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Te rapid development of urbanization makes the phenomenon of urban heat islands even more serious. Predicting the impact of
land cover change on urban heat island has become one of the research hotspots. Taking Wuhan, China, as an example, this study
simulated the land type change in 2020 through the Cellular Automata-Markov-Chain (CA-Markov) model. Te urban heat
island in 2020 was simulated and analyzed in conjunction with the Weather Research & Forecasting Model (WRF), and the
simulation results of wind velocity and temperature were confrmed using weather station observation data. Based on this, the
land cover and urban heat island of Wuhan in 2030 were predicted. Te temperature was found to be well-ft by CA-Markov
simulated land use data, with an average inaccuracy of about 2.5°C for weather stations. Wind speed had a poor ftting efect; the
average error was roughly 2m/s.Te built-up area was the center of the high temperature area both before and after the prediction,
the water was the low temperature area, and the peak heat island happened at night. According to the forecast results, there will be
more built-up land in 2030, and there will be a greater intensity of heat islands than in 2020.

1. Introduction

Anthropogenic heat emissions are increasing as urban-
ization continues to rise, and issues with the urban
ecological environment are getting worse. Urban con-
struction causes the original vegetation and soil on the
surface to be covered with impermeable surfaces such as
cement and asphalt. Tese changes increase heat fux and
reduce water vapor emission, resulting in a signifcant
increase in urban temperature, known as the urban heat
island efect [1, 2]. Environmental problems caused by
urban heat island, such as the deterioration of air quality
and the increase of extreme high temperatures [3], have
seriously endangered people’s production and living
environment. Studies have shown that high temperatures
weather is highly correlated with mortality from some

diseases and mental health [4–6]. In order to enhance
people’s quality of life, it is crucial to develop urban land
logically and reduce urban heat islands.

As one of the external characteristics of urban envi-
ronment, the variation of urban surface temperature is
positively correlated with the area of impervious surface
[7, 8]. Land change is closely tied to environmental change
since it impacts not just the natural environment that
humans depend on for living, such as the climate and
vegetation, but also the earth’s energy and material cycles
[9]. Since the International Geosphere-Biosphere Pla-
n(IGBP), and the International Human Dimensions Pro-
gramme on Global Environmental Change(IHDP) jointly
put forward the “land use/cover change” program in 1995,
the land cover change has become one of the research
hotspots in the world environmental feld [10, 11].
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At present, the models used to study land cover change
mainly include cellular automata-Markov-Chain(CA-Mar-
kov) [12], conversion of land use and its efects at small
regional extent(CLUE-S) [13], slope-land use-exclusion-
urban extent-transportation-hill shade model(SLEUTH)
[14], artifcial neural network(ANN) [15], and agent-based
model(ABM) [16]. Among them, the CLUE-S model is
rarely coupled with other models, and the selection of
driving factors for land use is limited by scholars’ own
knowledge reserves [17]. Te SLEUTH model cannot
identify the weight factors of land development and pay too
much attention to some edge factors. It will lead to un-
reasonable memory allocation, and the simulation results
will be quite diferent from the actual situation [18]. Te
ANN model cannot quantitatively evolve the land-use data,
which will lead to a long simulation cycle and unguaranteed
accuracy [19]. Te ABM model is usually used for local
small-scale land-use simulations such as a school or a farm,
not for urban areas [20]. Cellular automata (CA) in CA-
Markov model can simulate its dynamic change in complex
spatial form, and the Markov model is sensitive to temporal
form. Te combination of the two can improve the accuracy
of land-use prediction [21–24], so there are many research
precedents at home and abroad. CA-Markov model can
predict land expansion on the urban scale well [25] and can
also analyze the infuence of diferent factors such as road
and slope on urban expansion [26]. Using CA-Markov
simulation to predict land use type and then retrieve the
land surface temperature, so that urban heat island intensity
can be analyzed [27].

Te composition of underlying surface has signifcant
infuence on the intensity of urban heat island [28]. And how
to qualitatively analyze the urban thermal environment
according to the land use situation is also the key to research.
Te coupled Weather Research & Forecasting (WRF) model
has diferent physical processes to describe various complex
climate phenomena and has been widely used in meteo-
rological research in recent years [29], including Andalusia,
Spain [30], Portugal [31], Japan [32], New York, USA [33],
and so on. However, the underlying surface data used by
WRF is the United States Geological Survey (USGS) land-
use data released by the US Bureau of Investigation in 1993,
which includes 24 types of land-use. Te second is Modis
land use data of 20 land-use types updated in 2001 [34].
Tere are some diferences between the two kinds of land use
data and the actual land use data. Terefore, scholars at
home and abroad have carried out some research on how to
improve the accuracy of WRF meteorological simulation.
Using CA-Markov model to generate land use data, Chen
verifed the applicability of land use data obtained by this
method to simulate urban thermal environment in WRF
[35]. And by coupling refned land use data in Chengdu with
a single-layer urban canopy model, Xiao proved that higher
resolution underlying surface data can improve the accuracy
of WRF weather prediction [36]. In order to predict the
distribution of urban thermal environment under diferent
urban development scenarios, Li and Mochida adopted CA-
Markovmodel to predict urban expansion and replaced land
use data in WRF [37].

On the basis of previous research, this study sums up the
experience. After predicting the spatiotemporal change of
the self-classifed land use data, it is coupled with the me-
teorological model. It not only improves the simulation
accuracy of the study, but also shows how changing land use
data afects urban heat islands over time. By predicting land
surface temperature directly, this study streamlines the
urban heat island calculation procedure and ofers a more
visual way to examine the relationship between land use and
urban heat island across time.

Tis paper used remote sensing technology to extract
high-precision land use data and used the CA-Markov
model to build a land use data simulation and prediction
scheme. Ten, the simulated land use vector data was input
into the WRF to simulate the urban heat island efect in the
main urban area of Wuhan, and the temperature feld and
wind feld data of Wuhan in July 2020 were obtained. By
comparing with the observation data from weather stations,
the feasibility of this method was verifed in the study of the
efect of urban heat island. Finally, the weather of Wuhan
City in 2030 was predicted, which provided a new reference
for rational planning of urban construction and the con-
struction of urban ecological environments in the future.

2. Study Area

Wuhan is located in the central plain area and has a sub-
tropical monsoon climate. It is located between
113°41E∼115°05′E and 29°58N∼31°22′N. With abundant
rainfall throughout the year and hot temperature in summer,
the highest temperature can reach nearly 40°C, Wuhan is
known as China’s furnace city [38]. Te main urban area of
Wuhan city is selected as the simulation area for the study.
Te main urban area (Figure 1) can be viewed as a micro-
cosm of the rapid development of the city’s explosive recent
expansion. With rapid economic growth, the city area is
gradually expanding (Figure 2) and the phenomenon of
urban heat island is getting worse [39].

3. Research Method

3.1. Acquisition of Remote Sensing Data. Te Landsat-5 ME
(Tematic Mapper) dataset and the Landsat-8 OLI (Oper-
ational Land Imager) dataset were selected for the remote
sensing data. To avoid cloudiness interference, the cloudi-
ness of the selected remote sensing data was less than 5%.

Te remote sensing images obtained were reclassifed in
Arcgis. Based on a land use classifcation system for remote
sensing data developed by USGS in 1976 [40], the land-use
status of Wuhan was divided into six categories: building
land, farmland, forest, bare land, lake, and river. High-
precision Landsat land use data were able to be acquired
in this manner.

3.2. CA-Markov Model. A Markov chain is a process of
randomly switching from one state to another in the state
space. Tis process requires “memoryless,” which means
that the morphological distribution of the next state has
nothing to do with the past state but is only determined by
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the current state [41]. In LUCC (land use and land cover
change), this model can be used to describe the probability of
conversion between diferent land classes [42]. For this, the
specifc formula of the Markov model is as follows:

St+1 � Pij × St, (1)

Pij �

P11 P12 · · · P1n

P21 P22 · · · P2n

⋮ ⋮
Pn1 Pn2

⋮
· · ·

⋮
Pnn

.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

In the formula, St+1 and St refer to the land-use type data
of the area studied area at diferent times. Pij refers to the
probability transfer matrix under specifc conditions.

Te cellular automata (CA) model is a grid dynamic
model with discrete time, space and state, and spatial in-
teraction and temporal causality all being local [43]. Te
formula is as follows:

St+1 � f St, N( 􏼁. (3)

In the formula, St refers to the land-use type at t time. N
refers to the neighborhood interval of the target point. f

represents the land use type transfer rule within the domain
interval.

Te CA-Markov model combines both two models to
make the land types change not only with time according to
specifc laws but also show the change in space directly. Te
CA-Markov model makes it possible to change land use
types in multiple and dynamic ways and is widely used in
LUCC simulation research.

Wuhan

N

0 10 km

Figure 1: Research area: the main urban area of Wuhan city (point 1 is the urban weather station, points 2 and 3 are the suburban weather
station).

1985 2000 2020

Figure 2: Changes throughout time in the built-up area of the main urban area of Wuhan (the red area represents the built-up area).
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3.3. WRF Model. Te research relied on WRF for simula-
tion and adopted a nested grid design. Taking the latitude
and longitude (114.30E, 30.50N) of the center of the main
urban area as the simulation center, three layers of nesting
were set successively (Table 1). Nesting of the third layer was
the main research content.

Table 2 shows the initial weather boundaries required for
WRF operation, with the FNL data used for simulation in
2020 and the CMIP6 data used for both the simulation in
2020 and the future simulation in 2030. For the future (2030)
simulation, SSP245 scenario has been used. Based on the rate
of greenhouse gas emissions, the SSP is a list of fve possible
development scenarios envisaged by the Intergovernmental
Panel on Climate Change (IPCC) [44]. Among these, SSP2 is
a medium development path that follows the historical
development scenario, with no signifcant change in eco-
nomic development and a slow decline in CO2 emissions.

3.4. Verifcation of Simulation. Te mean error (ME), the
root mean square error (RMSE), and the consistency index
(d) were used to qualitatively evaluate the simulation. Te
formula for calculating the mean error is as follows:

ME �
1
n

􏽘

n

i�1
| Pi − Oi | . (4)

Here, Pi is the predicted value, and Oi is the observed
value. ME is an estimate of the reliability of the simulated
data. When the value of ME is small, the reliability of the
simulation is good. In contrast, the simulation is not so
reliable.

Te smaller the value of RMSE, the closer the simulated
value is to the measured value, the better the simulation
efect. Te formula to calculate RMSE is as follows:

RMSE �

�������������

1
n

􏽘

n

i�1
Pi − Oi( 􏼁

2
.

􏽶
􏽴

(5)

Here, Pi is the predicted value and Oi is the
observed value.

Te range of values of the consistency index is [0, 1]. Te
larger the value, the smaller the deviation from the measured
value. When the value of d is 1, the simulation is completely
consistent with the measured value [45, 46]. Te formula for
calculating d is as follows:

d � 1 −
􏽐

n
i�1 Pi − Oi( 􏼁

2

􏽐
n
i�1 | Pi | − | Oi |( 􏼁

2, (6)

In this formula,Pi � Pi − P, Oi � Oi − O, P is the average
of the predicted values, and O is the average of the observed
values.

3.5. SimulationProcess. Te fow chart of this study is shown
in Figure 3. Te frst step was to divide the land-use data of
the main urban area of Wuhan into six categories in 2007,
2013 and 2020. Te above three images were input into

IDRISI software and the CA-Markov model was used to
realize land use transfer in the main urban area of Wuhan.
Te land use transfer matrix for 2007–2013 was produced via
Markov operation after the land use data for 2013 and 2007
were used as a baseline. Based on the 2013 land classifcation
data, the CA-Markov operation was carried out using the
2007–2013 land use transfer matrix to simulate the 2020 land
use data. Similarly, land use data for 2030 can be predicted
based on Landsat land classifcation data for 2013 and 2020.

Te second step was the simulation and prediction of
meteorological data, which was carried out through the
WRF.Te land-use data set provided byWRF is based on the
2001 resolution remote sensing image product MODIS [47].
In Landsat-2020, the MODIS data were replaced with the
real 2020 land cover data. In CA-Markov-2020, the MODIS

Table 1: Nesting region in WRF simulation.

D01 D02 D03
Grid size (km) 5.00 1.67 0.56
Number of grids 49× 49 73× 73 85× 73
Vertical levels 34

Table 2: Boundary conditions used as preprocessing in WRF
simulation.

CMIP6 FNL
Spatial accuracy 1.25° 1°
Time 6 h 6 h

Variables

Air temperature, wind speed,
sea surface temperature, sea
surface pressure, surface

pressure, relative humidity,
soil moisture, soil

temperature, geopotential
height

Data preparation

Self-classification
of land cover

Landsat land-
use data

Casel

CA-Markov
Land-use data

Case2

Meteorological
parameters

FNL global
dataset

CMIP6 global
dataset

Case3

Meteorological data
of Weather station

Feasibility
verification

Climate prediction
for 2030

Figure 3: Study fowchart.
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data were substituted by the simulated 2020 land cover data.
Te WRF was used to calculate the climate parameters in
2020, to explore the impact of changes in land use data on
urban heat islands and predict future climate conditions in
2030. Te specifc working conditions are set in Table 3.

Verifying and analyzing the simulation fndings was the
third step. Simulated land use data in 2020 was compared
with self-classifed land use data in 2020 to verify the pre-
diction accuracy of the CA-Markov model. Te simulated
climate parameters were compared with the weather station
data to verify the feasibility of the research method. To
forecast and analyze future climate conditions, the forecast
fndings for 2020 and 2030 were compared.

4. Analysis and Discussion

4.1. Validation of the Land Cover Model. Based on self-
classifed land cover data from 2007 to 2013, the CA-
Markov model was used to simulate the land cover sce-
nario of 2020. After then, the accuracy of the CA-Markov
model was confrmed by comparing it with the actual land
cover in 2020.

4.1.1. Change in Self-Classifed Land Cover from 2007 to 2020.
Te land use Status Map Classifed by Landsat is shown in
Figure 4. From 2007 to 2020, the extent of forests, lakes, and
rivers has been most preserved, with little change in area
(Table 4). Due to the city’s explosive growth, the amount of
agriculture fell by 132.7 km2 between 2007 and 2013, and its
share dropped quickly from 47% to 34%. From 2007 to 2020,
the area of building land increased by 149.12 km2 in total,
with the main construction area concentrated in the
southeast, and the built area of Hanyang District increased
signifcantly from 2017 to 2013. By 2020, the area of the
building land represented the largest proportion, most of
which was transformed from farmland. A tiny portion of the
forest was turned into farmland, and the area of bare land,
lakes, and rivers changed negligible.

4.1.2. Comparison between Simulated and Measured Land
Use Type. Figure 5 shows the land use classifcation image
for 2020 simulated by the CA-Markov model. Te 2020
simulated land use data was compared with Landsat clas-
sifed data to verify the accuracy of the model (Table 5). Te

relative errors of farmland, building land, and lakes were all
less than 3%. Te simulated area of bare land difered from
the measured area by 4.32 km2, but the proportion of bare
land was less than 1%, so the error is negligible. Te area of
lakes simulated by CA-Markov was 24.87 km2 less than that
of the actual, and the forest area was 11.86 km2 more than
that of the actual. Compared with the actual area, these two
types of land area deviation are large, but their respective
proportions are less than 10%. In general, the simulated area
of the six land classes is approximately the same as the actual
classifed area, and the two sets of data have signifcant
correlation.

Te Kappa coefcient, whose value range is [0, 1], which
was computed by the Crosstab module in IDRISI, was used
to confrm the prediction accuracy of the overall land type
distribution in 2020. When the Kappa coefcient is greater
than 0.75, it proves that the consistency of the two images is
high [48]. Te calculated Kappa coefcient is 0.8217, which
proves that the prediction accuracy of CA-Markov is high
(accuracy validation of the land cover data.).

4.2. Comparison of Measured Climate and Predicted Climate
of the WRF Model. Te simulations’ accuracy was con-
frmed by comparing the parameters for wind velocity
(10m) and high temperature (2m).

4.2.1. Temperature Verifcation at 2m. To verify the accu-
racy of the simulation, the weather station data was com-
pared with the simulated values. Both simulations (Figures 6
and 7) accurately replicate the temperature fuctuation trend
at 2m, and the simulated values of CA-Markov-2020 are
slightly higher than the observed values. Wuhan had a lot of
rainy days in July 2020. Te simulation efect of the two
simulations was better on bright days such as the ninth and
22nd, while there were some diferences in the simulation of
extreme rainy days such as 3–5.

Te average error of Landsat-2020 was the smallest
among the three weather stations, but both two simulations
could show the trend of the daily temperature change. Te
simulation of both conditions is very good (Table 6).

Te value of d in Landsat-2020 is higher than that of CA-
Markov-2020, indicating that the simulated value of
Landsat-2020 is the closest to the measured value.Te RMSE
values of the two simulations are somewhat large, and the

Table 3: Working condition setting in WRF simulation.

Case 1 (landsat-2020) 2 (CA-Markov-2020) 3 (CA-Markov-2030)
Simulation period 2020.06.30, 0:00∼2020.08.01, 0:00(GMT) 2030.06.30, 0:00∼2030.08.01, 0:00(GMT)
Geo scheme Landsat CA-Markov CA-Markov
Meteorological parameters FNL CMIP6 CMIP6
Physics options Parameter scheme
Microphysics models WSM 3-class scheme
Longwave radiation scheme RRTM scheme
Shortwave radiation scheme Dudhia scheme
Surface layer models Monin-Obukhov similarity theory
Land surface models Noah land surface model
Planetary boundary layer Mellor-Yamada-Janjic scheme
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Building Land
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Forest
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Miles

2007 2013

Figure 4: Classifcation of land-use status from 2007 to 2020.

Table 4: Proportion of land-use types from 2007 to 2020.

Year/proportion of
land types

2007 2013 2020
km2 % km2 % km2 %

Farmland 473.11 47.29 340.41 34.04 318.42 31.81
Building land 310.12 31.00 422.58 42.26 459.24 45.88
Forest 21.58 2.16 31.11 3.11 21.17 2.11
Bare land 2.82 0.28 9.14 0.91 3.97 0.40
Lake 89.81 8.98 99.66 9.97 95.14 9.51
River 102.93 10.29 97.12 9.71 102.97 10.29

2020

N

Bare Land
Building Land
Farmland
Forest
Lake
River

0 2 4 8 12 16
Miles

Figure 5: Simulated land-use image for 2020.
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Table 5: Error analysis of the proportion of land use types in 2020.

Proportion
of land types

Landsat CA-Markov
RE (%) R2

km2 % km2 %
Farmland 318.42 31.81 308.65 30.97 3%

0.997

Building land 459.24 45.88 474.85 47.64 3%
Forest 21.17 2.11 33.03 3.31 36%
Bare land 3.97 0.40 8.29 0.83 52%
Lake 95.14 9.51 93.84 9.41 1%
River 102.97 10.29 78.10 7.84 32%
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Figure 6: Continued.
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Figure 6: Temperature cloud images of the main urban area of Wuhan on 9 July 2020 (the left side is landsat-2020 and the right side is CA-
Markov-2020). (a) 8:00, (b) 12:00, (c) 16:00, and (d) 20:00.
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simulation efect of the suburban weather station is superior
than that of the urban weather station. Te simulation efect
of the temperature at 2m in Landsat-2020 is good. Te
d value and the RMSE value of CA-Markov-2020 are larger
than those of Landsat-2020. However, considering the un-
certainty of future land change and climate change, the error
of CA-Markov-2020 is considered to be within an acceptable
range. Tat is, the CA-Markov condition has certain ap-
plicability in temperature simulation.

Combined with the specifc weather and temperature
analysis, the temperature feld is analyzed on July 9 at 8:00,
12:00, 16:00, and 20:00 as it is a sunny day (Figure 6). At
eight o’clock, all other areas had temperatures that were
concentrated at roughly 25°C on the Landsat-2020 simu-
lation except for the built-up area. With the exception of the
water, which was 24°C, the rest of the CA-Markov-2020
simulation had a rather high total temperature of 28°C.
Similarly to the land use image, the high temperature area of
the two simulated simulations was concentrated in the built-
up area and the low temperature area was concentrated in
the water. At noontime, due to solar radiation, the tem-
perature in most areas of both simulations rose to 32°C. Due
to the high specifc heat capacity of water, the temperature of
lakes and rivers rises slowly, and the temperature is main-
tained at 26°C.

Te diference in the temperature distribution of the two
simulations at six o’clock at night was similar, and the high
temperature area was roughly the same, concentrated in the

building land, and the maximum temperature could reach
35°C. Farmland and forests made up the sub-high tem-
perature zone, which was roughly 3°C cooler than the high
temperature zone. Te area with the lowest temperature was
the lakes and rivers, where the temperature was around 28°C.
Te temperature of CA-Markov-2020 is somewhat greater
than that of Landsat-2020, which can be attributed to the
overestimation of future temperature by CMIP6 dataset
[49]. Te average temperature of CA-Markov-2020 at 8 pm
was 2°C lower than that of Landsat-2020, but the high
temperature region was still in the built-up area and the
temperature of other land types was concentrated at 25-
26°C. Te Landsat-2020 temperature distribution showed
a more pronounced disparity. Te highest temperature on
the building ground was 33°C and the temperature in the
rivers and lakes was 27°C. Te temperature of water fuc-
tuated slowly with the temperature of air, so the temperature
basically remained unchanged. It is evident from both ex-
amples that the heat island region of Wuhan’s main urban
area is centered on the eastern and central banks of the
Hanjiang River, which is in line with the area’s general
development tendency [50]. Te analysis above demon-
strates the suitability of the CA-Markov condition for
temperature modeling.

4.2.2. Wind Velocity Verifcation at 10m. Wuhan City’s
wind speed in July 2020 is depicted in Figure 8. Te diurnal
variation trends of the two models at the three weather
stations were somewhat overestimated, but they were
compatible with the real results. On the 7th and 22nd, the
actual wind velocity was high, and the simulation efect of
the two simulations was excellent at this time. It demon-
strates that at high wind velocities, Landsat-2020 and CA-
Markov-2020 have the best simulation efect. When the
actual wind speed was low, Landsat-2020 was more in line
with the observed values. Landsat-2020’s wind velocity was
1.1m/s higher than the average recorded value, and the wind
velocity of CA-Markov-2020 was 2.18m/s higher (Table 7).
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Figure 7: Temperature at 2m of each weather station in the main urban area of Wuhan in July 2020. (a) Point 1. (b) Point 2. (c) Point 3.

Table 6: Error analysis of temperature at 2m.

Point 1 Point 2 Point 3

ME Landsat-2020 1.90 1.62 1.56
CA-Markov-2020 2.72 2.89 2.55

d Landsat-2020 0.81 0.86 0.88
CA-Markov-2020 0.75 0.74 0.74

RMSE Landsat-2020 2.49 2.13 1.93
CA-Markov-2020 3.50 3.58 3.56
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While the Landsat-2020 simulation efect was better and
more consistent with the measured values, the agreement
coefcients of the two simulations at the three weather
stations were relatively low. Te RMSE of CA-Markov-2020
was larger than that of Landsat-2020, but both errors were
within the allowable bounds. It is proven that there is
a certain deviation between simulation and measurement in
the simulation of wind velocity at 10m.Te simulation efect
is better when land use data is replaced by high-precision
land use data, while CA-Markov simulated land use data can
also be used to simulate an urban wind environment.

4.2.3. Analysis of the Heat Island in 2020. Te intensity of
the urban heat island in the main urban area of Wuhan in
July is shown in Figure 9. For Point 2, the mean heat island
intensity of the weather station was 0.63°C. Te highest
recorded temperature of 2.1°C was recorded at 23:00 on July
3. It can be seen that the intensity of the urban heat island
intensity is strong at night and weak at midday from the
fuctuation of heat island intensity observed by weather
stations. Te average intensity of Landsat-2020 heat island
was 0.93°C, and the maximum heat island recorded at 16:00
on July 18, which was 4.41°C. Te negative heat island
peaked on July 31 at 17:00, with a temperature of − 1.71°C.
Te average heat island intensity of CA-Markov-2020 was
0.65°C and the peak heat island intensity was 6.66°C that
occurred at 13:00 on July 19. Te minimum negative heat
island was − 5.12°C, which recorded at 11:00 on July 3. Te
three curves’ daily fuctuations were essentially consistent,
and the degree of agreement was better on sunny days, such
as the ninth. On the 3rd and 19th, the weather could vary in
a single day. At this time, the simulation error of the two
conditions was a little bit high.

Te maximum heat island intensity of Point 3 was
1.14°C, and it was visible at midnight on July 9. Te min-
imum intensity of the negative heat island was − 1.98°C,
which recorded at 13:00 on July 12. Te intensity of the heat
island observed by the weather stations did not fuctuate
much, but the intensity of the negative heat island was large.
Following 2008, the primary urban area’s development land
mostly evolved in a southeasterly direction [50], with the
area surrounding Point 3 seeing a sharp growth in building
land. Te growth of the built-up region was accompanied by
the reduction of water and forest, raising the temperature
close to Point 3 and intensifying the negative heat island.Te
greatest intensity of the heat island simulated by Landsat-
2020 was 4.9°C, which recorded at 17:00 on July 16, and the
negative heat island situation basically did not appear. Te
maximum heat island intensity of CA-Markov-2020 was
8.43°C at 14:00 on July 19. On the 19th, the weather shifted
from a rainy to a sunny day, and the weather change could
not be replicated in the CMIP6 dataset, resulting in a high
simulation temperature and a large simulation deviation of
CA-Markov-2020. Compared to the observation data from
the weather stations, the average heat island intensity
simulated by Landsat-2020 and CA-Markov-2020 was ap-
proximately 1°C higher, indicating that the simulated
temperature of Point 3 under the two conditions was too

low. Due to urbanization, the actual temperature of Point 3
is higher, and the self-classifed land use data could not well
refect the short-term rapid development, resulting in low
simulated temperature.

4.3. Analysis of the Forecast Results for 2030

4.3.1. Change in Land Cover. Te predicted land use sta-
tistics for 2030 are shown in Figure 10. Compared to 2020,
the area of bare land, lakes, and rivers in 2030 has essentially
not altered (Table 8). Tere will be a 6.81 km2 drop in the
forest and a 32.32 km2 decrease in the farmland area. And
the proportion of farmland will decrease to 28.7%, majority
of which will be converted into building land. Under the
urbanization process, construction land will account for
49.75% in 2030, which is more concentrated and encom-
passes a bigger area than it did in 2020.

4.3.2. Climatic Simulations. Land use data predicted by CA-
Markov in 2030 and meteorological data from the CMIP6
dataset were used to simulate the future climate in 2030 (CA-
Markov-2030). Since WRF has a great simulation impact for
high-temperature weather, so the simulation results from 5
July were extracted to analyze the temperature distribution
in the main urban area (Figure 11).

Te temperature in most areas is about 27.5°C at 8:00.
Built-up areas have substantial heat storage potential due to
their dense building stock, which results in frequently higher
temperatures. From the fgure, it can be seen that the
temperature in the place where the building land is con-
centrated is 1°C higher than other areas, and the temperature
of water is the lowest. At noon, the sun is at its strongest.
Except that the temperature of rivers and lakes is maintained
at 29°C, the temperature in the rest of the area is above 33°C,
with certain locations even reaching 36°C. Te temperature
at 16:00 is the same as it was at noon; the temperature of the
water is maintained at 29°C, and the temperature in other
areas is still around 35°C. At 20:00, the heat island zoning is
clearly visible, and the temperature in the built-up area is
obviously 4-5°C higher than that in other areas.

Te intensity of the heat island in July 2030 is shown in
Figure 12. For Point 2, the peak heat island intensity in July
2030 is 4.2°C, which occurs at 21:00 on 7th. Te average heat
island intensity is 0.73°C in 2030, which is stronger than in
2020. Point 3’s greatest heat island intensity was 8°C, and it
happened on July 21 at 18:00. Te average heat island in-
tensity is 1.43°C and the overall heat island intensity is higher
than Point 2. Te heat island intensities of the two weather
stations are similar on the 14th. On the 14th, there is a high
temperature and little wind. Given that the weather is likely
to be bright, warm, and partly cloudy, so the heat island
intensities of the two weather stations are similar. Te heat
island intensity on July 7 varies signifcantly between the two
weather stations, indicating a contrary trend. Compared to
Point 3, there are more buildings around Point 2. As a result,
the temperature of point 2 will be occasionally much higher
than that of point 3, which is also the reason why point 2 is
a positive heat island, while point 3 is a negative heat island.
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Figure 8: Wind velocity at 10m of each weather station in the main urban area of Wuhan in July 2020. (a) Point 1. (b) Point 2. (c) Point 3.
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Te temperature at 2m and the wind velocity at 10m at
three weather stations in 2030 were compared to those in 2020
(Figures 13 and 14). Te daily temperature fuctuations sim-
ulated by the three weather stations are the same, with the
highest temperature recorded at 14:00 on July 2. Te average
temperature of the urban weather station (Point 1) is 33.02°C,
a maximum temperature of 41.88°C, and a minimum tem-
perature of 24.95°C that occurs at 6 am on July 3. Between July
2 and 3, the temperature diference is large and the temperature

diference at other periods ismaintained at 6–8°C a day. Point 2
experiences an average temperature of 32.86°C, a maximum
temperature of 42.49°C, and a minimum temperature of
22.48°C at 6 a.m. In 2030, the built-up area around Point 2 is
larger in scope and therefore tends to be consistent with the
temperature change of the urban weather station. Te average
temperature of point 3 is 31.97°C, the highest temperature is
41.21°C, and the lowest temperature is 22.47°C. Compared to
the other two weather stations, the temperature is the lowest.

Table 7: Error analysis of wind velocity at 10m.

Point 1 Point 2 Point 3

ME Landsat-2020 1.07 1.12 1.11
CA-Markov-2020 2.09 2.20 2.25

d Landsat-2020 0.65 0.62 0.62
CA-Markov-2020 0.43 0.40 0.36

RMSE Landsat-2020 1.46 1.49 1.50
CA-Markov-2020 2.66 2.78 2.80
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Figure 9: Changes in urban heat island intensity in the main urban area ofWuhan in July 2020 (UHI � turban − tsuburban). (a) Point 1-point 2.
(b) Point 1-point 3.
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Figure 10: Classifcation of land-use status in 2030.

Table 8: Proportion of land-use types in 2030.

Year/proportion
of land types

2020 2030
km2 % km2 %

Farmland 318.42 31.81 286.11 28.70
Building land 459.24 45.88 496.00 49.75
Forest 21.17 2.11 14.36 1.44
Bare land 3.97 0.40 4.59 0.46
Lake 95.14 9.51 93.43 9.37
River 102.97 10.29 102.43 10.27
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Figure 11: Temperature cloud image on July 5, 2030. (a) 8:00. (b) 12:00. (c) 16:00. (d) 20:00.
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Figure 12: Urban heat island intensity in July 2030.
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Figure 13: Continued.
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Figure 13: Comparison of temperature at 2m in July 2030 and July 2020. (a) Point 1. (b) Point 2. (c) Point 3.
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Figure 14: Continued.
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Te temperature in 2030 is generally higher than that in 2020,
with an average temperature increase of about 5°C. Point 2 has
the most noticeable temperature increase, with an average
increase of 6.3°C.

In 2030, themaximumwind velocity of Point 1 was 7.89m/
s, appearing at 9 a.m. on July 10, and the minimum wind
velocity was 0.17m/s at 5 a.m. on July 1. Te average wind
velocity at Point 1 is 3.53m/s, and the maximum fuctuation of
wind velocity can reach 5m/s in a day, which has a large
fuctuation. Te average wind velocity at Point 2 is 3.22m/s,
and the maximum wind velocity is 7.77m/s. Point 3 has an
average wind speed of 3.56m/s and a maximum wind speed of
7.89m/s. Compared to the other two weather stations, Point 3
in 2030 is still located in a suburban area, so it has the lowest
temperature and the highest wind velocity. Te maximum
wind velocity of three weather stations in 2020 is 7.66m/s,
which is marginally diferent from that in 2030. Nonetheless,
the simulated average wind velocity in 2030 is 3m/s, which is
1m/s higher than that in 2020, indicating that the overall wind
speed in 2030 has strengthened.

4.4. Discussion. It is found that the major urban region of
Wuhan is expected to see a 32.32 km2 drop in farmland area
and a 36.76 km2 rise in building land area by 2030. Te
temperature typically rises in tandem with an increase in
built-up area. Based on the analysis of Landsat data in 2016
and 2021, Dı́az-Chávez et al. discovered that the urban area
of Columbia grew by roughly 3.13%.Te yearly mean surface
temperature rose by 0.68°C in fve years as the built-up area
increased [51]. According to Ezimand et al. simulation and
prediction of the land use data of Rasht in 2031 using the
CA-Markov model, the built-up area would grow to
102.9 km2 in the future. It was discovered that there was
a substantial positive correlation between the land surface
temperature and the built-up area through temperature
inversion [52].Surface temperatures can be directly calcu-
lated through the study. Te urban heat island intensity of
study area in 2030 rises to 0.73°C by calculating the tem-
perature variation between urban and suburban areas.

It must be acknowledged that the study had some
shortcomings. In this study, the refned land use data is only
divided into 6 categories, there may be a concentration of
building land in the process of CA-Markov, which could
afect the simulation results. Te research area is concen-
trated in the main urban area of Wuhan, and the scope is
limited. In order to optimize the CA-Markov process and
raise the accuracy of the simulation, the study scope may be
increased in the future and land use data categorization can
be more refned.

Even with its limitations, the study ofers a fresh
perspective on researching the climate of the future. By
using land change scenario into research, the study can
estimate future climate and provide a more logical way to
predict the association between land cover change and
urban heat island. Te results are more intuitive and the
process of calculating urban heat island intensity is less
complicated when compared to temperature inversion
[53, 54].

To prevent future deterioration of the urban environ-
ment, better protection of cold areas such as rivers and lakes
[55, 56] should be an important consideration in the up-
coming urban construction process. According to the
existing development trend, the area of building land would
grow in the future while the area of farmland would continue
to decline. Reasonable planning can be carried out to spread
out the built-up area and increase the green area, so that the
mitigation efect of the cold area on the urban heat island can
be brought into full play. And the coordinated development
of economy and urban environment can be realized.

5. Conclusions

Using the CA-Markov model, this study simulated the land
use data for 2020 and predicted the land use data for 2030. By
substituting the WRF’s underlying surface data, the main
Wuhan urban area’s climatic parameters for 2020 and 2030
were simulated. After an analysis of Wuhan City’s urban
heat island problem, the following conclusions were made.
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Figure 14: Comparison of wind velocity at 10m in July 2030 and July 2020. (a) Point 1. (b) Point 2. (c) Point 3.
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(1) Tis study simulated land use data for 2020 using the
CA Markov model, and errors in farmland, building
land, and lake areas were all less than 3%. Te dis-
tribution of the six simulated land types was roughly
in the same way as the Landsat classifcation. With
a Kappa coefcient of 0.82, the simulation accuracy
is high.

(2) Te average temperature error of the CA-Mar-
kov-2020 simulation was 2.5°C and the consistency
index was about 0.75. Te average error of the wind
velocity was 2m/s. In sunny, high-temperature
conditions, the temperature division of the associ-
ated temperature feld was clearly visible.Te densely
built-up area contained areas with high tempera-
tures, whereas the water had the lowest temperature.
CA-Markov model has good simulation efect on
thermal environment simulation.

(3) Te intensity of the urban heat island in 2020 ranged
from − 1 to 2°C. Te daily fuctuation of urban heat
island intensity simulated by Landsat-2020 and CA-
Markov-2020 was the same as that measured. Te
overall fuctuation of the intensity of the heat island
at Weather Station 2 was small, while at Weather
Station 3, there were numerous instances of negative
heat island conditions. Te rapid development of the
city caused vegetation and water near Weather
Station 3 to decrease, which raised the
temperature there.

(4) In July 2030, the average temperature would be about
5°C higher than in 2020, and the average wind ve-
locity is 1m/s higher. Weather Station 2 may become
an urban weather station in the future building
phase, as evidenced by the similarity in the extreme
values and temperature variations between Weather
Stations 1 and 2. In 2030, the scope of the built-up
area is larger, the region is more concentrated, so the
urban heat island phenomenon is obvious, and the
intensity is also increased.
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