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Mixed initial-boundary value problem for telegraph equation in domain with variable borders is
considered. On one part of domain’s border are the boundary conditions of the first type, on other
part of the boundary are set boundary conditions of the second type. Besides, the sizes of area are
variable. The solution of such problem demands development of special methods. With the help
of consecutive application of procedure of construction waves reflected from borders of domain,
it is possible to obtain the solution of this problem in quadratures. In addition, for construction of
the waves reflected from mobile border, it is necessary to apply the procedure specially developed
for these purposes.

1. Introduction

Mixed initial-boundary value problems for telegraph equation in domain with variable
borders arise in many applications. In particular, such problem arises in a problem about
calculation of a field of stress in ropes of elevating devices. At lifting of load the rope reels
up on a drum or reels off a drum at lowering a load. Therefore, the length of that part of a
rope, which is reeled up on a drum, changes. If to take into account friction of a rope on a
drum, elastic displacements in a rope can be described by the telegraph equation [1]. In [1]
it is shown, that it occurs at dry friction. However, it is possible to show, that the telegraph
equation describes elastic displacements and at viscous friction as well. Thus, there is a initial-
boundary value problem for the telegraph equation in domain with variable border. Here the
telegraph equation of general view is considered. Regarding a rope which hangs down from
a drum, elastic displacements there are described by the wave equation. This circumstance
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induces to consider separately problems about elastic displacements to various parts of
a rope.

Initial-boundary value problem on elastic displacements to that part of a rope which is
reeled on a drum is considered in the present paper. The rope is considered as a flexible string.
One end of a rope is attached to a drum and goes together with a drum. The extreme point of
contact of a rope with a drum is accepted as the second end of a rope. Elastic stresses are set
in this point. Change of length of a rope, which is reeled up on a drum, is taken into account
as follows. Portable movement of system is understood as rotation of a drum and a rope as
perfectly rigid body. Then the relative movement of a rope will be submitted as motionless
in all points of a rope, except for an extreme point of contact of a rope with a drum. This
last point in relative movement will make the moving equal v(t), where v(t) is movment of
the central axis of a rope together with a drum. In relative movement all points of a rope
make only elastic displacements. The axis x is directed lengthways toward conditionally
straightened rope and its beginning is located in a point of attaching of a rope to a drum.
The initial length of a rope, which is reeled up on a drum, is equal to l.

At the solution of initial-boundary value problems for the telegraph equation the
various exact and approached methods were used. It is necessary to notice that exact
solutions were obtained only for the limited number of boundary problems.

Recently for the solution of boundary problems even for fractional telegraph equations
it is actively used differential transformation method [2–4]. This method is an improved
version of power series method or its modifications. In this case the same is; and in a power
series method, representation of the solution of a problem in the form of type Taylor’s series
in a neighborhood of some point or a curve is used. Thanks to the developed procedure of use
at an early stage of calculations of boundary conditions, calculation of expansion coefficients
becomes essentially simpler. However representation of the solution in the form of Taylor’s
series type demands fulfillment of additional conditions. Following conditions concern them.
It is necessary that all factors in the differential equation were analytical functions of the
arguments. It is necessary also that the series obtained as the solution of the problem and
especially series of derivatives converged uniformly. But the most important feature consists
as such expansion of solutions provides good approach only in some neighborhood of an
index point or a curve. On the essential distance from such neighborhood the values of higher
degree terms become dominating.

Therefore preservation in expansion of final number of the terms can lead to
considerable errors. Besides, at a great distance from area of initial or boundary values series
can appear divergent. Therefore differential transformationmethod yields satisfactory results
only on small intervals of change of spatial variables and time. Besides, for application of this
method it is necessary that all functions included in the equation and boundary conditions
supposed the same expansion that is used for solution representation. This condition cannot
be executed in general case. Necessity to be limited to calculation of final number of terms of a
series leads to that the solution appears approximate. At the same time, if all given problems
can be presented in the form of finite series, the solution of such problem can be obtained
exactly.

For the telegraph equations, including fractional ones, it is possible to solve some
initial-boundary value problems by means of a method of separation variables [5]. For
application of this method it is necessary that the domain of search of the solution possessed
special symmetry, and initial and boundary functions as well as the right parts of the
equations, supposed expansion on eigen functions of a boundary problem. It is clear that
these conditions can be executed not always.
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Existing methods of the solution of initial-boundary value problems cannot be applied
to the telegraph equation in cases when the domain in which the solution is found is a
variable. In particular, use for this purpose of a method separation of variables is impossible,
as in case of mobile borders the corresponding problem of Sturm-Liouville has only trivial
eigenfunctions.

In present paper the method especially developed in [6–12] for solution of problems
about movement of waves in domain with mobile borders is used.

2. Statement of the Problem

The following initial-boundary value problem is considered: in the domain 0 < x < l + v(t),
t > 0 to obtain the solution of the telegraph equation

∂2u(x, t)
∂x2

− 1
a2

∂2u(x, t)
∂t2

+D
∂u(x, t)

∂t
+ B

∂u(x, t)
∂x

+ Cu(x, t) = 0, (2.1)

which satisfies initial conditions

u(x, 0) = 0; ut(x, 0) = 0 (2.2)

and mixed boundary conditions

ux(l + v(t), t) = γ(t); u(0, t) = 0, t > 0. (2.3)

Concerning function v(t), describing displacement of the bottom end of a rope, it is supposed
v(0) = 0 and from a condition of preservation of integration area of an initial-boundary value
problem follows that v(t) > −l at t > 0.

The solution of the problem put here cannot be carried out by existing methods
because domain, in which the solution is found, is a variable. Therefore for the solution
of such initial-boundary problems connected with the equations of hyperbolic type in [6–
12] special method developed. This method has three prominent features. The first of them
consists in integrated representation of solutions of the telegraph equation in the form of
extending waves for an extensive class of boundary conditions [6]. Such representation is
obtained by use of Riemann’s method.

Use of the given integrated representation of solutions demands performance of
continuation of initial and regional functions in the domain of any values of their arguments.
This continuation should be carried out taking into account all conditions of statement of a
problem. In it the second feature of a method consists.

At last, the third feature consists in working out of a method of construction of the
waves reflected from mobile border. The given method reduces a reflexing problem to the
solution of an auxiliary initial-boundary value problem with the initial conditions set at the
moment of arrival of forward front of the falling wave on mobile border.

This method is used for the solution of stated problem.
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3. The Solution of the Problem

For the solution of this problem the continuation of function γ(t) on all axis t is introduced as

Γ(t) =

⎧
⎨

⎩

γ(t), t > 0;

0, t < 0,
(3.1)

and the first boundary condition (2.3) is considered as continued on all axis t:

ux(l + v(t), t) = Γ(t). (3.2)

At the first stage the solution of the given problem is searched as

u0(x, t) = 2e−(B/2)x
∫ t+(x/a)

0
J0(z)e(Da2/2)(t−η)Γ0

(
η
)
dη, (3.3)

with unknown function Γ0. Here J0, J1-Bessel’s functions as the zero and first order,
respectively,

z =
√

c1
[
x2 − a2

(
t − η

)2
]
;

c1 = C +
D2a2

4
− B2

4
.

(3.4)

In [10] it is shown that function (3.3) satisfies (2.1) at arbitrary function Γ0. In the same place it
is shown that for solution of boundary problemswith boundary conditions of the second type
it is the most expedient to apply the form of the solution of a kind (3.3). Having substituted
the form of the solution (3.3) in a boundary condition (3.2) we obtain

2
a
e−((B+Da)/2)(l+v(t))Γ0

(

t +
l + v(t)

a

)

− 2e−(B/2)(l+v(t))
∫ t+((l+v(t))/a)

0

[
B

2
J0(z) + c1(l + v(t))

J1(z)
z

]

e(Da2/2)(t−η)Γ0
(
η
)
dη = Γ(t).

(3.5)

In (3.5)

z =
√

c1
[
(v(t) + l)2 − a2

(
t − η

)2
]
. (3.6)

Thus, if function Γ0 is the solution of the integral equation (3.5), function (3.3)will satisfy the
first boundary condition (2.3).
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With the purpose of obtaining an opportunity to represent a function Γ0 with various
arguments we shall introduce into (3.5) such transformation of a variable t:

τ = t +
v(t) + l

a
. (3.7)

In order that execution of transformation (3.7) in the integral equation (3.5)was possible, it is
necessary that the function t0 inverse to τ exists. Here the case is considered when the mobile
end moves with subsonic speed. That means the next condition is satisfied

∣
∣v′(t)

∣
∣ < a. (3.8)

Then from (3.7) follows

dτ

dt
= 1 +

v′(t)
a

> 0. (3.9)

It means that (3.7) will be strictly monotonously growing and consequently there will
be an inverse to them, function t0, also strictly monotonously growing. Thus as τ(0) = l/a,
we obtain that t0(l/a) = 0. From (3.9) follows that τ > l/a at t > 0. As function v(t) is
determined only at t > 0, function τ(t) is determined also only at t > 0. Accordingly function
t0(τ)will be determined only at τ > l/a. At the same time during construction of the solution
of a considered initial-boundary value problem there is a necessity of knowledge of function
Γ0(τ) behavior as well at values of argument Γ0(τ), smaller than l/a.

With this purpose it is necessary to execute continuation of function v(t) on all axis
t. It appears that continuation of function v(t) on all axes t can be executed by arbitrary
way, having demanded only existence of a derivative of this continuation on all axes t and
performance on all axes t condition (3.8). We shall designate this continuation of function
v(t) through v1(t). Then on all axes t such function will be determined:

N(t) =

⎧
⎨

⎩

v(t), t > 0;

v1(t), t < 0.
(3.10)

Continued on all axes t of function τ(t), we shall designate T(t) andwe shall determine
it by expression

T(t) = t +
N(t) + l

a
. (3.11)

From this expression and (3.10) it is clear that at t > 0, T(t) = τ(t). As function N(t) satisfies
to an inequality

∣
∣N ′(t)

∣
∣ < a (3.12)

at all t, function T(t) will be strictly monotonously growing and as τ(0) = l/a, at t < 0 it will
be valid such inequality: T(t) < l/a.
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As function T(t) is strictly monotonous at all t, there exists inverse to this the function
T0(T), and at T ≥ l/a, T0(T) = T0(τ) and T0(T) will be strictly monotonously growing
function. Thus, function T0(T) satisfies a condition

T0(T) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

t0(τ) > 0, T >
l

a
;

0, T =
l

a
;

< 0, T <
l

a
.

(3.13)

Now after transformation (3.11) integral equation (3.5)will become

1
a
e−((B+Da)/2)(l+N(T0(T)))Γ0(T)

− e−(B/2)(l+N(T0(T)))
∫T

0

[
B

2
J(z) + c1(l +N(T0(T)))

J1(z)
z

]

e(Da2/2)(t−η)Γ0
(
η
)
dη =

1
2
Γ(t).

(3.14)

In integral equation (3.14) becomes

z =
√

c1
[
(l +N(T0(T)))

2 − a2
(
T0(T) − η

)2
]
. (3.15)

From the integral equation (3.14), the quality (3.1) of function Γ(t) and an equality (3.13)
follow, that is

Γ0(T) = 0, T <
l

a
. (3.16)

In turn, from the quality (3.16) of function Γ0(T) follows (3.3) satisfing initial conditions (2.2).
Really, from the formula (3.3) directly follows that at t = 0 upper limit of integration becomes
equal to x/a. But at t = 0,x < l and on the basis of the quality (3.16) of function Γ0(T) follows
that at t = 0 function (3.3)will be equal to zero. That means it satisfies the first initial condition
(2.2).

Having differentiated function (3.3) on t, we shall obtain

∂u0(x, t)
∂t

=
2
a
e−((B+Da2)/2)xΓ0

(
t +

x

a

)

+ 2a2e−(B/2)x
∫ t+(x/a)

0

[
D

2
J0(z) + c1

(
t − η

)J1(z)
z

]

e(Da2/2)(t−η)Γ0
(
η
)
dη.

(3.17)

If in the formula (3.17) we set t = 0, then argument of function Γ0 and also the upper
limit of integration at x < l become smaller than l/a. Therefore on the basis of function’s Γ0
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quality (3.16) the derivative (3.17) at t = 0 will equal to zero. And it means that function (3.3)
will satisfy also the second initial condition (2.2).

Thus, function (3.3) satisfies all conditions of statement of an initial-boundary value
problem, except for the second boundary condition (2.3). With the purpose to check this
condition we shall calculate from (3.3)

u0(0, t) = 2
∫ t

0
J0(z)e(Da2/2)(t−η)Γ0

(
η
)
dη. (3.18)

From the formula (3.18) on the basis of function’s Γ0 quality (3.16) follows the function
(3.3) at t < l/a satisfing the second boundary condition (2.3) as well. With the purpose
of satisfaction of the second boundary condition (2.3) at t > l/a, the solution of an initial-
boundary value problem we have to search as the sum of two functions is

u(x, t) = u0(x, t) + u1(x, t), (3.19)

where

u1(x, t) = −2e−(B/2)x
∫ t−(x/a)

0
J0(z)e(Da2/2)(t−η)Γ0

(
η
)
dη. (3.20)

Function (3.20) satisfies (2.1) with arbitrary function Γ0. It is obvious the function
(3.19) satisfies the second boundary condition (2.3) at all t. In the same way as for function
u0(x, t) it is possible to check up that the function (3.19) satisfies initial conditions (2.2).

In order that (3.19) satisfies the first boundary condition (2.3) it is necessary the
function u1(x, t) satisfies a boundary condition

u1,x(l + v(t), t) = 0, t > 0. (3.21)

Having calculated value of function u1,x(x, t) at point x = l + v(t), we obtain

− 2
a
e−((B+Da)/2)(l+v(t))Γ0

(

t − l + v(t)
a

)

+ 2e−(B/2)(l+v(t))
∫ t−((l+v(t))/a)

0

[
B

2
J0(z) + c1(l + v(t))

J1(z)
z

]

e(Da2/2)(t−η)Γ0
(
η
)
dη = 0.

(3.22)

In formula (3.22)

z =
√

c1
[
(v(t) + l)2 − a2

(
t − η

)2
]
. (3.23)

In order that equality (3.22) was valid, on the basis of function’s Γ0 quality (3.16), it is
necessary that the argument of this function in equality (3.22) satisfies condition

t − l + v(t)
a

<
l

a
. (3.24)
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Thus, function (3.19)will be the solution of a problem at t < (2l + v(t))/a. At t > (2l + v(t))/a
for satisfaction of first boundary condition (2.3) in the solution (3.19) it is necessary to enter
the amendment. To enter such amendment by the methods used for domains with motionless
borders, as shown in [7–12] for a case of the wave equation, is impossible. Therefore for
corrective action the approach developed in [7–12] is used. With this purpose we shall notice
that during an interval of time determined by a condition t = (v(t) + 2l)/a, forward front of
the wave, radiated on the mobile end, starting from the moment of time t = 0, will reach the
end x = 0, will be reflected from it, and will meet the mobile end. The length of this interval
of time will be determined as the less positive root τ1 of equation

at = v(t) + 2l. (3.25)

The left part of (3.25) at t = 0 is less than the right part. At the same time on the basis
of a condition (3.8) at t > 0 left part of this equation grows faster than right part. Hence, the
positive root of (3.25) exists. From the carried out reasoning it is clear also that the condition
(3.22) will be valid at t < τ1. Really, at t = 0 inequality t < (v(t) + 2l)/a is valid, as v(0) = 0.
At the same time τ1 is the less positive number at which this inequality turns into equality
(3.25). Therefore correction function u2(x, t), being in essence of a wave reflected from the
mobile end, is under construction as the solution of such an auxiliary initial-boundary value
problem: in the domain 0 < x > l +v(t), t > τ1 to obtain the solution of the telegraph equation
(2.1) satisfying initial conditions

u(x, τ1) = 0; ut(x, τ1) = 0; 0 < x < l + v(τ1), (3.26)

and boundary conditions

ux(l + v(t), t) = −u1,x(l + v(t), t); u(0, t) = 0, t > τ1. (3.27)

The solution of this auxiliary initial-boundary value problem is constructed as function
satisfying (2.1) at arbitrary function Γ2:

u2(x, t) = 2e−(B/2)x
∫ t+(x/a)

0
J0(z)e(Da2/2)(t−η)Γ2

(
η
)
dη. (3.28)

Having substituted function (3.28) in the first boundary condition (3.27), we obtain

2
a
Γ2
(

t +
v(t) + l

a

)

e−((Da+B)/2)(l+v(t))

− 2e−(B/2)(l+v(t))
∫ t+((v(t)+l)/a)

0

[
B

2
J0(z) + c1

l + v(t)
z

J1(z)
]

e(Da2/2)(t−η)Γ2
(
η
)
dη

= −u1,x(l + v(t), t).

(3.29)
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Thus, if function Γ2 will be the solution of the integral equation (3.29), the function

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t), (3.30)

will satisfy the second boundary condition (2.3) at all t. Having executed in (3.29)
transformation (3.11), we shall obtain

2Γ2(T)e−((Da+B)/2)(l+v(T0(T)))

− 2ae−(B/2)(l+v(T0(T)))
∫T

0

[
B

2
J0(z) + c1

l + v(T0(T))
z

J1(z)
]

e(Da2/2)(T0(T)−η)Γ2
(
η
)
dη

= −au1,x(l + v(T0(T)), T0(T)).

(3.31)

As the right part of the integral equations (3.29) and (3.31) is equal to zero at t < τ1,
function Γ2(T) also will be equal to zero at t < τ1. We shall find out, which additional values
of T function Γ2(T)will be equal to zero. As function T(t) strictly monotonously grows, such
inequality will be valid

T(t) < T(τ1), at t < τ1. (3.32)

Using in this inequality the definition (3.11) of function T(t) and value τ1 from (3.25), we
shall obtain

T < τ1 +
v(τ1) + l

a
=

3l + 2v(τ1)
a

. (3.33)

Thus, function Γ2(T) possesses the following quality:

Γ2(T) = 0, T <
3l + 2v(τ1)

a
. (3.34)

If now to put in equality (3.28) t = 0, the upper limit of integration in this formula will accept
value x/a. Taking into account that at t = 0 it is valid x < l, we shall have that x/a < l/a. But
as l > v(τ1), we shall obtain that

l

a
<

3l + 2v(τ1)
a

. (3.35)

It means that at t = 0 function (3.28) will equal to zero, that is, will satisfy the first initial
condition (2.2).

Having calculated a derivative of function (3.28) on t, we shall obtain

∂u2(x, t)
∂t

=
2
a
e−((B+Da2)/2)xΓ2

(
t +

x

a

)

+ 2a2e−(B/2)x
∫ t+(x/a)

0

[
D

2
J0(z) + c1

(
t − η

)J1(z)
z

]

e(Da2/2)(t−η)Γ2
(
η
)
dη.

(3.36)
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At t = 0 argument of function Γ2 and also the upper limit of integration in the formula (3.36)
will accept value x/a. Hence, as shown above, in the domain of search of the solution at such
values of argument, the function Γ2 will be equal to zero. Therefore, the derivative of function
u2(x, t) on t at t = 0 will be equal to zero. And it means that function u2(x, t) satisfies as well
the second initial condition (2.2).

Thus, function (3.30) satisfies all conditions of statement of the basic initial-boundary
value problem, except for the second boundary condition (2.3). In order that this boundary
condition was carried out, it is necessary that there was valid an equality

u2,x(0, t) = 0, t > 0. (3.37)

Having substituted function (3.28) in the left part of a boundary condition (3.37), we shall
obtain

u2,x(0, t) =
2
a
Γ2(t) − 2

∫ t

0

B

2
J0(z)e(Da2/2)(t−η)Γ2

(
η
)
dη. (3.38)

As follows from function’s Γ2 quality (3.34), expression (3.38) will equal zero, that is, will
satisfy a boundary condition (3.37) only at validity of an inequality t < (3l + 2v(τ1))/a. For
satisfaction of the second boundary condition at big t in the solution (3.30), the amendment
u3(x, t) is entered that is, the solution is represented as

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t), (3.39)

where

u3(x, t) = −2e−(B/2)x
∫ t−(x/a)

0
J0(z)e(Da2/2)(t−η)Γ2

(
η
)
dη. (3.40)

Function u3(x, t) satisfies (2.1) at arbitrary function Γ2 and should provide perfor-
mance of a boundary condition

u2(0, t) + u3(0, t) = 0, t > 0. (3.41)

Fact that functions (3.28) and (3.40) satisfy a boundary condition (3.41) is practically obvious.
With the same way, as it is made for function u2(x, t), it is possible to show that

function u3(x, t) will satisfy initial conditions (2.2).
Thus, function (3.39) satisfies all conditions of statement of the basic initial-boundary

value problem, except for the first boundary condition (2.3). In order that this boundary
condition was carried out, it is necessary that there was valid an equality

u3,x(l + v(t), t) = 0, t > 0. (3.42)
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Having calculated value of derivative function (3.40) on x in a point x = l + v(t), we
shall obtain

u3,x(l + v(t), t) =
2
a
e((Da−B)/2)(l+v(t))Γ2

(

t − v(t) + l

a

)

+ 2e−(B/2)(l+v(t))
∫ t−((v(t)+l)/a)

0

[
B

2
J0(z) + c1

l + v(t)
z

J1(z)
]

e(Da2/2)(t−η)Γ2
(
η
)
dη.

(3.43)

On the basis of function’s Γ2 quality (3.34) one can conclude that the right part of equality
(3.43) will be equal to zero if argument of function Γ2 and the upper limit of integration in
the formula (3.43) will satisfy an inequality

t − l + v(t)
a

<
3l + 2v(τ1)

a
, (3.44)

whence follows

t <
4l + 2v(τ1) + v(t)

a
. (3.45)

Hence, as t satisfies an inequality (3.45), the boundary condition (3.42) will be carried out.
The inequality (3.45) is inconvenient for use as its left and right parts depend on t. With the
purpose of more convenient use of this inequality we shall consider the equation

t =
4l + 2v(τ1) + v(t)

a
. (3.46)

Also we shall designate as τ2 the less positive root of this equation. At t = 0 right part
of (3.46) is more than the left part. At the same time by virtue of a condition (3.8) right part of
(3.46) grows faster than its left part; therefore, the positive root of (3.46) exists. Hence, number
τ2 is the less positive number at which the inequality (3.45) terns into equality. Therefore the
inequality (3.45) is equivalent to the inequality

t <
4l + 2v(τ1) + v(τ2)

a
= τ2. (3.47)

Let us notice that on physical sense of an initial-boundary value problem at the
moment of time t = τ2 forward front of the wave radiated with the mobile end, having twice
reflected from the motionless end and having once reflected from the mobile end, it will meet
again the mobile end. At t > τ2 function u3(x, t) (3.40)will not satisfy any more to a boundary
condition (3.42). Therefore at t > τ2 solution of the basic initial-boundary value problem is
searched as

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t), (3.48)



12 Advances in Mathematical Physics

where function u4(x, t) is under construction as the solution of the following auxiliary initial-
boundary value problem. In the domain 0 < x < l + v(t), t > τ2 to obtain the solution of the
telegraph equation (2.1) satisfying initial conditions

u(x, τ2) = 0; ut(x, τ2) = 0; 0 < x < l + v(τ2), (3.49)

and boundary conditions

ux(l + v(t), t) = −u3,x(l + v(t), t); ux(0, t) = 0, t > τ2. (3.50)

The solution of this auxiliary initial-boundary value problem is under construction as
the function being the solution of (2.1) at arbitrary function Γ4 is

u4(x, t) = 2e−(B/2)x
∫ t+(x/a)

0
J0(z)e(Da2/2)(t−η)Γ4

(
η
)
dη. (3.51)

Having substituted function (3.51) in the first boundary condition (3.50), we shall obtain

2
a
Γ4
(

t +
v(t) + l

a

)

e−((Da+B)/2)(l+v(t))

− 2e−(B/2)(l+v(t))
∫ t+((v(t)+l)/a)

0

[
B

2
J0(z) + c1

l + v(t)
z

J1(z)
]

e(Da2/2)(t−η)Γ4
(
η
)
dη

= −u3,x(l + v(t), t).

(3.52)

Thus, if function Γ4 will be the solution of the integral equation (3.52) the function
(3.48) will satisfy the second boundary condition (2.3) at all t. Having executed in (3.52)
transformation (3.11), we shall obtain

2Γ4(T)e−((Da+B)/2)(l+v(T0(T)))

− 2ae−(B/2)(l+v(T0(T)))
∫T

0

[
B

2
J0(z) + c1

l + v(T0(T))
z

J1(z)
]

e(Da2/2)(T0(T)−η)Γ4
(
η
)
dη

= −au3,x(l + v(T0(T)), T0(T)).

(3.53)

As the right part of the integral equations (3.52) and (3.53) is equal to zero at t < τ2, function
Γ4(T) also will be equal to zero at t < τ2. We shall find out at what additional values T function
Γ4(T)will be equal to zero. As function T(t) strictly monotonously grows, the next inequality
will be valid

T(t) < T(τ2), at t < τ2. (3.54)
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Using in this inequality definition (3.11) of function T(t) and value τ2 from (3.52), we
shall obtain

T < τ2 +
v(τ2) + l

a
=

5l + 2v(τ1) + 2v(τ2)
a

. (3.55)

Thus, function Γ4(T) possesses the following quality:

Γ4(T) = 0, T <
5l + 2v(τ1) + 2v(τ1)

a
. (3.56)

Precisely the same as it is made for function u2(x, t), it is possible to show that function
u4(x, t) will satisfy initial conditions (2.2). Thus, function (3.48) satisfies all conditions of
statement of the basic initial-boundary value problem, except for the second boundary
condition (2.3). This boundary condition function u4(x, t) will satisfy only at the some of
values of t > τ2. To obtain the solution of the basic initial-boundary value problem at all
t > τ2, (3.48) it is necessary to introduce the additional amendment into function (3.48).

Having continued process of corrective actions in the solution, we shall obtain that
function

u(x, t) =
∞∑

n=0

2e−(B/2)x
∫ t+(x/a)

0
J0(z)e(Da2/2)(t−η)Γ2n

(
η
)
dη

−
∞∑

n=0

2e−(B/2)x
∫ t−(x/a)

0
J0(z)e(Da2/2)(t−η)Γ2n

(
η
)
dη

(3.57)

will be the solution of a considered initial-boundary value problem. Here function Γ0 is the
solution of the integral equation (3.14), and other functions Γ2n are solutions of the following
integral equations:

2Γ2n(T)e−((Da+B)/2)(l+v(T0(T)))

− 2ae−(B/2)(l+v(T0(T)))
∫T

0

[
B

2
J0(z) + c1

l + v(T0(T))
z

J1(z)
]

e(Da2/2)(T0(T)−η)Γ2n
(
η
)
dη

= −au2n−1,x(l + v(T0(T)), T0(T)).

(3.58)

Here

u2n−1,x(l + v(t), t)

=
2
a
e((Da−B)/2)(l+v(t))Γ2n−2

(

t − v(t) + l

a

)

+ 2e−(B/2)(l+v(t))
∫ t−((v(t)+l)/a)

0

[
B

2
J0(z) + c1

l + v(t)
z

J1(z)
]

e(Da2/2)(t−η)Γ2n−2
(
η
)
dη.

(3.59)
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Thus functions Γ2n possess the following qualities:

Γ2n(t) = 0, t <
(2n + 1)l + 2

∑n
i=1 v(τi)

a
, n = 0, 1, . . . , (3.60)

where τn is less positive root of equation

t =
2nl + 2

∑n−1
i=1 v(τi) + v(t)
a

. (3.61)

By virtue of these qualities, at everyone fixed t = H in the formula (3.57) will be only
final number of terms distinct from zero. Really, in the sums of the formula (3.57) each term
under conditions (3.56) becomes equal to zero, if the upper limit of integration is less than
the right part of an inequality (3.60). For the first sum of the formula (3.57) such condition at
t = H looks like

H +
x

a
<

(2n + 1)l + 2
∑n

i=1 v(τi)
a

, (3.62)

whence follows

n >
1
2l

(

Ha + x − l − 2
n∑

i−1
v(τi)

)

. (3.63)

And as in the domain of obtaining the solution, next inequality is valid:

0 < x < l + v(H), (3.64)

and we obtain that at all n, satisfying a condition

n >
1
2l

(

Ha + v(H) − 2
n∑

i−1
v(τi)

)

, (3.65)

all terms in the first sum of formula (3.57)will be equal to zero. Differently, summation in the
first sum of the formula (3.57) needs to be made in this case not up to infinity, but up toN−1,
where N is the less natural number satisfying an inequality (3.65).

For the second sum of the formula (3.57), condition that the upper limit of integration
is less than right part of inequality (3.60) at t = H looks like

H − x

a
<

(2n + 1)l + 2
∑n

i=1 v(τi)
a

, (3.66)

from which follows

n >
1
2l

(

Ha − x − l − 2
n∑

i−1
v(τi)

)

. (3.67)
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Therefore on the basis of an inequality (3.64) it is obtained that at all n, satisfying a condition

n >
1
2l

(

Ha − l − 2
n∑

i−1
v(τi)

)

, (3.68)

all terms in the second sum of formula (3.57)will be equal to zero. Differently, summation in
the second sum of the formula (3.57) needs to be made in this case not up to infinity, but up
toN1−1, where N1 is the less natural number satisfying inequality (3.68).

All terms in the formula (3.57) are solutions of (2.1). And as for everyone fixed t
number of terms in the formula (3.57) is finite, differentiation in the formula (3.57) is possible
to carry out term by term. Therefore function (3.57) is the solution of (2.1).

From the formula (3.57) directly follows that at t = 0 and 0 < x < l the upper limits of
integration of all integrals become smaller, than l/a. It means that on the basis of function’s Γk
qualities, (3.60) from (3.57) follows u(x, 0) = 0. Thus, function (3.57) satisfies the first initial
condition (2.2). Having differentiated function (3.57) on twe obtain

∂u(x, t)
∂t

=
∞∑

n=0

{
2
a
e−((B+Da2)/2)xΓ2n

(
t +

x

a

)

+2a2e−(B/2)x
∫ t+(x/a)

0

[
D

2
J0(z) + c1

(
t − η

)J1(z)
z

]

e(Da2/2)(t−η)Γ2n
(
η
)
dη

}

+
∞∑

n=0

{
2
a
e((Da−B)/2)xΓ2n

(
t − x

a

)

−2a2e−(B/2)x
∫ t−(x/a)

0

[
D

2
J0(z) + c1

t − η

z
J1(z)

]

e(Da2/2)(t−η)Γ2n
(
η
)
dη

}

.

(3.69)

From the formula (3.69) it is obtained that at t = 0 and 0 < x < l the upper limits of integration
of all integrals and as well arguments of functions Γk become smaller, than l/a. It means, on
the basis of function’s Γk qualities (3.60), that ut(x, 0) = 0. Thus, function (3.57) satisfies also
the second initial condition (2.2).

Having calculated value of derivative of function (3.57) on x in point x = l + v(t), we
obtain

ux(l + v(t), t)

=
∞∑

n=0

{
2
a
Γ2n
(

t +
l + v(t)

a

)

e−((Da+B)/2)(l+v(t))

−2e−(B/2)(l+v(t))
∫ t+((l+v(t))/a)

0

[
B

2
J0(z) + c1

l + v(t)
z

J1(z)
]

e(Da2/2)(t−η)Γ2n
(
η
)
dη

}
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+
∞∑

n=0

{
2
a
e((Da−B)/2)(l+v(t))Γ2n

(

t − l + v(t)
a

)

−2e−(B/2)(l+v(t))
∫ t−((l+v(t))/a)

0

[
B

2
J0(z) + c1

l + v(t)
z

J1(z)
]

e(Da2/2)(t−η)Γ2n
(
η
)
dη

}

.

(3.70)

In the formula (3.70) we shall write down the first term of the first sum (at n = 0) separately,
and in the second sumwe shall replace an index of summation n on s = n+ 1. We shall obtain

ux(l + v(t), t)

=
2
a
Γ0
(

t +
l + v(t)

a

)

e−((Da+B)/2)(l+v(t))

− 2e−(B/2)(l+v(t))
∫ t+((l+v(t))/a)

0

[
B

2
J0(z) + c1

l + v(t)
z

J1(z)
]

e(Da2/2)(t−η)Γ0
(
η
)
dη

+
∞∑

n=1

{
2
a
Γ2n
(

t +
l + v(t)

a

)

e−((Da+B)/2)(l+v(t))

−2e−(B/2)(l+v(t))
∫ t+((l+v(t))/a)

0

[
B

2
J0(z) + c1

l + v(t)
z

J1(z)
]

e(Da2/2)(t−η)Γ2n
(
η
)
dη

}

+
∞∑

s=1

{
2
a
e((Da−B)/2)(l+v(t))Γ2s−2

(

t − l + v(t)
a

)

−2e−(B/2)(l+v(t))
∫ t−((l+v(t))/a)

0

[
B

2
J0(z) + c1

l + v(t)
z

J1(z)
]

e(Da2/2)(t−η)Γ2s−2
(
η
)
dη

}

.

(3.71)

First two summands in this formula represent the left part of the integral equation (3.5) and
consequently are equal to Γ(t). Summands in the first sum of last formula represent the left
parts of the integral equations (3.58) divided on a. It means they are equal to –u(2n−1)x(l +
v(t), t). Summands in the second sum represent functions u(2n−1)x(l + v(t), t). Therefore all
terms under signs Σ in last formula will equal zero. Hence

ux(l + v(t), t) = Γ(t) = γ(t), t > 0. (3.72)

And it means that function (3.57) at t > 0 satisfies the first boundary condition (2.3).
The fact that function (3.57) satisfies the second boundary condition (2.3) is obvious.

Thus, it is shown that function (3.57) satisfing all conditions of statement of the basic
initial-boundary value problem consequently is its solution.
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4. Conclusion

The exact solution of the mixed initial-boundary value problem for the telegraph equation
in domain with mobile borders is obtained. The solution is obtained as superposition of an
initial wave and waves of reflection from the borders of a domain. It is necessary to note
that the form of the solution in accuracy corresponds to those natural phenomena which, in
particular, occur in a rope during its loading. The solution of a problem represents value of
a field of elastic displacements in a rope. To obtain a field of pressure in a rope, it is enough
to differentiate a field of displacements on x and to increase this result on the module of
elasticity of a rope.

Here, the developed method of the solution of evolutionary initial-boundary value
problems with mobile borders of domain is suitable for search of solutions of a wide class of
similar problems.

References

[1] O. A. Goroshko and G. N. Savin, Introduction in Mechanics of One Dimensional Deformable Bodies of
Variable Length, Naukova Dumka, Kiev, Ukranine, 1971.

[2] S. Momani, “Analytic and approximate solutions of the space- and time-fractional telegraph
equations,” Applied Mathematics and Computation, vol. 170, no. 2, pp. 1126–1134, 2005.

[3] J. K. Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong University
Press, Wuhan, China, 1986.

[4] J. Biazar andM. Eslami, “Analytic solution for Telegraph equation by differential transformmethod,”
Physics Letters A, vol. 374, no. 29, pp. 2904–2906, 2010.

[5] J. Chen, F. Liu, and V. Anh, “Analytical solution for the time-fractional telegraph equation by the
method of separating variables,” Journal of Mathematical Analysis and Applications, vol. 338, no. 2, pp.
1364–1377, 2008.

[6] V. A. Ostapenko, Boundary Problem without Initial Conditions for Telegraph Equation, Dnepropetrovsk,
2008.

[7] V. A. Ostapenko, The First Initial-Boundary Value Problem for Region with Mobile Border, The Differential
Equations and Their Applications in Physics, Dnepropetrovsk, Ukraine, 1989.

[8] V. A. Ostapenko, “The second initial-boundary value problem for region with mobile border,” The
Bulletin of the Dnepropetrovsk University, Mathematics, vol. 1, pp. 3–21, 1997 (Russian).

[9] V. A. Ostapenko, “Dynamics of the waves in ropes of variable length,” The Bulletin of Poltava National
Technical University, vol. 16, pp. 216–220, 2005 (Russian).

[10] V. A. Ostapenko, “Dynamic field of displacements in rods of variable length,” in Proceedings of the 8th
International Conference on Dynamical Systems Theory and Applications, pp. 316–323, Lodz, Poland, 2008.

[11] V. A. Ostapenko, “Exact solution of the problem for dynamic field of displacements in rods of variable
length,” Archives of Applied Mechanics, vol. 77, no. 5, pp. 313–324, 2007.

[12] V. A. Ostapenko, “Initial-boundary value problem for a rod of variable length, perturbed from
the mobile top end,” The Bulletin of Dnepropetrovsk University, Mechanics, no. 2, pp. 182–198, 2006
(Russian).



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


