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Accurate forecasting of reference crop evapotranspiration (ET0) is vital for sustainable water resource management. In this study,
four popularly used single models were selected to forecast ET0 values, including support vector regression, Bayesian linear
regression, ridge regression, and lasso regression models, respectively. Tey all had advantages of low requirement of data input
and good capability of data ftting. However, forecast errors inevitably existed in those forecasting models due to data noise or
overftting. In order to improve the forecast accuracy of models, hybrid models were proposed to integrate the advantages of the
single models. Before the construction of hybrid models, each single model’s weight was determined based on two weight
determination methods, namely, the variance reciprocal and information entropy weighting methods. To validate the accuracy of
the proposed hybrid models, 1–30 d forecast data from January 2 to February 1, 2022, were used as a test set in Xinxiang, North
China Plain. Te results confrmed the feasibility of the information entropy-based hybrid model. In detail, the information
entropymodel generated themean absolute percentage errors of 11.9% or a decrease by 48.9% compared to the single and variance
reciprocal hybrid models. Moreover, the model generated a correlation coefcient of 0.90 for 1–30 d ET0 forecasting or an increase
by 13.6% compared to other models. Te standard deviation and the root mean square error of the information entropy model
were 1.65mm·d−1 and 0.61mm·d−1 or had a decrease by 16.4% and 23.7%. Te maximum precision and the F1 score were 0.9618
and 0.9742 for the information entropy model. It was concluded that the information entropy-based hybrid model had the best
midterm (1–30 d) ET0 forecasting performance in the North China Plain.

1. Introduction

With the fast growth of world population, people’s re-
quirements for both food and water resources are dra-
matically increasing [1]. To cope with the problems,
intensive and water-saving agriculture has been rapidly
developing to meet the demand on the planet [2]. It has been
well-known that water resources used for agricultural sector
have occupied 70% of the groundwater withdrawn in China
[3, 4]. Furthermore, abiotic drought stress happens more
often than before in the context of global warming, resulting
in yield stagnation or failure in drought-stressed areas [5].
Timely and precision irrigation is one of the most efective
approaches to meet the dual goal of high yields and water-

saving. With the intensifcation of global water shortage, it is
crucial to develop a high-efcient water-saving irrigation
technique [6]. Te forecast of reference evapotranspiration
(ET0) is the basis for developing this technique [7], as crop
water requirement can be estimated using ET0 and crop
coefcients. Te improvement in ET0 forecast accuracy will
greatly improve the accuracy of irrigation forecasting.

Due to stochastic changes in weather systems, accurate
ET0 forecast still remains a challenge [8]. To improve ET0
forecast accuracy, diferent types of forecasting models have
been developed, including physical models, statistical
models, and combined hybrid models [9]. Physical models
achieve ET0 forecast based on future meteorological data via
simulating the relationships among the atmosphere, land
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surface, and waters [10]. However, the accuracy of numerical
weather prediction (NWP) in forecasting long-term mete-
orological parameters limits the accuracy of other models
based on weather forecasts. Statistical models mainly include
linear regression models, time-series models, and machine
learning models [11]. Due to low requirement of data input
and good capability of data ftting, those models have been
widely adopted to ET0 forecast [12]. With a limited amount
of meteorological factors, linear regression models such as
Bayesian linear regression and ridge regression have shown
advantages in ET0 forecast in China [13], Mediterranean
zones [14], and US High Plains [15]. Besides, several neural
network models were introduced to forecast ET0, including
BP neural networks and support vector machine models
[16]. In Turkey, monthly mean ET0 was estimated using
adaptive network-based fuzzy inference system (ANFIS) and
artifcial neural network (ANN) models [17]. It was found
that both the ANFIS and ANN methods were superior to
Hargreaves and Ritchie methods in estimation of ET0. Re-
garding the complexity of ET0 forecast, the applicability of
most statistical models was limited, so more novel models
have been attempted in recent years [18, 19]. To well sim-
ulate the dynamics of ET0 trends, researchers combined the
physical and statistical models [20]. Tese hybrid models
were adopted to predict nonstationary data series [21]. In
Peninsular Malaysia, a mixed multifractal forecasting model
was adopted to forecast ET0 trends by combining the light
gradient boosting machine, decision forest regression, and
artifcial neural network models [22]. A number of studies
also indicated that the performance of hybrid forecasting
models outperformed that of single models, and the forecast
accuracy was greatly improved by hybrid models [23–25].
For example, in Atakum, Turkey, a hybrid model was
constructed for ET0 forecast based on the autoregressive
integrated moving average model and generalized regression
neural networks, and the hybrid model efectively improved
ET0 forecast accuracy [26]. In Brazil, a hybrid model was
established for ET0 forecast based on support vector ma-
chine and artifcial neural network models, and the results
showed that the hybrid model had the highest ET0 forecast
efciency and accuracy [27]. Although time-series models
have also been applied to ET0 forecast, those models cannot
refect the internal correlation among factors, compared to
hybrid models [28]. Because time-series models usually did
not consider external factors, it would induce forecast errors
when encountering signifcant external changes [29].

Till now, how to determine each single model’s weight
for a hybrid model is still a challenging task [30]. Research
on weight assignment based on diferent weight de-
composition methods is little conducted in ET0 forecasting
[31]. In this study, two hybrid ET0 forecasting models were
proposed based on variance reciprocal and information
entropy algorithms. We hypothesized that the combined
hybrid models were able to achieve more accurate ET0
forecast values than single forecasting models. Te purposes
of this study were as follows: (I) to select the optimal weight
determining method for the construction of hybrid ET0
forecasting models, (II) to identify the optimal hybrid ET0
model by comparing the accuracy of diferent single and

hybrid models, and (III) to explain the reason why the
proposed hybrid model has advantages over other models.

2. Materials and Methods

2.1. Data Establishment. Experimental data were collected
from Xinxiang Meteorological Station, North China Plain
(35°08′ N, 113°45′ E, a.s.l. 73m). Tis paper selected the
dataset from January 1, 2020, to December 31, 2022, in-
cluding maximum air temperature (Tmax), minimum air
temperature (Tmin), mean air temperature (Tmean), and
relative humidity (RH). Te four parameters have shown
signifcant correlations with ET0 variations in the temperate
monsoon climate of China [16]. Tis study extracted the
features of these data on the same historical days in
each year.

2.2. Feature Extracting. To extract daily features of meteo-
rological data, we supposed that there were H-related me-
teorological factors on each single day. Based on the
assumption, daily eigenvectors on days i and j were
expressed as (ui1, ui2, . . . , uiH)T and (uj1, uj2, . . . , ujH)T.
Feature similarity on days i and j was defned as follows:

Oij �
􏽐

H
h�1uihujh

�������������
􏽐

H
h�1u

2
ih􏽐

H
h�1u

2
jh

􏽱 , (1)

where Oij represents daily feature similarity, H is the
number of meteorological factors, uiH and ujH are eigen-
vectors on days i and j, and h represents the number of
current meteorological factors.

2.3. Data Preprocessing. Due to diferent dimensions of data
features, data normalization was needed in data pre-
processing, which was a step down-scaling raw data to
desired scope for further processes. In this study, the min-
max normalization was adopted to normalize the target
parameters. Te expression was as follows:

x
′

�
x − xmin

xmax − xmin
, (2)

where x′ is the normalized dimensionless data, x is the
original data, xmin is the minimum value in the original data,
and xmax is the maximum value in the original data.

2.4. Data Training and Test. Tis study divided the dataset
into the training set and the test set at an 8 : 2 ratio. To obtain
as much efective information as possible from the
2020–2022 learning data, a cross-validation method was
used to segment the dataset, and a 5-fold cross validation was
chosen to obtain the best estimate.

2.5. Selection of Single Models

2.5.1. Support Vector Regression (SVR). When a support
vector regression model (SVR) was used for forecast anal-
ysis, its core was to establish an optimal classifcation surface
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using an insensitive loss function [32]. In this way, the mean
square error of all training sets from this optimal classif-
cation surface can be minimized. Te output of the SVR
model was a linear combination of intermediate nodes, each
of which corresponded to a support vector. Te structure of
the SVR forecasting model is shown in Figure 1.

2.5.2. Bayesian Linear Regression. Bayesian linear regression
was a linear regression solved using the Bayesian probability
inference method in statistics [33]. Te regression has the
basic properties of Bayesian statistical models, which can
solve the probability density function of weight coefcients
and test model hypotheses based on Bayesian factors. Given
N sets of independent learning samples, a set of data samples
X � X1, X2, . . . , XN􏼈 􏼉 ∈ RN, and y � y1, y2, . . . , yN􏼈 􏼉 were
constructed, and the empirical Bayesian test was used in the
multiple linear regression model. Te Bayesian linear re-
gression model was expressed as follows:

f(X) � X
T
w,

y � f(X) + ε,
(3)

where X is the observed data, y is the corresponding target
value, N is the number of data samples, f (X) is the Bayesian
linear regression model, w is the weight coefcient, and ε is
the residual. In the model, the weight coefcients (w) are
independent of the observed data (X), and ε values are
independent and identically distributed. Bayesian linear
regression assumes that the residual follows a normal
distribution.

2.5.3. Ridge Regression. Ridge regression is an improved
least squares estimation method used for the analysis of
collinear data. In ridge regression, regression coefcient
values are introduced to reduce the efect of the covariance of
independent variables [34]. Te regression is more suitable
to ft poor-conditioned data than the least squares method
[35]. It is more suitable to solve the problem of collinearity of
independent variable data and the lack of explanatory pa-
rameters in multiple linear regression [36].

2.5.4. Lasso Regression. Lasso regression focuses on the
multiple regression and performs feature selection by
restricting absolute values for target models. It has a strong
ability to attenuate the regression coefcient vector via
selecting useful data features and obtaining reliable variable
selection function [36]. In the regression, if the interpreted
variable Yi is set to be independent with given observed
values, Yi will be considered independent with respect to
standardized observed values (xij). Lasso regression was
expressed as follows:

(α, β) � argmin 􏽘
i
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where xij is standardized observed values and t is the
harmonic parameter (t≥ 0). When t gradually decreases,
regression coefcients will also decrease and gradually tend
to zero. When t approximates zero, it will be eliminated at
the time i and j.

2.6. Construction of Hybrid Models. To construct hybrid
forecasting models, reasonable weights should be assigned to
each single model. Te following steps describe the weight
determination process for hybrid models.

2.6.1. Determination of Target Attributes. To determine each
model’s target attribute, a decision matrix was established.
Te matrix was expressed as follows:

C � cij􏼐 􏼑
m×s

, (5)

where cij is predicted values of the ith model on the jth
similar day, m is the number of single forecasting models,
and s is the total number of the similar days.

2.6.2. Construction of Eigenvalue Matrix. Eigenvalue is the
transformation of a linear transformation represented by
a matrix into a numerical transformation. Te feature vector
corresponding to the feature value is the key. Te properties
of a complex matrix can be transformed into the feature of
eigenvectors. In this way, the complex data can be simplifed
to be analyzed. Te eigenvalue matrix was expressed as
follows:

λ �
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⋮ ⋮ ⋮
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, (6)

where λ is the coefcient matrix of the forecasting models,m
is the number of single forecasting models, and s is the total
number of the similar days.

2.6.3. Normalization of Eigenvalue Matrix. To make dif-
ferent meteorological parameters comparable and easy to be
adopted in the calculation of weights, eigenvalues were
normalized using equation (2).

2.6.4. Construction of Matrix R. Te normalized r was used
to obtain the matrix R. Te calculation formula was
expressed as follows:

R
′

�
rij

􏽐
s
j�1rij

⎛⎝ ⎞⎠

′

, (7)

where s is the total number of the similar days and rij is the
normalized eigenvalue of the ith model on the jth
similar day.
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2.6.5. Information Entropy-Based Weight Determination.
Information entropy was adopted to measure how cluttered
the system data were. Te information entropy method was
usually used to evaluate the amount of information carried
by the dataset through characterizing the complexity and
quantifying the amount of uncertainty in a system. It is
a metric that describes the degree of chaos in a system to
determine the diversity of data. In this study, information
entropy was expressed as follows:

Ei � −
1
ln s

􏽘

s

j�1
rij
′ ln rij
′ , (8)

where Ei is the information entropy of the matrix R, s is the
total number of the similar days, and rij is the normalized
value of the eigenvalue of the ith model on the jth
similar day.

Considering the properties of the logarithmic functions
in equation (8), we defned that, when rij was equal to zero,
rij ln rij also became zero. Te function assumes that the
weight of a model may approximate to zero when Ei is
extremely small.

Te magnitude of the weight vector (ωit) represents the
importance of the corresponding model m in a hybrid
model. Te larger ωi is, the more important a single model is
in the hybrid model, and vice versa. In this study, the weight
vector was calculated based on the values of Ei as follows:

ωit �
1 − Ei

􏽐
m
i�1 1 − Ei( 􏼁

, (9)

where ωit is the weight vector on days t, m is the number of
single forecasting models, and Ei is the information entropy
of the matrix R.

2.6.6. Variance Reciprocal-Based Weight Determination.
Te variance reciprocal method refers to determining the
weight using the proportion of the reciprocal of the sum of
error squares of a single model to that of the total sum of error
squares. Tis method avoids the appearance of negative
weight values and distributes greater weights tomore accurate
forecasting models. Te model was expressed as follows:

ei � yt − 􏽢yi)
2
,􏼐 (10)

where ei is the square of the forecast error of the ith single
model, yt is the total sum of error squares, and yi is the sum
of error squares of the ith single model.

Based on the values of ei for each single forecasting
model, the weight (wit) of the ith single model in a hybrid
model was expressed as follows:

wit �
e

−1
i

􏽐
m
i�1e

−1
i

, (11)

wherem is the number of single forecasting models and ei is
the squares of the forecast error of the ith single
forecasting model.

We assumed that there were m diferent single fore-
casting models to be integrated in a hybrid model.
According to each model’s weight and predicted values, the
hybrid forecasting model was expressed as follows:

yt � 􏽘
m

i�1
wityit( 􏼁, (12)

where yt is the predicted value from a hybridmodel at time t,
wit is the weight of the ith single model at time t, and yit is
the predicted value from the ith single model at time t. In the
model, the sum of all the wit is 1.00.

To obtain the predicted ET0 values on days t, predicted
results of ET0 from each single model should be multiplied
by ωit. Terefore, the fnal results of ET0 were a product of
each allocated weight and the single predicted value of ET0.

2.7. Statistical Evaluation Metrics. In order to evaluate the
forecasting performance of proposed models, this paper
used the root mean square error (RMSE), mean absolute
percentage error (MAPE), and coefcient of determination
(R2) to analyze the accuracy of ET0 forecasting models from
the perspective of the error ratio and goodness of ft. Te
RMSE and MAPE can be used to represent the average error
of the predicted result with respect to the ground-truth
result. Lower RMSE and MAPE indicate smaller errors
between the predicted and observed values. R2 is used to
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Figure 1: Single-layer neural network structure of a support vector regression model.
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quantify the correlation between the forecasts and obser-
vations. Higher R2 indicates better forecast performance of
a forecasting model. Te mathematical equations of the
statistical indices were described as follows:

RMSE �

�������������
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n
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(13)

where n is the number of observations, Pi and Oi are the
predicted and observed values of the ith day, respectively,
and P and O are the average values of Pi and Oi for the
observation periods, respectively.

2.8. Kruskal–Wallis Test. Te Kruskal–Wallis test was used
to evaluate the accuracy of forecasted results from single and
hybrid models. Diferent from parametric tests, the Krus-
kal–Wallis test was a nonparametric test without the data
requirement of assumptions of normality and homogeneity
of variance. With more than two data groups, it examined
the medians of the data groups to determine if the pre-
dictions were from distinct populations with the same
distribution. It used data ranks to calculate the accuracy
instead of using numerical values. More detailed description
about the Kruskal–Wallis test can be found in Clark
et al. [37].

2.9. Statistical Analysis. In this study, support vector re-
gression, Bayesian linear regression, ridge regression, and
lasso regression were conducted using the Python 3.7
programming language. By taking 80% of the historical data
as the training set, the data from the rest of the months were
used for testing. Data were subjected to analysis of variance
(ANOVA) using SPSS 20.0 (SPSS Inc., Chicago, IL, USA).
Signifcance was declared at the probability level of 0.05,
unless otherwise stated. Graphs were plotted using Sigma-
plot 12.0 (Systat Software, San Jose, CA, USA).

3. Results and Discussion

3.1. Normalization and Correlation Analysis. Most machine
learning algorithms required the variables to satisfy a normal
distribution. Tis paper performed a normalization test for
the interpreted variables through plotting the data proba-
bility distribution. Te probability plot indicated the degree
to which the actual distribution of the variables was in line
with the theoretical normal distribution.Te test was used to
examine whether the data were in agreement with a normal
distribution pattern. If the data followed a normal distri-
bution, the data were regarded coinciding with the theo-
retical straight line (Figure 2(a)). Based on the distribution of
ET0 values, our results showed that after processing of the

raw data, the processed ET0 data fell into the −3 to 3
quantiles, suggesting the data conformed to a normal dis-
tribution, and were able to be applied to the machine
learning algorithms. Tis result was in agreement with the
previous studies conducted in China [38], India [39], Turkey
[40], and North America [41].

Before using a model to predict target values, it was
usually necessary to perform correlation analysis to remove
unrelated variables. Tis method was used to reduce com-
putational complexity and improve the interpretability of
the model [16]. In this study, the Pearson coefcient method
was adopted to perform correlation analysis, which was
popularly adopted by previous studies [42, 43]. Tis method
mainly measured the linear correlation between variables,
with the correlation coefcients from −1 to 1. In the present
study, the correlation coefcient between RH and ET0 was
less than 0.25, implying a very weak correlation between the
two variables (Figure 2(b)). Te coefcients among
Tmax, Tmin, Tmean, and ET0 were greater than 0.70, among
which Tmax had the highest correlation coefcient of 0.84. In
a humid subtropical climate of China, it was also observed
that Tmax was the most correlated parameters to ET0, fol-
lowed by Tmin and Tmean [20]. In Quebec, Canada, a no-
ticeable exponential relationship between air temperature
and ET0 was observed in a humid continental climate [44].
In northeast China, Tmax was considered the greatest con-
tributor to ET0 fuctuations related to low radiation con-
ditions [45]. According to correlation analysis, RH was
excluded as an input factor for data feature extraction.

3.2. ForecastPerformanceof SingleModels. In this study, four
single models were selected according to the recommen-
dation from previous literature [16, 20], including support
vector regression (SVR), Bayesian linear regression, ridge
regression, and lasso regression (Figure 3). Te four single
models showed good capacity to ft the linear relationships
between observed and predicted ET0 values. Tey produced
similar ET0 trends to the observed ET0 changes in 2022. Te
observed ET0 values were from 0.26 to 7.32mm·d−1 from the
P-M model, whereas the predicted ET0 ranges were from
0.24 to 7.48mm·d−1, 0.45 to 7.54mm·d−1, 0.09 to
7.12mm·d−1, and 0.02 to 6.98mm·d−1 for SVR, Bayesian,
lasso, and ridge regression models, respectively. Te highest
values of ET0 appeared during 160–180 Julian days (cor-
responding to mid-June), while the lowest values were
observed in 1–10 Julian days (corresponding to early Jan-
uary). On average, mean ET0 predicted by SVR was
3.04mm·d−1, or a decrease by 6.2% compared to the real
observations. Similarly, average values of Bayesian linear
regression, ridge regression, and lasso regression were 3.01,
2.77, and 2.97mm·d−1, respectively, or had a decrease by
6.8–17.2%. Te annual ET0 values of the four single models
were 1002.9–1110.3mm·yr−1 or had a decrease by 8.1–18.4%
compared to the real accumulated ET0 value from the P-M
model. It can be concluded that all the single models gen-
erated lower averaged and accumulated ET0 values than did
the P-M model. However, both the averaged and accumu-
lated ET0 predicted by SVR models were much closer to the
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real observations than did the linear regression models. In
previous studies, Piotrowski et al. found that the SVR model
had higher prediction accuracy than linear regression
models, such as the ridge regression model [46]. Moreover,
among those linear regression models, the Bayesian re-
gression model had higher accuracy than the other two
proposed linear models. Te reason may lie in that, through
establishment of a payof function, the Bayesian model is
able to generate an optimal iteration algorithm to obtain
desired predicted values [47].

3.3. Weights Assigned to Hybrid Models. Te determination
of goodness of ft for single models helped calculate each
single model’s weight assigned to hybrid models [48]. In this
study, RMSE values of SVR and Bayesian linear regression
models were within 0.152–0.168mm·d−1 for both training
and test datasets, while R values of the two models were
greater than 0.78, showing better forecast performance
(Table 1). Te SVR and Bayesian models generated the mean
absolute percentage errors (MAPEs) of 23.4% for training
and test sets or had a decrease by 29.3% compared to the
lasso and ridge models. Terefore, the SVR and Bayesian
models were given higher weights (26.3–29.9%) than hybrid
models (Figure 4). On average, the weights assigned to lasso
and ridge models were 20.3% lower than those of SVR and
Bayesian models. Tis fnding was similar to the results
observed by Liu et al. [49]. Based on the algorithms of in-
formation entropy, the SVR model had the highest weights
of 0.299, followed by 0.274 for Bayesian linear regression,
0.203 for lasso regression, and 0.224 for ridge regression,
respectively. Te information entropy method assigned
more weights to SVR and Bayesian models than did the
variance reciprocal method.

3.4. Forecast Performance of Hybrid Models. In this study,
hybrid forecasting models were established based on the
SVRmodel, Bayesian linear regression, ridge regression, and
Lasso regression models (Figure 5). Previous results in-
dicated that hybrid models made good use of information

from single models, which efectively increased their forecast
accuracy [50]. In this study, variance reciprocal and in-
formation entropy methods were adopted to construct
hybrid models. Te four single forecasting models were
incorporated into the hybrid forecasting models according
to their assigned weights. Te predicted ET0 ranges were
from 0.38 to 7.12mm·d−1 and 0.67 to 7.53mm·d−1 for in-
formation entropy and variance reciprocal models. On
average, mean ET0 predicted by the information entropy
model was 3.19mm·d−1 or had a decrease by 1.8% compared
to the real observations. Similarly, the average value of the
variance reciprocal model was 3.04mm·d−1 or had a de-
crease by 6.5%. Te annual ET0 values of the two hybrid
models were 1157.4–1196.3mm·yr−1 or had a decrease by
3.1–7.4% compared to the real accumulated ET0 value from
the P-M model. Our results indicated that the hybrid
forecasting models signifcantly improved the forecasting
accuracy when the advantages of single models were com-
prehensively incorporated. Te hybrid model was more
accurate for predicting both daily ET0 dynamics and annual
accumulated ET0 values in the North China Plain. Our
fnding was in agreement with the previous results con-
ducted in the Mediterranean climate of Iran [51].

3.5. Correlation Analysis of Forecasting Models.
Compared with the variance reciprocal hybrid model,
correlation coefcients (R) were signifcantly increased,
while RMSE values were appreciably decreased by the in-
formation entropy hybrid model (Table 1). Te information
entropy hybrid model generated the mean absolute per-
centage errors (MAPEs) of 11.9% for training and test sets or
a decrease by 39.7%–58.1% compared to the single models
and the variance reciprocal model. In this study, R, RMSE,
and MAPE values of the reciprocal hybrid model were not
signifcantly diferent from those of SVR and Bayesian
models.

Correlation analysis showed that the information en-
tropy hybrid-based model had the highest coefcient of
determination (R2) of 0.922 in 2022, followed by the SVR
and Bayesian regression models (Figure 6). Te ridge
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Figure 2: (a) Probability plot of reference evapotranspiration after data processing and (b) correlation coefcients between meteorological
variables. RH: relative humidity; Tmax: maximum air temperature; Tmean: mean air temperature; Tmin: minimum air temperature.
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regression model had the lowest R2 value, showing the worst
forecasting performance among models. It was surprised
that the variance reciprocal hybrid model did not show
advantages over the SVR and Bayesian models. Te results

validated the efectiveness of the information entropy-based
hybrid model in improving ET0 forecasting performance. In
this study, the information entropy-based hybrid model
showed obvious superiority over the four single models and
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Figure 3: Comparison between the observed reference evapotranspiration (ET0) values and the forecasted ET0 values from (a) support
vector regression, (b) Bayesian linear regression, (c) lasso regression, and (d) ridge regression models in 2022.

Table 1: Evaluation of forecasting accuracy of single and hybrid forecasting models.

Model types Model algorithms Training set Test set Training set Test set Training set Test set
R RMSE (mm d−1) MAPE (%)

Single models

SVR 0.82b 0.78b 0.152b 0.163b 23.7c 21.3b

Bayesian 0.81b 0.80b 0.157b 0.168b 24.8bc 23.8b

Lasso 0.79bc 0.75bc 0.193a 0.186b 30.1ab 31.7a

Ridge 0.75c 0.71c 0.216a 0.233a 36.9a 33.6a

Hybrid models Information entropy 0.89a 0.86a 0.138c 0.146c 12.3d 11.4c

Variance reciprocal 0.83b 0.80b 0.163b 0.175b 20.4c 19.1b

Note. R, correlation coefcient; RMSE, root mean square error; MAPE, mean absolute percentage error. Diferent letters in each column stand for signifcant
diferences at p< 0.05.
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based on (a) information entropy and (b) variance reciprocal weighting methods in 2022.
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variance reciprocal-based hybrid model. Te reason why the
variance reciprocal-based model had lower forecasting ac-
curacy might be that the model did not guarantee the errors
of the hybrid models were small enough at each time node
[52].Te excessive errors at single abnormal moments might
result in the failure of the entire model [53]. In this study, we
recommended the information entropy-based hybridmodel.
Te advantage of the information entropy weight method
was that it determined weights based on the data itself, which
had strong objectivity and reduced the infuence of sub-
jectivity on forecasted results [54].Te information entropy-
based method considered multiple indicators simulta-
neously, and it was not limited by the evaluation of a single
indicator, which was why the information entropy-based
hybrid model was preferable to the variance reciprocal
model [55].

3.6. Evaluation of Model Forecast Performance. To validate
the accuracy of forecasting models, both single and hybrid
models were applied to forecast 1–30 lead day ET0 trends
using independent datasets from January 2 to February 1,
2022 (Table 2). Moreover, the Taylor diagram was plotted
using observed and forecasted data in 2022 for a visual
comparison test among diferent models (Figure 7). Te
results showed that the information entropy model gener-
ated correlation coefcient of 0.90 for 1–30 d ET0 forecasting

or an increase by 13.6% compared to the single models and
variance reciprocal model. Te standard deviation and
RMSE of the information entropy model were 1.65mm·d−1

and 0.61mm·d−1 or had a decrease by 16.4% and 23.7%
compared to other models. Te Kruskal–Wallis test was also
performed to test the accuracy of the forecasted results. Te
numerical values of the results concerning the forecasting
accuracy, precision, and F1 score for all the models are
summarized in Table 2. Te forecasting accuracy obtained
(97.5%) was maximum for the information entropy hybrid
model. Tere was no signifcant diference among SVR,
Bayesian, and variance reciprocal models. Te maximum
precision and F1 score were 0.9618 and 0.9742 for the in-
formation entropy model. Our results proved that the in-
formation entropy hybrid model was the best performance
model evaluated. In Turkey, Zouzou and Citakoglu used
hybrid models created using SVR and Gaussian process
regression models for estimating ET0 [56]. Tey found that
the hybrid model resulted in a reduction inMAE and RMSE.
Te reason why hybrid models had the ability to lower
prediction errors lied in that the innovative weight as-
signment method reduced the possibility of models out-
performance and overftting by optimizing the weight
assignments to models [57]. Tis increased the generaliz-
ability of hybrid models in diferent climatic zones. Te
study confrmed that the Kruskal–Wallis method was ob-
vious to do better for accuracy evaluation of models when
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Figure 6: Correlation analysis between observed and forecasted reference evapotranspiration (ET0) values from the (a) support vector
regression model, (b) Bayesian linear regression model, (c) ridge regression model, (d) lasso regression model, (e) information entropy-
based hybrid model, and (f) variance reciprocal-based hybrid model in 2022. R2 is the coefcient of determination.
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data pooled did not follow a normalized distribution [37].
Tis study provides insights on the optimal algorithms of
weight determination for the construction of hybrid ET0
forecasting models.

4. Conclusions

To achieve precise ET0 forecast, this study proposed two
hybrid models based on variance reciprocal and information
entropy algorithms. Te two algorithms were used to assign
weight of each single model to hybrid models. As a result,
hybrid models signifcantly improved the forecast accuracy
compared to the single models. To further investigate the
general ability of the hybrid models, forecasted weather data
were used to forecast ET0 in 1–30 d lead days in 2022. It was
observed that the information entropy-based hybrid model
outperformed other forecasting models in improving ET0
forecast performance. Tis study confrmed that the in-
formation entropy-based hybrid model was the one of the
most efective hybrid models in midterm (1–30 d) ET0
forecasting in the North China Plain. In future works, more
attention should be paid on how to extend the generaliz-
ability of hybrid models to other climatic types and to
improve the accuracy of long-term (>30 d) ET0 forecasting
through integrating the advantages of diferent regression
and machine leaning models.
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