’:
hp.quniform(’num_leaves’,30,100,1),

’max_depth’:hp.quniform(’max_depth’,2,15,1),
’reg_lambda’:hp.uniform(’reg_lambda’,1.1,1.5),
’reg_alpha’:hp.quniform(’reg_alpha’,1.1,1.5,0.1)}

trials�Trials()
best1�fmin(fn�objective,

space�space,
algo�tpe.suggest,
max_evals�25,
trials�trials)

best1
lg�LGBMClassifer(max_depth�int(best1[’max_-
depth’]), n_estimators�int(best1[’n_estimators’]),

reg_lambda�best1[’reg_lambda’],
reg_alpha�best1[’reg_alpha’],
learning_rate�best1[’learning_rate’],
num_leaves�int(best1[’num_leaves’]))

lg�lg.ft(x_train, y_train)
pred_lg�lg.predict(x_test)
clg�confusion_matrix(y_test, pred_lg)
clg
%matplotlib inline
class_names�[False, True] # name of classes
plt.subplots(fgsize�(8,5))
#ax.xaxis.set_label_position(“top”)
plt.tight_layout()
plt.rcParams.update({’font.size’: 16})

plt.ylabel(’Actual’)
plt.xlabel(’Predicted’)
tick_marks�[0.5, 1.5]
plt.xticks(tick_marks, class_names, fontsize�

16,weight� ’bold’)
plt.yticks(tick_marks, class_names, fontsize�16,
weight�’bold’)
matrix_lg_test�pd.DataFrame(data�clg, columns�
[’AP’, ’MAP’], index�[’AP’, ’MAP’])
a1�sns.heatmap(matrix_lg_test, annot�True, fmt�’d’,
linewidths�1, cmap�’Greens’,annot_kws�{“fontsize”:
28})
a1.set_xlabel(“PREDICTED” fontsize � 16,weight �

’bold’)
a1.set_ylabel(“ACTUAL”,fontsize�16,weight�’bold’)
print(classifcation_report_imbalanced(y_test,
pred_lg))
best1
#####HYPERPARAMETER TUNING XGBOOST
######
def objective(space):

model1 � XGBClassifer(learning_rate � space
[’learning_rate’],

n_estimators�int(space[’n_estimators’]),
num_leaves�int(space[’num_leaves’]), max_-

depth�int(space[’max_depth’]),
reg_lambda�space[’reg_lambda’],
reg_alpha�space[’reg_alpha’])

accuracy�cross_val_score(model1, x_train, y_train,
cv�10, scoring�“accuracy”).mean()

return {’loss’: -accuracy,“status”:STATUS_OK}
from hyperopt import hp, fmin, tpe, Trials,
STATUS_OK
space�{’learning_rate’: hp.quniform(’learning_rate’,
0.001, 0.2, 0.001),

’n_estimators’: hp.quniform(’n_estimators’,
200,1500,100),

’num_leaves’:
hp.quniform(’num_leaves’,30,100,1),

’max_depth’:hp.quniform(’max_depth’,2,15,1),
’reg_lambda’:hp.uniform(’reg_lambda’,1.1,1.5),
’reg_alpha’:hp.quniform(’reg_alpha’,1.1,1.5,0.1)}

trials�Trials()
best2�fmin(fn�objective,
space�space,
algo�tpe.suggest,
max_evals�25,
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trials�trials)
best2
xg�XGBClassifer(max_depth�int(best2[’max_-
depth’]), n_estimators�int(best2[’n_estimators’]),

reg_lambda�best2[’reg_lambda’],
reg_alpha�best2[’reg_alpha’],
learning_rate�best2[’learning_rate’],
num_leaves�int(best2[’num_leaves’]))

xg�xg.ft(x_train, y_train)
pred_xg�xg.predict(x_test)
cxg�confusion_matrix(y_test, pred_xg)
cxg
%matplotlib inline
class_names�[False, True] # name of classes
plt.subplots(fgsize�(8,5))
#ax.xaxis.set_label_position(“top”)
plt.tight_layout()
plt.rcParams.update({’font.size’: 16})
plt.ylabel(’Actual’)
plt.xlabel(’Predicted’)
tick_marks�[0.5, 1.5]
plt.xticks(tick_marks, class_names, fontsize� 16,
weight�’bold’)
plt.yticks(tick_marks, class_names, fontsize� 16,
weight�’bold’)
matrix_lg_test�pd.DataFrame(data�cxg, columns�
[’AP’, ’MAP’], index�[’AP’, ’MAP’])
a1�sns.heatmap(matrix_lg_test, annot�True, fmt�’d’,
linewidths�1, cmap�’Greens’,annot_kws�{“fontsize”:
28})
a1.set_xlabel(“PREDICTED”, fontsize� 16,weight�

’bold’)
a1.set_ylabel(“ACTUAL”,fontsize�16,weight�’bold’)
print(classifcation_report_imbalanced(y_test,
pred_xg))
best2
#####HYPERPARAMETER TUNING RF######
def objective(space):

model1�RandomForestClassifer(max_depth�int(-
space[’max_depth’]), n_estimators�int(space
[’n_estimators’]))

accuracy�cross_val_score(model1, x_train, y_train,
cv�10, scoring�“f1”).mean()

return {’loss’: -accuracy,“status”:STATUS_OK}
from hyperopt import hp, fmin, tpe, Trials,
STATUS_OK
space�{’n_estimators’: hp.quniform(’n_estimators’,
200,1500,100), ’max_depth’:
hp.quniform(’max_depth’,2,15,1)}

trials�Trials()
best3�fmin(fn�objective,

space�space,
algo�tpe.suggest,
max_evals�25,
trials�trials)

best3
rf�RandomForestClassifer(max_depth�int(best3
[’max_depth’]), n_estimators�int(best3[’n_estima-
tors’])).ft(x_train, y_train)
rf�rf.ft(x_train, y_train)
pred_rf�rf.predict(x_test)
crf�confusion_matrix(y_test, pred_rf)
crf
%matplotlib inline
class_names�[False, True] # name of classes
plt.subplots(fgsize�(8,5))
#ax.xaxis.set_label_position(“top”)
plt.tight_layout()
plt.rcParams.update({’font.size’: 16})
plt.ylabel(’Actual’)
plt.xlabel(’Predicted’)
tick_marks�[0.5, 1.5]
plt.xticks(tick_marks, class_names, fontsize� 16,
weight�’bold’)
plt.yticks(tick_marks, class_names, fontsize� 16,
weight�’bold’)
matrix_lg_test� pd.DataFrame(data� crf, columns�
[’AP’, ’MAP’], index�[’AP’, ’MAP’])
a1�sns.heatmap(matrix_lg_test, annot�True, fmt�’d’,
linewidths�1, cmap�’Greens’,annot_kws�{“fontsize”:
28})
a1.set_xlabel(“PREDICTED”,fontsize�16,weight�’
bold’)
a1.set_ylabel(“ACTUAL”,fontsize�16,weight�’bold’)
print(classifcation_report_imbalanced(y_test,
pred_rf ))
best3
######MODELS DEVELOPMENT####
slg� SelfPacedEnsembleClassifer (base_estimator�

LGBMClassifer(max_depth�int(best1[’ max_depth’]),
n_estimators�int(best1[’n_estimators’]),
reg_lambda�best1[’reg_lambda’],
reg_alpha�best1[’reg_alpha’],
learning_rate�best1[’learning_rate’],
num_leaves� int(best1[’num_leaves’])))

slg�slg.ft(x_train, y_train)
pred_slg�slg.predict(x_test)
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cslg�confusion_matrix(y_test, pred_slg)
cslg
%matplotlib inline
class_names�[False, True] # name of classes
plt.subplots(fgsize�(8,5))
#ax.xaxis.set_label_position(“top”)
plt.tight_layout()
plt.rcParams.update({’font.size’: 16})
plt.ylabel(’Actual’)
plt.xlabel(’Predicted’)
tick_marks�[0.5, 1.5]
plt.xticks(tick_marks, class_names, fontsize� 16,
weight�’bold’)
plt.yticks(tick_marks, class_names, fontsize� 16,
weight�’bold’)
matrix_lg_test�pd.DataFrame(data�cslg, columns�
[’AP’, ’MAP’], index�[’AP’, ’MAP’])
a1�sns.heatmap(matrix_lg_test, annot�True, fmt�’d’,
linewidths�1, cmap�’Greens’,annot_kws�{“fontsize”:
28})
a1.set_xlabel(“PREDICTED”,fontsize�16,weight�’
bold’)
a1.set_ylabel(“ACTUAL”,fontsize�16,weight�’bold’)
print(classifcation_report_imbalanced(y_test,
pred_slg))
blg�BalanceCascadeClassifer(base_estimator�LGBM-
Classifer (max_depth�int(best1[’max_depth’]),

n_estimators�int(best1[’n_estimators’]),
reg_lambda�best1[’reg_lambda’],
reg_alpha�best1[’reg_alpha’],
learning_rate�best1[’learning_rate’],
num_leaves�int(best1[’num_leaves’])))

blg�blg.ft(x_train, y_train)
pred_blg�blg.predict(x_test)
cblg�confusion_matrix(y_test, pred_blg)
cblg
%matplotlib inline
class_names�[False, True] # name of classes
plt.subplots(fgsize�(8,5))
#ax.xaxis.set_label_position(“top”)
plt.tight_layout()
plt.rcParams.update({’font.size’: 16})
plt.ylabel(’Actual’)
plt.xlabel(’Predicted’)
tick_marks�[0.5, 1.5]
plt.xticks(tick_marks, class_names, fontsize� 16,
weight�’bold’)

plt.yticks(tick_marks, class_names, fontsize� 16,
weight�’bold’)
matrix_lg_test�pd.DataFrame(data�cblg, columns�
[’AP’, ’MAP’], index�[’AP’, ’MAP’])
a1�sns.heatmap(matrix_lg_test, annot�True, fmt�’d’,
linewidths�1, cmap�’Greens’,annot_kws�{“fontsize”:
28})
a1.set_xlabel(“PREDICTED”, fontsize� 16, weight�

’bold’)
a1.set_ylabel(“ACTUAL”,fontsize�16,weight�’bold’)
print(classifcation_report_imbalanced(y_test,
pred_blg))
elg�EasyEnsembleClassifer(base_estimator�LGBMC-
lassifer (max_depth�int(best1[’max_depth’]),

n_estimators�int(best1[’n_estimators’]),
reg_lambda�best1[’reg_lambda’],
reg_alpha�best1[’reg_alpha’],
learning_rate�best1[’learning_rate’],
num_leaves�int(best1[’num_leaves’])))

elg�elg.ft(x_train, y_train)
pred_elg�elg.predict(x_test)
celg�confusion_matrix(y_test, pred_elg)
celg
%matplotlib inline
class_names�[False, True] # name of classes
plt.subplots(fgsize�(8,5))
#ax.xaxis.set_label_position(“top”)
plt.tight_layout()
plt.rcParams.update({’font.size’: 16})
plt.ylabel(’Actual’)
plt.xlabel(’Predicted’)
tick_marks�[0.5, 1.5]
plt.xticks(tick_marks, class_names, fontsize� 16,
weight�’bold’)
plt.yticks(tick_marks, class_names, fontsize�16,
weight�’bold’)
matrix_lg_test�pd.DataFrame(data�celg, columns�
[’AP’, ’MAP’], index�[’AP’, ’MAP’])
a1�sns.heatmap(matrix_lg_test, annot�True, fmt�’d’,
linewidths�1, cmap�’Greens’,annot_kws�{“fontsize”:
28})
a1.set_xlabel(“PREDICTED”, fontsize�16,
weight�’bold’)
a1.set_ylabel(“ACTUAL”,fontsize �16,weight�’bold’)
print(classifcation_report_imbalanced(y_test,
pred_elg))
fg�plt.fgure(fgsize�(10, 7)) ax�fg.add_axes([0,0,1,1])
runway�[’SPE(XGBoost)’,’BalanceCascade(XGBoost)’,
’BalanceCascade(RF)’, ’EasyEnsemble(LGBM)’]
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llws�[59.68, 59.22, 54.22, 53.71]
ax.bar(runway, llws, ls�’-.’, lw�0.25, color�’Grey’)
plt.xticks(rotation�20, fontsize�14)
plt.yticks(fontsize�14)
plt.ylim(50,60)
ax.grid(True)
plt.ylabel(’Balanced Accuracy (%)’,fontsize�14,
weight�’bold’)
plt.xlabel(’Ensemble Imbalance with Base
Estimators’,fontsize�14,weight�’bold’)
plt.show()
#################SHAP ANALYSIS ##########
##########
shap.initjs()
explainer�shap.KernelExplainer(sxg.predict_proba,
sampletest)
shap_values�explainer.shap_values(x_test)
plt.ylabel(’Factors’,fontsize�14,weight�’bold’)
plt.xlabel(’Mean SHAP Value’,fontsize�14,
weight�’bold’)
plt.title(’SHAP Importance Plot’,fontsize�14,
weight�’bold’)
shap.summary_plot(shap_values, x_test)
plt.fgure(fgsize�(12, 8))
summary�shap.summary_plot(shap_values[1], x_test,
plot_type�’violin’, show�False)
plt.title(’SHAP Contribution Plot’,fontsize�14,
weight�“bold’)
plt.ylabel(’Factors’,fontsize�14,weight�“bold’)
plt.xlabel(’SHAP value (Impact on Model
Output)’,fontsize�14,weight�“bold’)
plt.gcf().axes[-1].set_aspect(’auto’)
plt.tight_layout()
# As mentioned, smaller “box_aspect” value to make
colorbar thicker
plt.gcf().axes[− 1].set_box_aspect(50)
shap.dependence_plot(’LLWS V_Location’, shap_val-
ues[1], x_test)
shap.dependence_plot(’LLWS Magnitude’, shap_val-
ues[1], x_test)
shap.dependence_plot(’Season of Year’, shap_values
[1], x_test)
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