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Te current paper evaluates the weather research and forecasting (WRF) model sensitivity to fve diferent combinations of
cumulus, microphysics, radiation, and planetary boundary layer (PBL) schemes over Loess Plateau for the period 2015, in terms of
2m temperature and precipitation. Te WRF confguration consists of a 10 km resolution domain nested in a coarser domain
driven by European Center for Medium-Range Weather Forecasts Reanalysis (ERA-Interim) data. Te model simulated 2m
temperature and precipitation have been evaluated at daily and monthly scales with gridded observational dataset. Te analysis
shows that all experiments reproduce well the daily 2m temperature, with overestimation particularly in the low-temperature
range. Precipitation is less well simulated, with underestimation in all range, especially for intense rainfall. Comparing with ERA-
Interim, WRF shows no clear beneft in simulating daily 2m temperature while prominent improvement in simulating daily
precipitation. WRF simulations capture the annual cycle of monthly 2m temperature and precipitation with a warm bias and wet
bias for most experiments in summer. Some reasonable confgurations are identifed. Te “best” confguration depends on the
criteria.

1. Introduction

Regional climate information is important for impact studies
and climate change research. Comparing with global
models, regional climate models (RCMs) are capable to
produce climate simulation at higher spatial resolution with
more realistic representation of surface heterogeneity and
elevation.Terefore, RCMs are becoming the preferred tools
for understanding climate at the regional scale [1–3].

Among RCMs developed by various institutes across the
globe, the WRF model has been widely used by the science
community for diferent regions [4–13]. It is also one of the
RCMs being used for the coordinated regional climate
downscaling experiment (CORDEX) [2] within the World
Climate Research Program. A key feature of WRF is that it
ofers various physical parameterization schemes to be
chosen [14]. However, there are limited guidance or expe-
rience on which confguration is suitable for a specifc cli-
mate regime of simulated domain. In fact, there is no
optimal confguration since model skill depends on the

region, the parameter, the season, and the timescale, among
others. Rather than identifying the best confguration for
a given criterion, we may prefer to identify one or few
confgurations depicting satisfactory skills for multiple
criteria.

Te Loess Plateau, located in central northern China
among the middle reach of Yellow River, occupies an area of
over 640,000 km2 land surface. It crosses arid, semiarid, and
semihumid climate zones, with annual average temperature
range of 4.3°C–14.3°C and average annual precipitation
range of 200–750mm from northwest to southeast [15].
Precipitation in the wet season (May through October)
accounts for around 78% of the annual precipitation [16].
Regional climate information, particularly in terms of
temperature and precipitation, is critical for the agricultural
crop yield [17–20], hydrology, and water resources [21, 22].
Precipitation amount is critical important for rain-fed ag-
riculture over this region, which accounts for 80% of the
cultivated land [15]. In addition, extreme precipitation may
lead to severe soil erosion over the Loess Plateau. Due to its
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fragile ecological environment and geographic features, the
Loess Plateau is sensitive to climate change [23, 24]. Future
climate change may exert even greater impacts on soil
erosion, restored vegetation, limited water resources, and
agricultural production [25–27].

A previous modeling study [28] demonstrates that
RegCM4.3 is able to reproduce both the spatial and
temporal features of the regional climate over the Loess
Plateau. However, it tends to produce cold biases during
winter and day biases during summer. Other studies fo-
cusing on China [29–31] or the Loess Plateau [32] using
WRF largely overestimate the precipitation amount over
the plateau. To provide reliable regional information over
this region, accurate simulation of historical climate is
a critical step. However, climate simulation biases and
their sensivitiy to physical options are still not well un-
derstood [30, 32–34]. Although there are numerous
studies conducting multiphysical sensitivity assessment
using WRF over diferent regions [4–14, 35–38], the lit-
erature focusing on the Loess Plateau is still limited, which
deserves further exploration.

Te objective of this study is to evaluate the skill of
diferent physics scheme combinations in reproducing re-
gional climate over the Loess Plateau. Toward this end,
starting from a reference model setup, general model per-
formance is evaluated for one year period, testing the efects
of diferent physical options on the simulation performance
of daily, monthly, and seasonal values of 2m temperature
and precipitation. Te results will provide useful in-
formation for dismissing less efcient parameterization
schemes and selecting a suitable model confguration in this
region. Te overarching aim is to provide a basis for long-
term simulations, impact studies, and future projections.

2. Materials and Methods

2.1. Model Confgurations. Version 4.0 WRF model is
employed with two-way nested domains: (1) outer coarse
domain with 7140 km by 4770 km extent at 30 km grid
spacing, covering the entire China mainland and sur-
rounding area and (2) inner domain with 1420 km by
1150 km extent at 10 km grid spacing, focusing on the study
area Loess Plateau. Te coverage and geography of these two
domains is illustrated in Figure 1. 33 vertical levels are set
from surface up to 50 hPa in a terrain following the sigma
coordinate. Te detailed options of physical schemes and
land surface model are listed in Table 1.

Lateral boundary condition (BC) and initial condition
for outer domain are provided by ERA-Interim reanalysis
[39], with horizontal spatial resolution of 0.75° × 0.75°,
temporal interval of 6h, and 37 original pressure levels from
1000 to 1 hPa. Prescribed sea surface temperature (SST)
from this dataset is updated each 6h as lower boundary
conditions for the portions of the domain over the ocean.

Te WRF model provides various options for the pa-
rameterization of (i) microphysics (MIC), (ii) cumulus
parameterization (CP), (iii) surface layer condition (SLC),
(iv) land surface model (LSM), and (v) planetary boundary
layer (PBL). To create a WRF physics ensemble, a reference

run using confguration recorded in a previous paper [40] is
taken as the baseline, named as EXP_CAM.Ten, the option
for each scheme was changed once a time. Finally, a series of
sensitivity experiments were designed, namely, EXP_DUD,
EXP_BMJ, EXP_AC2, and EXP_3C (Table 2). Tese ex-
periments were all carried out forced by identical initial
condition and lateral boundary for one year spanning from
December 1, 2014, to December 31, 2015, with the last month
of 2014 treated as the spin-up period. As a normal monsoon
year, the year 2015 was selected based on the examination of
the East Asian summer monsoon index. Moreover, in terms
of 2m temperature and precipitation, the year 2015 is
identifed as normal year when investigating the anomaly
from decadal observations.

2.2. CMFDGriddedDataset. To evaluate the performance of
WRF-simulated 2m temperature and precipitation, the
China meteorological forcing dataset (CMFD) downloaded
from National Tibetan Plateau Data Center (https://data.
tpdc.ac.cn) is utilized as reference. Tis newly released
gridded meteorological dataset is developed with 0.1° spatial
resolution at daily scale covering the period from 1979 to
2018 [41]. It is compiled based on gauge-observed data
obtained from the China Meteorological Administration
and other datasets such as satellite precipitation data and
Global Land Data Assimilation System data [42]. High-
resolution elevation data are introduced in the observed
air temperature interpolation [42].

Te gridded observation dataset described above is
reprojected to Lambert projection and aggregated to 10 km
in order to be consistent withWRFmodel outputs. Variables
as daily 2m temperature and daily precipitation are in-
vestigated, which are further aggregated into monthly and
seasonal averaged values. Te entire year is divided into the
following four seasons: winter (December–Feburary, DJF),
spring (March–May, MAM), summer (June–August, JJA),
and fall (September–November, SON).

2.3. Evaluation Metrics. Evaluation is an important process
in order to assess the performance of regional climate
simulations. In this regard, three metrics are utilized,
namely, bias, root mean squared error (RMSE), and Pear-
son’s correlation coefcient (R) against gridded observa-
tions. Tese metrics are applied on daily time series of area-
averaged value over the Loess Plateau, which are calculated
as follows:

Table 1: Common confgurations of the WRF model for all sen-
sitivity experiments.

D01 D02
Horizontal resolution 30 km 10 km
West-east 7140 km 4770 km
South-north 1420 km 1150 km
Vertical layers 33 33
Time step 90 s 30 s

Meteorological BC ERA-interim Parent domain (D01)
ndown
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where si is the modeled value; oi is the observation-derived
value; and n is the number of grids.

Due to limited computation resources, the evaluation
was conducted for the period of one single year 2015. Te
model quality assessment procedure focused on the capacity
of the WRF runs to correctly represent the spatial and
temporal structures of 2m temperature and precipitation
distributions.Terefore, the metrics were calculated for each
grid box and accumulation period at daily scale for the
current study against the correspondent regular gridded
datasets.

2.4. Taylor Diagram. To evaluate the performance of dif-
ferent WRF confgurations in simulating climatic condi-
tions, the Taylor diagram [43] was generated for
intercomparison in each season. It provides a concise sta-
tistical summary of spatial correlation (PCC), centered root-
mean-square error (RMSE), and spatial standard deviation
(STDV). Geometric relationship between these metrics al-
lows that the performance of each confguration in

comparison to reference can be displayed on the same di-
agram. A perfect simulation would be one with a centered
RMSE equal to 0 and both the PCC and STDV close to 1.Te
azimuthal position of a symbol in the Taylor diagram gives
information on the spatial correlation coefcient between
the RCM results and the reference.Te radial distances from
the origin to each symbol are proportional to the pattern
standard deviation normalized by the reference variance,
thus reference located at value 1. Te distances of each
symbol (along concentric circles) from this reference point
indicate the centered RMSE based on the RCM and refer-
ence data. Te Taylor diagram reported in the present study
was based on daily 2m temperature and daily precipitation
for area-averaged mean values, with CMFD-gridded ob-
servation as the reference.

3. Results

3.1. 2m Temperature

3.1.1. Geographical Distribution of 2m Temperature Bias.
Figure 2 provides an overview on the spatial distribution of
observed mean seasonal values and biases of ERA-Interim as
well as WRF experiments and ensemble for average 2m
temperature. Observed 2m temperature shows clear sea-
sonal cycle, with highest values in JJA (20°C–28°C) and
lowest in DJF (−10°C–6°C). Te temperature decreases from
south to north in general, with the highest in Guanzhong
plain located at southern border and lowest in elevated west
corner within QH province. In general, theWRF simulations
reproduce well the spatial variability of 2m temperature for
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Figure 1: Domains used in the WRF simulations: (a) outer domain D01 and (b) inner domain D02. Te rendered colormap denotes the
elevation. Te Loess Plateau is enclosed by the black border. Te region includes seven provinces namely Neimeng (NM), Ningxia (NX),
Shan’xi (S’X), Shanxi (SX), Henan (HN), Gansu (GS), and Qinghai (QH). Te red rectangle covers the region to be analyzed in this study.
Te black dots represent several major cities in this area.

Table 2: Complementary confgurations of the WRF model for sensitivity experiments.

Experiment LSM LW SW CP PBL/SLC SST MIC
EXP_CAM Noah CAM CAM KF YSU ERAI WSM6
EXP_DUD Noah RRTMG Dudhia KF YSU ERAI WSM6
EXP_BMJ Noah RRTMG RRTMG BMJ YSU ERAI WSM6
EXP_AC2 Noah RRTMG RRTMG KF AC2 ERAI WSM6
EXP_3C Noah RRTMG RRTMG KF YSU ERAI WSM3
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each season. In comparison with ERA-Interim, WRF sim-
ulations produce more spatial details. Te WRF simulations
present similar bias patterns except EXP_DUD. EXP_DUD
shows prominent cold bias over almost the entire plateau in
DJF, MAM, and SON (with the exception of small regions as
the southern corner and western elevated area), while slight
positive or negative bias over the entire plateau in JJA. Te
other four WRF simulations all produce strong warm bias in
JJA with similar patterns but diferent magnitude (the areas
with lower elevation seem correspond to higher warm bias)
while both positive and negative bias in DJF, MAM, and
SON depending on the regions.

Te statistics of 2m temperature at seasonal scale for
each individual WRF experiments are summarized in Ta-
ble 3. It can be identifed that the correlation coefcients are
commonly over 0.90 (except 0.88 for EXP_AC2 and
EXP_DUD in DJF) for WRF simulations, which are higher

in JJA and MAM as compared with SON and DJF. Tey are
higher than the correlations for ERA-Interim in all four
seasons (among 0.74–0.80), which indicates the added value
of dynamical downscaling. Cold biases are prominent for
EXP_DUD, particularly in DJF (−2.2°C), MAM (−1.9°C),
and SON (−1.6°C). Tey are also large for EXP_AC2, in DJF
(−0.8°C) and SON (−1.6°C). RMSEs are usually among the
range between 0.20 and 0.50°C.

3.1.2. Annual Cycle of Monthly Mean 2m Temperature.
Figure 3 shows the annual cycle of area-average WRF-
estimated 2m temperature, together with the observation
and ERA-Interim. Te ensemble mean of the individual
experiments are also calculated and presented. Overall, WRF
simulations generate a good reproduction of observed
monthly variation of 2m temperature. Te observation is
generally within the range of model spread.
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Figure 2: Seasonal mean observed 2m temperature and bias of ERA-Interim reanalysis and WRF simulations. Te frst row shows 2m
temperature provided by the CMFD-gridded observation dataset as reference.
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As illustrated in Figure 4, most WRF confgurations
produce a warm bias, particularly during May–September,
which can reach over 2°C. Te only exception is EXP_DUD,
which estimates clearly lower 2m temperature than all other
experiments. Tis might be attributed to that the Dudhia
scheme is a very simple parameterization compared to other
options for shortwave radiation scheme [44, 45]. Te ap-
proach considered in this scheme is simpler than in other
parameterizations because the radiative transfer equation as
well as the spectral integration are not solved explicitly [46].
It corresponds well to the observation in summer while
underestimates for other period along the year. Te annual
cycle is reproduced similarly by ERA-Interim and WRF.

3.1.3. Percentile Plot of Daily 2m Temperature. All daily
values are considered to calculate ten percentiles (1st, 5th,
10th, 25th, 50th, 75th, 90th, 95th, 99th, and 99.9th) for 2m
temperature. As shown in Figure 5, minor diferences are
observed among the explored confgurations. Te spread of
WRF-simulated 2m temperature with diferent physical
options is generally less than 5°C.

In comparison with ERA-Interim, 2m temperature
within the range of 25%–75% is improved for most WRF
simulations except EXP_DUD. Nevertheless, the extreme
low and extreme high temperature are not improved or even
worse for all WRF simulations. ERA-Interim seems to well

describe the percentiles in the high temperature range (75th,
90th, 95th, 99th, and 99.9th), while WRF simulates tend to
produce a warmer extreme in summer. Both ERA-Interim
and WRF underestimate the percentiles in low temperature
range (1st, 5th, and 10th), and cold bias in winter is larger in
WRF simulations than ERA-Interim.

3.1.4. Time Series of Daily 2m Temperature. To demonstrate
skill in the simulation of temporal variability, area-averaged
time series of daily average 2m temperature over the Loess
Plateau are presented as colored lines in Figure 6. Te time
series show that WRF is skillful at capturing the variability of
the observed 2m temperature. Nevertheless, biases can be
identifed, especially in summer and winter. In general,
almost all the fve confgurations lead to warm bias during
the period from Julian day 160–260. Signifcant negative bias
can be identifed for EXP_DUD, especially in winter period
(Julian day 15–80 and 310–365).

3.2. Precipitation

3.2.1. Geographical Distribution of Precipitation Bias.
Figures 2 and 7 provide an overview on the spatial distri-
bution of the observed mean seasonal value and biases of
ERA-Interim and WRF experiments for area-averaged

Table 3: Statistics of seasonal metrics for ERA-Interim reanalysis and WRF experiments in simulating daily 2m temperature.

DJF MAM JJA SON
BIAS RMSE CORR BIAS RMSE CORR BIAS RMSE CORR BIAS RMSE CORR

ERA-Interim 0.12 0.34 0.80 0.21 0.33 0.76 0.58 0.35 0.80 0.29 0.33 074
EXP_CAM 0.66 0.25 0.91 0.82 0.22 0.94 2.22 0.38 0.95 1.71 0.33 0.92
EXP_AC2 −0.80 0.31 0.88 1.12 0.24 0.94 1.54 0.29 0.96 −1.60 0.32 0.90
EXP_BMJ 0.83 0.26 0.91 1.00 0.23 0.94 2.69 0.45 0.95 1.92 0.36 0.92
EXP_DUD −2.22 0.45 0.88 −1.93 0.35 0.94 0.12 0.17 0.95 −1.60 0.32 0.90
EXP_3C 0.81 0.26 0.91 1.41 0.28 0.94 2.69 0.45 0.95 2.00 0.37 0.92

Te
m

pe
ra

tu
re

 (°
C)

0

30

20

CAM
AC2
BMJ
DUD

3C
ENS
ERAI
OBS

10

-10
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3: Annual cycle of monthly 2m temperature: observations (black), ERA-Interim data (gray), and WRF simulations (colors).
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precipitation. Observed precipitation shows clear seasonal
diference, with highest amount in JJA and lowest in DJF.
Te precipitation gradient decreasing from southeast to
northwest can be discerned from CMFD observation, par-
ticularly in JJA, SON, and MAM. Te high rainfall center,
located along the southern border, is prominent in these
three seasons. Both ERA-Interim and WRF simulations
generally reproduce the spatial variability precipitation for
each season. Nevertheless, ERA-Interim generally presents
dry bias over most parts of the plateau in MAM, JJA, and
SON, while WRF simulations produce wet or dry bias
depending on the season and location. In JJA, the WRF
simulations present similar bias patterns (large wet bias)
over SX province located in the eastern part of the plateau
while diferent patterns in other parts of the plateau. For
instance, EXP_DUD and EXP_AC2 similarly produce wet

bias over almost the entire plateau (with the exception of the
rainfall center area identifed from the observation), with the
extreme value over 3mm/d. EXP_CAM, EXP_BMJ, and
EXP_3C simulate dry bias over large area outside SX
province (the eastern part). In DJF, MAM, and SON, the
precipitation bias patterns by fve WRF simulations are
similar.

Similar to Table 3, the statistics of precipitation at sea-
sonal scale for ERA-Interim reanalysis and each individual
WRF experiments are summarized in Table 4. For WRF
experiments, it can be identifed that the correlation co-
efcients are much lower than that of 2m temperature. Tey
are among the range of 0.29–0.58, which are higher in MAM
than other seasons. In SON, the correlations of WRF ex-
periments are higher or equal than ERA-Interimwhile not in
the case of DJF, MAM, and JJA. Unlike the dry bias of ERAI
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Figure 7: Seasonal mean observed precipitation and bias of ERA-Interim reanalysis andWRF simulations.Te frst row shows precipitation
provided by the CMFD-gridded observation dataset as reference.
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(−0.79mm/d), wet biases dominate in summer (JJA) for all
WRF experiments. EXP_AC2 holds the highest wet bias
(1.42mm/d), followed by EXP_DUD (1.11mm/d).

3.2.2. Annual Cycle of Monthly Mean Precipitation. Te
annual cycles of WRF-simulated precipitation are presented
in Figure 8, together with the observation and ERA-Interim
data. In general, the seasonal pattern of rainfall rise is
captured by the simulations, exhibiting high precipitation
during summer and low during winter, with clear dis-
crepancies in the rates. All the experiments capture the
monthly variation during September–May with little inter-
model variation.

As illustrated in Figure 9, EXP_BMJ holds the highest
amount simulated, which clearly overestimates rainfall in
this period. In summer, simulations varied, which broadly
overestimate precipitation during JJA. EXP_AC2 and
EXP_DUD simulate the highest precipitation amount in this
period, prominently overestimate the amount. Interestingly,
the fall from July to August is only captured by EXP_3C
(Figure 8). Indeed, themodeling of precipitation is one of the
main challenges in high-resolution regional models. Sim-
ulations of precipitation are less reliable compared with 2m
temperature. Te WRF-simulated precipitation is generally
higher than ERA-Interim, particularly in summer. It con-
vinces the add value of dynamical downscaling.

3.2.3. Percentile Plot of Daily Precipitation. All daily values
are taken into account to calculate eight percentiles (50th,
60th, 70th, 75th, 80th, 90th, 95th, and 99th) for precipitation.
Figure 10 displays the percentiles for WRF, ERA-Interim,
and observations. Estimations of precipitation show a clear
underestimation for both WRF and ERA-Interim. Te
spread of WRF estimates in precipitation is larger for high
percentile than low percentile, which indicates that the
diferent choice of options is essentially important for ex-
treme values.

In comparison with ERA-Interim, precipitation is im-
proved for all combinations using WRF, which reduce the
underestimation. Te percentiles in the extreme high range
are the greatest improved.Tis is in line with the description
of the dynamical downscaling add-value, enhancement in
characterizing extremes [1]. Te best experiment in simu-
lating precipitation within the range above 90th is
EXP_DUD and the best one among 70th and 80th is
EXP_BMJ.

3.2.4. Taylor Diagram of Daily Precipitation. Statistical
metrics for ERA-Interim and the fve WRF experiments are
computed for each season and displayed in Figure 11 as
Taylor diagram in order to provide a synthetic summary how
closely the WRF simulations match the observation. It in-
dicates that simulated precipitation with a correlation

Table 4: Statistics of seasonal metrics for ERA-Interim reanalysis and WRF experiments in simulating daily precipitation.

DJF MAM JJA SON
BIAS RMSE CORR BIAS RMSE CORR BIAS RMSE CORR BIAS RMSE CORR

ERA-Interim 0.01 0.02 0.40 −0.20 0.09 0.65 −0.79 0.16 0.67 −0.03 0.09 0.38
EXP_CAM 0.16 0.04 0.35 0.13 0.12 0.55 0.65 0.22 0.50 0.16 0.09 0.52
EXP_AC2 0.09 0.03 0.35 −0.19 0.10 0.62 1.42 0.28 0.57 −0.06 0.09 0.38
EXP_BMJ 0.16 0.04 0.37 0.34 0.12 0.57 0.48 0.22 0.29 0.21 0.10 0.47
EXP_DUD 0.04 0.02 0.33 0.16 0.09 0.58 1.11 0.24 0.60 −0.06 0.09 0.38
EXP_3C 0.19 0.04 0.41 −0.11 0.11 0.48 0.41 0.23 0.34 −0.16 0.09 0.48
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Figure 8: Annual cycle of monthly precipitation: observations (black), ERA-Interim data (gray), and WRF simulations (colors).
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coefcient above 0.5 in MAM and SON and within the range
between 0.3 and 0.5 in DJF and JJA.Te correlations ofWRF
simulations are higher than ERA-Interim in JJA while
comparable to ERA-Interim in other seasons. CRMSE is
around 1.0 in MAM and SON, larger in JJA (2.0–4.0), and
even greater in DJF (mostly above 4.0). It indicates that the
variation is reasonably captured in MAM and SON while
much higher in JJA and DJF, comparing with the obser-
vation. However, WRF simulations often generate higher
CRMSE than ERA-Interim. It is difcult to identify the best
physical combination since experiment performance varies

among seasons. Generally, they cluster much more closely in
MAM and SON while spread widely in DJF and JJA.
EXP_DUD seems to be a fne choice when taking all three
metrics into consideration for four seasons.

Te relative low correlation coefcient indicates that
satisfactory precipitation simulations over the Loess
Plateau have remained a challenge. Precipitation is dif-
fcult to simulate due to complex physical processes and
high spatial-temporal variability. Moreover, the topog-
raphy efects in this hilly region also complex the simu-
lation results.
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Figure 11: Taylor diagrams of area-averagedWRF simulation and ERA-Interim data with respect to observed precipitation in the year 2015
(full names of the individual experiment are given in Table 2) for (a) DJF (December–February), (b) MAM (March–May), (c) JJA
(June–August), and (d) SON (September–November). Calculations are applied to present the temporal variability of daily precipitation.
(Tree statistics determine the relative places of the models: the Pearson’s correlation coefcient (curved axes), the centered RMS error (gray
contours), and the standard deviation (Oy-axis). Te model ftting best with observations will lie the nearest to the Ox-axis.
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4. Conclusion and Discussion

In this paper, regional climate simulations using WRF with
diferent physical scheme options were carried out to pro-
duce one year long simulations over the Loess Plateau. Te
performances were evaluated against CMFD-gridded ob-
servational dataset, focusing on 2m temperature and pre-
cipitation. Te objective is to assess the general performance
of the model and examine the sensitivity to diferent con-
fgurations. Te results will provide useful information to
select appropriate confguration over the Loess Plateau. Te
main conclusions are listed as follows:

(1) WRF simulations reproduce well the spatial vari-
ability of 2m temperature for all seasons. Similar bias
patterns can be identifed for all experiments except
EXP_DUD, which shows prominent cold bias over
almost the entire plateau in DJF, MAM, and SON.

(2) WRF simulations reasonably capture the spatial
variability of precipitation for all seasons, with large
wet biases in summer. In JJA, the WRF simulations
present similar bias patterns (large wet bias) over SX
province located in the eastern part of the plateau
while diferent patterns in other parts of the plateau.

(3) WRF simulations reproduce well observed monthly
variation of 2m temperature. However, most WRF
confgurations produce a warm bias, particularly
during May–September, which can reach over 2°C.
Te only exception is EXP_DUD, which estimates
clearly lower 2m temperature than all other
experiments.

(4) Te seasonal pattern of rainfall rise is generally
captured by the simulations, exhibiting high pre-
cipitation rate in summer and low value in winter.
TeWRF-simulated precipitation is generally higher
than ERA-Interim, particularly in summer.

(5) At daily scale, minor diferences are observed for 2m
temperature among the explored confgurations. In
comparison with ERA-Interim, 2m temperature
within the range of 25%–75% is improved for most
combinations with the exception of EXP_DUD.
Nevertheless, the extreme low and extreme high
temperature are not improved or even worse for
WRF simulations.

(6) As for daily precipitation, it is clearly underestimated
for bothWRF and ERA-Interim. In comparison with
ERA-Interim, precipitation is improved for all
combinations using WRF, which reduce the
underestimation.

(7) Although it is difcult to choose one scheme as the
best one for reproducing 2m temperatures, the
EXP-CAM simulation could be a good confgura-
tion, attending to the bias, although the rest of the
experiments present similar results.

(8) As for precipitation, EXP_DUD seems to be a fne
choice when taking all three metrics into consider-
ation for four seasons.

A previous modeling study focuses on the Loess Plateau
using RegCM [28] evaluated against CN05 dataset [47].
Teir simulation tends to produce cold biases during winter
and underestimate precipitation during summer. Our results
are diferent with their conclusion, yet using diferent RCM
model, confguration and gridded dataset compared. Some
other studies have used WRF to simulate precipitation over
China [29–31] or the Loess Plateau [32], and large wet biases
are found over the plateau. Our simulation of dominant wet
bias, particularly in summer, is broadly consistent with these
results.

Numerous studies have been conducted worldwide with
the WRF model to select the most appropriate confguration
for regional climate simulations [37, 48–53]. From the
common fndings of these studies, it is evident that the WRF
model is capable to represent regional climate although
systematic biases can be identifed in the simulations.
Simulation performances have been found to be sensitive to
physics parameterizations [11, 54–56] and land surface
models [6, 57]. Optimal performance of WRF requires
a computational expensive investigation over diferent
combinations of parameterization schemes which vary from
region to region.

It is important to point out several limitations in the
present work. Due to limited computation resources, the
period selected for simulation is only one year, which is not
long enough to obtain climatic robust evidence. Interannual
variation is not investigated since one year simulation
outputs are analyzed. Our fndings need to be further
confrmed by future research with continuous simulation on
a climatic (30 years) timescale.

Horizontal grid spacing is an issue which is worth to
discuss. Numerous studies have addressed the numerical
sensitivity to model grid spacing [58, 59]. Convection-
permitting models (CPMs) are found to provide a better
representation of convective processes on both climate and
numerical weather prediction (NWP) timescales [60–71].
Although CPMs do not fully resolve convection, they can
represent larger storms and mesoscale organization of
convection explicitly on the model grid much better than the
parameterizations of convection [72]. Future study will carry
out simulations using CPMs at grid spacing less than ∼5 km
instead of 10 km, with computational cost taken into
account.

In addition to physical confguration and grid spacing,
the choice of domain location and geometry also impacts the
model results [73–81]. Jones et al. [74] argued that the re-
gional model domain should be larger than the region of
interest to allow full development of small-scale features
over the area of interest since a smaller domain size may
suppress the development of key mesoscale features. In
contrast to this, Bhaskaran et al. [75] showed that the re-
gional model domain should not be so large that the sim-
ulation deviates signifcantly from the large-scale features of
the driving model.Te study by Seth and Giorgi [77] noticed
in their study that the performance of a regional climate
model is subjected to the careful selection of the domain for
its specifc application.
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Another factor infuencing the modeling results is model
internal variability, which results from nonlinearities in the
model physics and dynamics [82, 83]. It is defned as the
diference between realization members where the only
diferences are the initial conditions. A multimember en-
semble approach is commonly used by the regional climate
modeling community to disentangle the reproducible and
irreproducible components of climate variability [82, 84].
Some initial condition ensembles, commonly found in
weather forecasting and climate modeling [85], have
addressed internal variability within RCMs [82, 86–91].

Finally, due to limited computation resources, only fve
combinations of physical options were compared in the
current study, generated by varying one option for each
physical scheme from a reference confguration. To fully
understand the impact of physical options, more combi-
nations should be investigated.
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