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Meteorological drought poses a frequent challenge in the Nile River basin, yet its comprehensive evaluation across the basin has
been hindered by insufcient recorded rainfall data. Common indices like the standard precipitation index, coefcients of
variation, and precipitation concentration index serve as pivotal tools in gauging drought severity. Tis research aimed to assess
the meteorological drought status in the Nile River basin by using the Power Data Access Viewer product rainfall data. Bias
correction procedures were implemented to refne the monthly rainfall data for Bahirdar, Markos, Nekemt, and Muger stations,
resulting in notable improvements in the coefcient of determination (R2) that were increased from 0.74 to 0.93, 0.72 to 0.89, 0.71
to 0.96, and 0.69 to 0.84, respectively. Te average spatial distribution of drought in the Nile basin was classifed as extremely wet
(3.81%), severely wet (9.01%), moderately wet (7.36%), near normal (9.97%), moderately drought (21.20%), severely drought
(17.11%), and extremely drought (31.54%). Approximately 10.33% of the Nile River basin was situated in regions characterized by
high rainfall variability, while around 21.17% was located in areas with a notably irregular precipitation concentration index.
Overall, this study sheds light on the prevailing meteorological drought patterns in the Nile River basin, emphasizing the
signifcance of understanding and managing these phenomena for the sustainable development of the region.

1. Introduction

Drought is a recurring and severe phenomenon with sig-
nifcant impacts on the economy, society, and ecosystems of
the world [1, 2]. Drought indices, which combine various
variables like precipitation and evapotranspiration into
a single numerical value, are essential for quantifying
drought severity, detecting its onset and end, and planning
water resources value [3]. Drought stands out as a prominent
natural hazard, exerting signifcant consequences on agri-
cultural output, water reserves, ecosystem dynamics, the
environment, as well as both global and local economies [4].

Meteorological droughts, characterized by prolonged
rainfall defciency, can lead to agricultural droughts with soil
water defciency and reduced crop yields [5]. Analyzing
rainfall variability is crucial for efective hydrological
planning and management [6].

Riparian countries of the Nile River basin like Sudan,
Egypt, and Ethiopia are highly vulnerable to drought due to
climate change and reduced rainfall [6]. However, accessing
accurate precipitation data for drought monitoring systems
is challenging. Te lack of climate data records in the many
River basins, including the Nile River basin, hinders the
interpretation of drought indices and the recommendation
of drought-resilient agricultural practices. Te Prediction of
Worldwide Energy Resources (POWER) data access viewer
(DAV) provided by NASA/POWER ofers a solution by
providing global weather data at a 1° latitude-longitude
resolution [7], and NASA satellite production rainfall data
have good accuracy [8].

While earlier research has assessed drought indices at the
watershed level, the accurate evaluation of meteorological
and hydrological drought in the Nile River basin has been
hindered by insufcient recorded rainfall and fow data
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across the basin’s stations [9]. Drought indices such as the
standardized precipitation index, rainfall variability, and
precipitation concentration index are evaluated using the
POWER data access viewer product rainfall data [10]. Te
POWER Data Access Viewer (DAV) furnishes gridded
rainfall data in long-term, consistent time series, covering
expansive geographic areas, and this includes remote or
ungauged regions where on-site station data may be lacking
or limited [8]. Tis feature is particularly benefcial for large
river basins, where the precise depiction of spatial variations
in rainfall is crucial [11]. Te standard precipitation index
(SPI) has advantages such as simplicity, standardization, and
variable time scales [12]. Precipitation data are often readily
available from meteorological stations, satellites, or climate
models. SPI’s reliance on precipitation data enhances its
applicability in data-scarce regions where obtaining com-
prehensive hydrological data may be challenging [13]. SPI
relies solely on precipitation data and does not incorporate
other climatic variables such as temperature or evapo-
transpiration. Tis limitation means that SPI may not fully
capture the complexities of drought conditions, especially in
regions where temperature plays a signifcant role in water
availability [14]. Te standardized precipitation index (SPI)
does not take into account soil moisture, and neglecting
these factors may result in an incomplete grasp of the
comprehensive meteorological drought conditions [15]. Te
standard precipitation index (SPI) is used in large river
basins despite these limitations because it provides a stan-
dardized measure of precipitation anomalies [16], making it
easier to compare drought conditions across diferent re-
gions and periods [17].

Tis study assesses meteorological drought indices,
rainfall variability, and concentration index in the Nile River
basin, utilizing POWER data for Ethiopia, Sudan, and Egypt.
Hydrological drought analysis is excluded due to fow data
limitations.Te signifcance lies in enhancing understanding
of the Nile River basin drought, ofering valuable insights for
assessment, and guiding climate change adaptation and
mitigation strategies.

2. Materials and Methods

2.1.Description of the StudyArea. Te study area spans three
riparian countries: Ethiopia, Sudan, and Egypt. Riparian
areas are crucial as they are situated along the banks of rivers
and play a signifcant role in ecosystems, agriculture, and
water resource management. Te specifed coordinates
(between 20°0′ and 40°0′ East and 10°0′ and 30°0′ North)
indicate a substantial region, covering a wide longitudinal
and latitudinal range (Figure 1).Te distribution of the study
area shows varying percentages in each country: 66.7% in
Sudan, 18.3% in Ethiopia, and 15.0% in Egypt, and this
suggests that the bulk of the study area is in Sudan, followed
by Ethiopia and Egypt.

2.2.DataAnalysis. Te accuracy of the DAV rainfall product
was evaluated using gauge rainfall as a reference. First,
a comparison of satellite and gauge rainfall amounts through

visual inspection of scatter plots was performed. Ten,
performance indicators of relative percentage of bias (BIAS)
were estimated at a monthly average time scale based on
[18]. Bias represents the systematic error of the satellite-
based rainfall estimate as a percentage of the observed
rainfall [19]. A percentage of bias value closer to 0 indicates
that the monthly satellite rainfall estimate is closer to the
monthly observed rainfall [20]. A positive bias indicates an
overestimation, whereas a negative value indicates an un-
derestimation by the satellite [21], and the bias was expressed
by the following equation:

PBIAS � 100∗
S − G

G
, (1)

where G is gauged monthly rainfall (mm), S is satellite
products monthly rainfall (mm), and PBIAS is the per-
centage of bias (%).

Te power data access viewer web mapping application
contains geospatially enabled solar, meteorological, and
cloud-related parameters formulated for assessing and de-
signing renewable energy systems [22]. Rainfall data for each
month were acquired using the Power Data Access Viewer
(DAV) from 30 station points situated along the Nile River
basin. Te satellite rainfall data from DAV were then cor-
related with recorded data from stations in Bahirdar,
Markos, Muger, and Nekemt. Based on [23], the bias of DAV
satellite rainfall data was corrected by using the average
monthly correction factor that developed from the above
four meteorological stations (equation).

P
∗

� aP
b
, (2)

where p∗ is the bias-corrected rainfall, P is the uncorrected
rainfall amount, and a and b are the average monthly
transformation coefcients of Bahirdar, Markos, Muger, and
Nekemt station.Te determination of the “b” parameter was
done iteratively for each month until the corrected power
monthly precipitation matched that of the observed pre-
cipitation time series. Ten the parameter “a” was de-
termined such that the mean of the transformed monthly
values corresponds with the observed mean. Finally,
monthly constants a and b are applied to each uncorrected
monthly DAV rainfall data to generate the corrected
monthly rainfall in the Nile River basin across the riparian
countries.

2.3. Meteorological Drought Index and Rainfall Variability.
Te standardized precipitation index (SPI) is a statistical tool
used to assess and monitor meteorological drought to
quantify and characterize precipitation defcits over various
time scales of the region [24]. A standardized precipitation
index (SPI) is developed to monitor drought for several time
scales by gathering the precipitation time series over the
period [25]. Positive SPI values indicate a wetter than typical
period (accumulated precipitation is greater than the me-
dian), and negative SPI values represent a drier period with
less precipitation than normal [26]. Tis is an important
metric for the water sector regarding quantity and quality of
supply for human consumption and agricultural use [27].
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Te spatial classifcation of the standard precipitation index
was reclassifed using ArcGIS software according to the
recommended classifcation (Table 1) and that was estimated
using the following equation:

SPI �
Xi−Xm

SDx

, (3)

where Xi, Xm, and SDx stand for annual rainfall of a par-
ticular year, long-term means annual rainfall through ob-
servation and standard deviation, respectively.

Te variability of rainfall across watersheds or river
basins is conveyed by the coefcient of variation [30]. Te
coefcient of variation (CV) of monthly or annual rainfall is
a statistical measure that expresses the relative variability of
monthly precipitation in a specifc location [31]. It is cal-
culated by dividing the standard deviation of monthly
rainfall values by the mean (average) annual rainfall and
then multiplying by 100 to express the result as a percentage
as described in equation (4). Te coefcient of variation of
annual rainfall has diferent classifcations as presented in
Table 2, and the results were spatially classifed using ArcGIS
software after interpolating using the inverse distance
weighting method. A higher coefcient of variation indicates
greater variability, while a lower coefcient of variation
suggests more consistent or stable monthly rainfall [33].

CV � 100∗
SD
Xm

􏼠 􏼡. (4)

Te precipitation concentration index (PCI) is a statis-
tical measure used to assess the distribution of precipitation
over time within a specifc region and it provides in-
formation about the temporal concentration or unevenness
of rainfall throughout the year [34]. Te index helps in
understanding whether precipitation is evenly distributed
across months or if it is concentrated in a specifc period [35]
and PCI is used to quantify the relative distribution of the
rainfall patterns [36]. Te precipitation concentration index
(PCI) is a very important parameter to evaluate the
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Figure 1: Location of study area.

Table 1: Classifcation of standardized precipitation index values
[28, 29].

SPI value Class
≤−2.0 Extremely drought
−1.99 to −1.49 Severely drought
−1.49 to −0.99 Moderately drought
−0.99 to 0.99 Near normal
1.0 to 1.49 Moderately wet
1.5 to 1.9 Severely wet
≥2.0 Extremely wet

Table 2: Category of coefcients of variation [32].

Range CV (%) Variability category
CV< 20 Less variability
20–30 Moderately variability
CV> 30 High variability
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concentration of rainfall over the season and that may be
applied monthly or annually as classifed in Table 3. Pre-
cipitation concentration index (PCI) was evaluated
according to [37] as described in the following equation:

PCI � 100∗
􏽐

i�12
i�1 P

2
􏼐 􏼑

􏽐
I�12
I�1 P􏼐 􏼑

2. (5)

3. Results and Discussion

3.1. Bias Correction of Rainfall. DAV satellite product
rainfall data bias exceeding 30% has the potential to con-
siderably afect the precision and dependability of pre-
cipitation information. Tis underscores the necessity for
corrective measures to address the bias, especially since the
selected station in the current studies exhibited a bias
percentage exceeding 30% [38]. Based on [39], the per-
centage bias of uncorrected stellate rainfall data varied from
−1.4% to 63.4%. In January, the bias of Bahirdar, Markos,
Nekemt, and Muger stations was −50.0%, −75.0%, −83.3%,
and −33.3% (Table 4). Tis indicates that all stations tend to
underestimate rainfall in January, with Nekemt showing the
highest level of underestimation. Bahirdar, Markos, Nekemt,
and Muger had biases of −66.7%, −76.0%, −66.7%, and
−75.0% in February and −25.60%, −40.0%, −25.0%, and
−50.0% in March, respectively, as presented in Table 4.
Again, all stations exhibit underestimation, withMarkos and
Muger showing the highest biases, and once more, all sta-
tions tend to underestimate rainfall in March, with Muger
showing the highest level of underestimation. Meteorolog-
ical droughts might be underestimated or overlooked due to
the underestimated rainfall data, and this can hinder early
drought detection and preparedness eforts and over-
estimation can lead to false alarms of impending drought
conditions [40]. Te bias percentage in stellate product
rainfall data can reach as high as −63%, with variations
potentially dependent on the specifc location of the study
area [38]. In the current study, the maximum un-
derestimation and overestimation biases were recorded as
−83.3% and 86.4%, respectively, at the Nekemt station which
was the maximum compared with earlier fndings. Te
percentage of bias observed in the present study varied
across months, even for stations with similar characteristics.
Te fuctuation in bias percentages within stellate product
rainfall data from one month to the next can be ascribed to
various factors, including seasonal patterns [41], climate
oscillations, and potential errors in instrumentation and
measurement processes [42]. Te percentage of bias in the
current study varied from one station to another station
which may be due to the location of the station, local climate
characteristics, and the quality of ground-based gauged
rainfall data used for comparison. Tese biases highlight the
importance of considering station-specifc bias correction
when using satellite rainfall data for various applications in
diferent regions.

In Bahirdar station, the R2 values improved from 0.74 to
0.93 after bias correction, indicating a signifcant en-
hancement in the correlation between rainfall data that is

described in Figures 2(a) and 2(b). Similarly, in Markos
station, the R2 values increased from 0.72 to 0.89 after bias
correction, indicating a notable improvement in the cor-
relation of rainfall data (Figures 2(c) and 2(d)).Te R2 values
in the Nekemt station were improved from 0.71 to 0.96 after
bias correction, suggesting a substantial enhancement in the
correlation between rainfall data in the Nekemt station as
presented in Figures 2(e) and 2(f). Lastly, the R2 values of
Muger station were increased from 0.69 to 0.84 after bias
correction, indicating a considerable improvement in the
correlation of rainfall data as described in Figures 2(g) and
2(h). Te minimum value of coefcients of determination
after bias correction (R2) was 0.84 which indicates a better ft
between observed and DAV rainfall. Te fndings indicate
the efectiveness of the correction method in improving the
accuracy of the satellite-derived rainfall data [39]. All
evaluated coefcients of determination (R2) after bias cor-
rection showed that DAV rainfall data were in a high linear
relationship with the data measured from the precipitation
observation station. Overall, the results demonstrate that
bias correction techniques have successfully improved the
correlation between rainfall data in all four stations.

After bias correction, the spatial annual rainfall distri-
bution was interpolated through the Nile River basin as
discussed in Figure 3. Te average annual rainfall across the
Nile River basin exhibited considerable variability, ranging
from 0.65mm in Egypt to 1455.5mm in Ethiopia, and the
result showed that the amount of annual rainfall in the Nile
River basin decreased from Ethiopia toward Egypt. Te
observed variation in average annual rainfall across the Nile
River basin can be attributed to several climatic and geo-
graphical factors. Ethiopia was located at the headwaters of
the Nile, experiencing a more diverse and elevated topog-
raphy, contributing to higher precipitation levels. In con-
trast, downstream Sudan and Egypt grapple with a more arid
climate and lower elevations, resulting in diminished annual
rainfall. Tis spatial distribution in the basin is used to
understand regional variations in rainfall within the area to
suggest possible mitigation measures [34].

3.2. Standardized Precipitation Index. Te research con-
ducted involved a historical analysis of the standard pre-
cipitation index (SPI) for stations located in the Nile basin
from 2001 to 2021. During the period from 2007 to 2009, the
Nile River basin exhibited the highest coverage under ex-
treme drought conditions, reaching a maximum of 35% as
presented in Figure 4(c). Tis observation suggests
a heightened susceptibility of the basin to arid conditions
during that specifc time frame. In contrast, the availability
of extreme wetlands from 2018 to 2021 (Figure 4(g))

Table 3: Category of precipitation concentration index.

Range PCI (%) Rainfall concentration
≤10 Uniform precipitation distribution
11–15 Moderate precipitation distribution
16–20 High irregular precipitation distribution
≥21 Very high irregular precipitation distribution
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Table 4: Monthly percentage bias between DAV satellite versus gauged rainfall (2001–2021).

Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Bahirdar −50.0 −66.7 −25.6 43.8 67.8 −31.4 −35.4 31.8 51.5 −69.6 −36.2 −35.5
Markos −75.0 −76.0 −40.0 58.9 68.7 −33.3 −35.6 36.2 49.8 −77.2 −35.3 −40.5
Nekemt −83.3 −66.7 −25.0 63.6 86.4 −23.6 −35.2 40.3 43.9 −58.1 −35.6 −65.5
Muger −33.3 −75.0 −50.0 43.8 45.7 −17.7 −3.9 41.0 51.5 −79.1 −35.5 −45.5
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Figure 2: Continued.
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experienced a notable reduction of 16.7% when compared to
the climate scenario observed between 2001 and 2003
(Figure 4(a)).Tis decline emphasizes a signifcant alteration
in the hydrological conditions of the basin, indicative of
a changing climate landscape. Te spatial distribution of
meteorological drought within the Nile basin revealed dis-
tinct percentages associated with various drought categories.
A minimal area (3.81%) of the Nile River basin experienced
extremely wet conditions, indicating regions with an
abundance of precipitation. A signifcant portion of the Nile
River basin (9.01%) was experiencing severely wet condi-
tions. Wetness characteristics of the basin could lead to
issues such as fooding, soil erosion, and potential impacts
on agriculture and infrastructure [43], and understanding
the causes of severe wetness is important for water resource
management and disaster preparedness [44]. Another
substantial part of the basin exhibits moderate wetness
(7.36%). While not as extreme as severe wetness, this still
indicates a notable surplus of water. Moderate wet

conditions can infuence water availability and ecosystem
health and may have implications for various sectors, in-
cluding agriculture and water supply [45]. Approximately
9.97% of the Nile River basin was currently experiencing
drought conditions classifed as near normal. Te near-
normal drought suggests that the conditions are drier
than average but not to an extreme extent [46].

In this study, the result was that approximately 21.20% of
the Nile River basin exhibited conditions indicative of
moderate drought, pointing towards a substantial reduction
in precipitation. Tis important fnding highlights the im-
pact of climatic variations on the hydrological dynamics of
the region, shedding light on the vulnerabilities within the
Nile River basin. Te classifcation of moderate drought in
a signifcant proportion of the basin emphasizes the pressing
need for adaptive water resource management strategies to
mitigate potential adverse efects on ecosystems and human
activities [47]. Te reported result indicating that 17.11% of
the Nile River basin was experiencing severe drought
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Figure 2: Mean rainfall scattering plot (2001–2021): (a) Bahirdar—before bias correction; (b) Bahirdar—after bias correction; (c)
Markos—before bias correction; (d) Markos—after bias correction; (e) Nekemt—before bias correction; (f ) Nekemt—after bias correction;
(g) Muger—before bias correction; (h) Muger—after bias correction.
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conditions suggests a heightened and critical shortage of
water availability in this specifc geographic area. Drought
conditions are often characterized by an extended period of
below-average precipitation coupled with increased evap-
oration, leading to a defcit in water resources [48]. Te
classifcation of 31.54% of the Nile River basin as extremely
drought-prone emphasizes the critical need for efective
water management strategies, sustainable land use practices,
and climate-resilient policies to address and mitigate the
impacts of severe water scarcity in these areas, especially
within the latitude range of 20°0′0″ to 30°0′0″ North. Te
observed spatial distribution of drought highlights the
heterogeneity of climatic conditions within the Nile basin
[40]. Variation of standard precipitation index in Nile River
basin may be due to climate change and human activity
infuence [49]. Te annual value of the standard pre-
cipitation index indicated that the Nile River basin in Sudan
and Egypt tributaries received several drought events, and
the most severe event was during the year 1984 [50].

Notably, the region of the Nile River basin in Egypt was
presently undergoing an extreme drought, indicating a se-
vere lack of precipitation that posed substantial challenges to
water availability and agriculture throughout the Nile River
basin. In Sudan, the drought status of the Nile basin varied
across the spectrum from near normal to extremely dry,
highlighting a mixed scenario where some areas experienced
regular precipitation while others faced severe drought

conditions. Meanwhile, the Nile River basin in Ethiopia
(called as Upper Blue Nile basin) exhibited predominantly
wet to moderately wet conditions, suggesting an excess of
rainfall that could have positive implications for water
availability and agriculture in the Nile River basin. Tese
results highlight the importance of region-specifc water
management strategies and the need for continuous mon-
itoring to address the diverse hydrological challenges faced
by diferent parts of the Nile basin. Further research and
proactive measures are essential to mitigate the impacts of
drought, particularly in regions experiencing extreme
conditions, and to enhance the overall resilience of the Nile
River basin to varying climatic patterns.

3.3. Drought Duration and Frequency. Te duration and
frequency of droughts in the Nile River basin exhibited
signifcant variability across diferent regions within the
study period. Specifcally, in Ethiopia, there were instances
where no drought was observed (0months), whereas in
Egypt, drought durations extended up to 12months
(Figure 5(a)). In addition, the frequency of these drought
events ranged from none (0 occurrences) to as many as
21 times throughout the period of study (Figure 5(b)).
Analysis of annual SPI (standardized precipitation index)
data reveals a greater prevalence of drought conditions in
Egypt, and these dry periods were notably observed in the
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Figure 3: Spatial distribution of total annual rainfall in Nile River basin after bias correction.

Advances in Meteorology 7



mid-1960s, from 1968 to 1972, between 1981 and the early
1980s, during the mid-1980s, and from 1989 through 1998
[51]. Tese data indicate a notable trend, particularly in
Egypt, where the number of drought occurrences

corresponded directly to the length of the study period. Tis
implies that, on average, the Nile River basin in Egypt en-
countered a minimum of one drought annually within this
timeframe, in contrast to the basin extent in Ethiopia.
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Figure 4: Average spatial annual standard precipitation index (SPI) of Nile River basin from 2001 to 2003 (a), 2004 to 2006 (b), 2007 to 2009
(c), 2010 to 2012 (d), 2013 to 2015 (e), 2016 to 2018 (f), and 2019 to 2021 (g).
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3.4. Coefcient of Variation and Precipitation Concentration
Index. Te research fndings reveal a noteworthy increase in
rainfall variability across the Nile River basin. Monthly
rainfall amounts in Sudan and Egypt were signifcantly lower
when compared to Ethiopia, indicating a spatial gradient in
precipitation variability. In the subset characterized by less
rainfall variability (59.1%), an in-depth analysis reveals
a prevailing trend of stability in rainfall patterns. Tis
suggests a certain level of predictability and consistency in
precipitation levels within this substantial portion of the
basin. In contrast, the category associated with moderate
rainfall variability (30.57%) signifes a more dynamic en-
vironment where precipitation levels exhibit a moderate
degree of fuctuation. Tis middle range suggests a balanced
interplay of meteorological factors, potentially infuencing
the ecological and hydrological systems in a way that re-
quires closer scrutiny. Te remaining portion of the Nile
River basin characterized by high rainfall variability
(10.33%) denotes a region facing pronounced and poten-
tially erratic changes in precipitation. Tis subset demands
focused attention due to the heightened sensitivity of eco-
systems and water resources to variations in rainfall, which
may have signifcant implications for both local environ-
ments and regional hydrology in Figure 6(a).

Te Nile River basin exhibits signifcant variability in
rainfall, particularly in Sudan and Egypt, especially within
the latitude range of 22°0′ to 25°0′ North and this region
experiences notable fuctuations in precipitation levels. Te
mean coefcients of variation for the wet season, dry season,
and annual precipitation in the Upper Blue Nile River basin
(in Ethiopia) between 1901 and 2000 were 8.8%, 11.4%, and
7.5%, respectively. Tese values, all below 20%, suggest
relatively less variability in rainfall availability [52]. In the
recent investigation covering the years 2001–2021, a similar
trend of less rainfall variability was observed in the Blue Nile
River basin, which constitutes a portion of the larger Nile
basin. Tis consistency implies a continued pattern of

relatively stable precipitation levels in the region. Tis study
contributes to the existing knowledge of rainfall variability in
the Nile River basin, highlighting the spatial diferences
observed across Ethiopia, Sudan, and Egypt. Te identifed
categories of variability serve as a valuable tool for water
resource planners and policymakers to develop targeted
strategies for sustainable water management and climate
resilience in the region [53].

Based on the precipitation concentration index, the
analysis reveals that 34.61% of the study area experiences
a high irregular distribution of precipitation (Figure 6(b)).
Tis indicates areas where precipitation events are sporadic
and exhibit signifcant variability. In addition, 27.70% of the
area demonstrates a moderate precipitation distribution,
suggesting a more balanced but still variable pattern. No-
tably, 21.17% of the region exhibits very high irregular
distribution, emphasizing areas with extreme fuctuations in
precipitation levels. A smaller percentage, 16.52%, was
characterized by a uniform distribution of precipitation,
indicative of regions with consistent and evenly distributed
rainfall. In the Upper Blue Nile River basin, the annual
precipitation concentration index ranges from 11.43% to
28.39%, with an average of 21.41%. Tis average signifes
a moderate distribution of rainfall in the area [54], and the
current study observed variability of the upper reach of the
Nile River basin (in Ethiopia) ranging from uniform to
moderate distribution. Te precipitation concentration in-
dex of the Nile River basin increased from Ethiopia toward
Sudan and Egypt. In contrast, the precipitation concentra-
tion in Sudan and Egypt indicates an erratic distribution of
rainfall in these regions, and the precipitation distribution
pattern within the Nile River basin in Egypt exhibits a highly
irregular nature. A considerable portion of the Nile River
basin in Sudan displays a distinct high level of irregularity in
precipitation distribution, especially when compared to
other classifcation patterns. Understanding the pre-
cipitation concentration index is important for assessing the
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Figure 6: Average coefcient of variation (a) and precipitation concentration index (b) of the Nile River basin.
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variability and reliability of rainfall patterns, which has
implications for water resource management, agriculture,
and other sectors in the region [55]. Both rainfall variability
and concentration vary due to factors like land use changes,
water bodies [56], geography, and topography [57].

4. Conclusion and Recommendation

In this paper, spatial distribution, frequency and duration of
meteorological drought, rainfall variability, and concen-
tration were discussed in Nile River basin as summarized in
the following:

(1) Tis study focused on evaluating meteorological
drought, rainfall variability, and the precipitation
concentration in the Nile River basin, utilizing
rainfall data from the Power Data Access Viewer for
the period 2001–2021. In order to enhance the ac-
curacy of the analyses involving the abovementioned
indices, a rigorous bias correction process was
employed on the satellite-derived rainfall data, en-
suring its alignment with data from selected mete-
orological stations.

(2) Te application of bias correction on the satellite-
derived rainfall data within the Data Access Viewer
yielded a notable 26.6% enhancement in the R2

value. Tis improvement shows a substantial in-
crease in the accuracy of the satellite product for
rainfall. Following the bias correction, the spatial
distribution of annual rainfall across the Nile River
basin showcased signifcant variability, ranged from
0.65mm in Egypt to 1455.5mm in Ethiopia.

(3) Based on the standard precipitation index, approx-
imately 30.15% of the Nile River basin displayed
a spectrum of conditions, ranging from extremely
wet to near normal. On the other hand, a substantial
portion, accounting for 69.85% of the total area,
exhibited variations indicative of moderate to ex-
treme drought that show available monthly or an-
nual rainfall was minimal compared with the long-
term mean value of rainfall. Te maximum extent of
extreme drought conditions observed from the 2007
to 2009 time period covered an average of 35% of the
Nile basin. Te duration and frequency of droughts
in the Nile River basin also increased from Ethiopia
towards Sudan and Egypt.

(4) In the study of the basin’s rainfall patterns, it was
found that approximately 59.1% of the area dem-
onstrates a lower variability in precipitation, in-
dicating a more uniform and predictable pattern of
rainfall. On the other hand, the precipitation con-
centration index indicates that 34.61% of the basin is
characterized by a markedly uneven distribution of
rainfall, pointing to a greater degree of un-
predictability in precipitation trends.

(5) Future research should explore the drivers and
impacts of extreme droughts in the Nile River basin,
focusing on adaptive strategies for water resource
management in vulnerable areas.
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