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The fractal wave equations with local fractional derivatives are investigated in this paper. The analytical solutions are obtained by
using local fractional Fourier series method. The present method is very efficient and accurate to process a class of local fractional
differential equations.

1. Introduction

Fractional calculus deals with derivative and integrals of
arbitrary orders [1]. During the last four decades, fractional
calculus has been applied to almost every field of science and
engineering [2–6]. In recent years, there has been a great
deal of interest in fractional differential equations [7]. As a
result, various kinds of analytical methods were developed
[8–18]. For example, there are the exp-function method
[8], the variational iteration method [9, 10], the homotopy
perturbation method [11], the homotopy analysis method
[12], the heat-balance integral method [13], the fractional
variational iteration method [14, 15], the fractional difference
method [16], the finite element method [17], the fractional
Fourier and Laplace transforms [18], and so on.

Recently, local fractional calculus was applied to deal with
problems for nondifferentiable functions; see [19–26] and
the references therein. There are also analytical methods for
solving the local fractional differential equations, which are
referred to in [27–34].The local fractional seriesmethod [32–
34] was applied to process the local fractional wave equation
in fractal vibrating [32] and local fractional heat-conduction
equation [33].

More recently, the wave equation on the Cantor sets was
considered as [21, 28]

𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡2𝛼
=
𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
. (1)

Local damped wave equation was written in the form [30]

𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡2𝛼
−
𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
−
𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 𝑓 (𝑥, 𝑡) , (2)

and local fractional dissipative wave equation in fractal
strings was [31]

𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡2𝛼
−
𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼

−
𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
−
𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥𝛼
= 𝑓 (𝑥, 𝑡) .

(3)

In this paper, we investigate the application of local frac-
tional series method for solving the following local fractional
wave equation:

𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡2𝛼
−
𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
−
𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 0, (4)
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where initial and boundary conditions are presented as

𝑢 (0, 𝑡) = 𝑢 (𝑙, 𝑡) =
𝜕
𝛼
𝑢 (𝑙, 0)

𝜕𝑥𝛼
= 0,

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

𝜕
𝛼
𝑢 (𝑥, 0)

𝜕𝑡𝛼
= 𝑔 (𝑥) .

(5)

The organization of the paper is as follows. In Section 2, the
basic concepts of local fractional calculus and local fractional
Fourier series are introduced. In Section 3, we present a local
fractional Fourier series solution of wave equation with local
fractional derivative. Two examples are shown in Section 4.
Finally, Section 5 is devoted to our conclusions.

2. Mathematical Tools

In this section, we present some concepts of local fractional
continuity, local fractional derivative, and local fractional
Fourier series.

Definition 1 (see [21, 28, 30–32]). Suppose that there is

𝑓 (𝑥) − 𝑓 (𝑥0)
 < 𝜀
𝛼
, (6)

with |𝑥−𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅. Then 𝑓(𝑥) is called

local fractional continuous at 𝑥 = 𝑥
0
, where 𝜌𝛼|𝑥 − 𝑥

0
|
𝛼
≤

|𝑓(𝑥
1
) − 𝑓(𝑥

2
)| ≤ 𝜏
𝛼
|𝑥 − 𝑥

0
|
𝛼 with 𝜌, 𝜏 > 0.

Suppose that the function𝑓(𝑥) satisfies the above proper-
ties of the local fractional continuity. Then the condition (6)
for 𝑥 ∈ (𝑎, 𝑏) is denoted as

𝑓 (𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏) , (7)

where dim
𝐻
𝑓(𝑥) = 𝛼.

Definition 2 (see [19–21]). Let 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏). Local frac-

tional derivative of 𝑓(𝑥) of order 𝛼 at 𝑥 = 𝑥
0
is given by

𝐷
𝑥

(𝛼)
𝑓 (𝑥
0
) = 𝑓
(𝛼)
(𝑥
0
)

=
𝑑
𝛼
𝑓 (𝑥)

𝑑𝑥𝛼

𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥

0
))

(𝑥 − 𝑥
0
)
𝛼

,

(8)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥
0
)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)).

Definition 3 (see [19, 20, 32–34]). Let 𝑓(𝑥) ∈ 𝐶
𝛼
(−∞, +∞),

and let 𝑓(𝑥) be 2𝑙-periodic. For 𝑘 ∈ 𝑍, local fraction Fourier
series of 𝑓(𝑥) is defined as

𝑓 (𝑥) =
𝑎
0

2
+

∞

∑

𝑘=1

(𝑎
𝑛
cos
𝛼

𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙𝛼

+ 𝑏
𝑛
sin
𝛼

𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙𝛼
) ,

(9)

where the local fraction Fourier coefficients are

𝑎
𝑛
=
1

𝑙𝛼
∫

𝑙

−𝑙

𝑓 (𝑥) cos
𝛼

𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙𝛼
(𝑑𝑥)
𝛼
,

𝑏
𝑛
=
1

𝑙𝛼
∫

𝑙

−𝑙

𝑓 (𝑥) sin
𝛼

𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙𝛼
(𝑑𝑥)
𝛼
,

(10)

with local fractional integral given by [21, 29–34]

𝑎
𝐼
𝑏

(𝛼)
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(11)

where Δ𝑡
𝑗
= 𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . .} and

[𝑡
𝑗
, 𝑡
𝑗+1
], 𝑗 = 0, . . . , 𝑁 − 1, 𝑡

0
= 𝑎, 𝑡

𝑁
= 𝑏, is a partition of

the interval [𝑎, 𝑏].
In view of (10), theweights of the fractional trigonometric

functions are expressed as follows:

𝑎
𝑛
=
1/ (Γ (1 + 𝛼)) ∫

𝑙

−𝑙
𝑓 (𝑥) cos

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

1/ (Γ (1 + 𝛼)) ∫
𝑙

−𝑙
cos2
𝛼
𝑛𝛼(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

,

𝑏
𝑛
=
1/ (Γ (1 + 𝛼)) ∫

𝑙

−𝑙
𝑓 (𝑥) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

1/ (Γ (1 + 𝛼)) ∫
𝑙

−𝑙
sin2
𝛼
𝑛𝛼(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

.

(12)

Lemma 4 (see [21]). If𝑚 and ℎ are constant coefficients, then
local fractional differential equation with constant coefficients

𝑑
2𝛼
𝑦

𝑑𝑥2𝛼
+ 𝑚

𝑑
𝛼
𝑦

𝑑𝑥𝛼
+ ℎ𝑦 = 0 (𝑚

2
− 4ℎ < 0) (13)

has a family of solution

𝑦 (𝑥) = 𝐴𝐸
𝛼
(
−𝑚 − 𝑖

𝛼√4ℎ − 𝑚2

2
𝑥
𝛼
)

+ 𝐵𝐸
𝛼
(
−𝑚 + 𝑖

𝛼√4ℎ − 𝑚2

2
𝑥
𝛼
)

(14)

with two constants 𝐴 and 𝐵.

Proof . See [21].

3. Solution to Wave Equation with
Local Fractional Derivative

If we have the particular solution of (4) in the form

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥) 𝑇 (𝑡) , (15)

then we get the equations

𝜙
(2𝛼)

+ 𝜆
2𝛼
𝜙 = 0; (16)

𝑇
(2𝛼)

+ 𝑇
(𝛼)
+ 𝜆
2𝛼
𝑇 = 0. (17)
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with the boundary conditions

𝜙 (0) = 𝜙
(𝛼)
(𝑙) = 0. (18)

Equation (4) has the solution

𝜙 (𝑥) = 𝐶
1
cos
𝛼
𝜆
𝛼
𝑥
𝛼
+ 𝐶
2
sin
𝛼
𝜆
𝛼
𝑥
𝛼
, (19)

where 𝐶
1
and 𝐶

2
are all constant numbers.

According to (19), for 𝑥 = 0 and 𝑥 = 𝑙 we get

𝜙 (0) = 𝐶
1
= 0,

𝜙 (𝑙) = 𝜙 (𝑥)
𝑥=𝑙 = 𝐶2sin𝛼𝜆

𝛼
𝑙
𝛼
= 0.

(20)

Obviously 𝐶
2
̸= 0, since otherwise 𝜙(𝑥) ≡ 0.

Hence, we arrive at

𝜆
𝛼

𝑛
𝑙
𝛼
= 𝑛
𝛼
𝜋
𝛼
, (21)

where 𝑛 is an integer.
We notice

𝜆
𝛼

𝑛
= (

𝑛𝜋

𝑙
)

𝛼

(𝑛 = 0, 1, 2, . . .) ,

𝜙
𝑛
(𝑥) = sin

𝛼
𝜆
𝛼

𝑛
𝑥
𝛼

= sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

(𝑛 = 0, 1, 2, . . .) .

(22)

For 𝜆𝛼 = 𝜆𝛼
𝑛
and 0 < 𝜌, following (17) implies that

∞

∑

𝑛=1

𝑇
𝑛
(𝑡) =

∞

∑

𝑛=1

𝐸
𝛼
(−

𝑡
𝛼

2
)

× (𝐴
𝑛
cos
𝛼
𝜌𝑡
𝛼
+ 𝐵
𝑛
sin
𝛼
𝜌𝑡
𝛼
) ,

(23)

where

𝜌 =

√4(𝑛𝜋/𝑙)
2𝛼
− 1

2
.

(24)

Therefore,

𝑢
𝑛
(𝑥, 𝑡) = 𝜙

𝑛
(𝑥) 𝑇
𝑛
(𝑡)

= 𝐴
𝑛
cos
𝛼
𝜌𝑡
𝛼sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

𝐸
𝛼
(−

1

2
𝑡
𝛼
)

+ 𝐵
𝑛
sin
𝛼
𝜌𝑡
𝛼sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

𝐸
𝛼
(−

1

2
𝑡
𝛼
) .

(25)

We now suppose a local fractional Fourier series solution of
(4):

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝑢
𝑛
(𝑥, 𝑡)

=

∞

∑

𝑛=1

𝐸
𝛼
(−

𝑡
𝛼

2
)

× (𝐴
𝑛
cos
𝛼
𝜌𝑡
𝛼
+ 𝐵
𝑛
sin
𝛼
𝜌𝑡
𝛼
) sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

.

(26)

Therefore,

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
=

∞

∑

𝑛=1

𝜕
𝛼
𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑡𝛼
, (27)

where

𝜕𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑡𝛼

= −
1

2
𝐸
𝛼
(−

𝑡
𝛼

2
) (𝐴
𝑛
cos
𝛼
𝜌𝑡
𝛼
+ 𝐵
𝑛
sin
𝛼
𝜌𝑡
𝛼
) sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

+ 𝜌𝐸
𝛼
(−

𝑡
𝛼

2
) (−𝐴

𝑛
sin
𝛼
𝜌𝑡
𝛼
+ 𝐵
𝑛
cos
𝛼
𝜌𝑡
𝛼
) sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

,

(28)

with 𝜌 = √(4(𝑛𝜋/𝑙)2𝛼 − 1)/2.
Submitting (26) to (5), we have

𝑢 (𝑥, 0) =

∞

∑

𝑛=1

𝑢
𝑛
(𝑥, 0)

=

∞

∑

𝑛=1

𝐴
𝑛
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

= 𝑓 (𝑥) ,

(29)

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼

=

∞

∑

𝑛=1

(−
1

2
𝐴
𝑛
+ 𝜌𝐵
𝑛
) sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

= 𝑔 (𝑥) .

(30)

So,

∞

∑

𝑛=1

𝜌𝐵
𝑛
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

= 𝑔 (𝑥) +

∞

∑

𝑛=1

1

2
𝐴
𝑛
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

= 𝑔 (𝑥) +
1

2
𝑓 (𝑥) .

(31)

Let

𝐺 (𝑥) = 𝑔 (𝑥) +
1

2
𝑓 (𝑥) . (32)

In view of (30) and (31), we rewrite

∞

∑

𝑛=1

𝐴
𝑛
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

= 𝑓 (𝑥) ,

∞

∑

𝑛=1

𝜌𝐵
𝑛
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

= 𝐺 (𝑥) .

(33)
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We now find the local fractional Fourier coefficients of 𝑓(𝑥)
and 𝐺(𝑥), respectively,

𝐴
𝑛
=
1/ (Γ (1 + 𝛼)) ∫

𝑙

0
𝑓 (𝑥) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

1/ (Γ (1 + 𝛼)) ∫
𝑙

0
sin2
𝛼
𝑛𝛼(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

(𝑛 = 0, 1, 2, . . .) ,

𝜌𝐵
𝑛
=
1/ (Γ (1 + 𝛼)) ∫

𝑙

0
𝐺 (𝑥) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

1/ (Γ (1 + 𝛼)) ∫
𝑙

0
sin2
𝛼
𝑛𝛼(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

(𝑛 = 0, 1, 2, . . .) .

(34)

Following (34), we have

1

Γ (1 + 𝛼)
∫

𝑙

0

sin2
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

(𝑑𝑥)
𝛼
=

𝑙
𝛼

2Γ (1 + 𝛼)
, (35)

such that

𝐴
𝑛
=
2 ∫
𝑙

0
𝑓 (𝑥) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

𝑙𝛼
,

𝐵
𝑛
=
2 ∫
𝑙

0
𝐺 (𝑥) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

𝜌𝑙𝛼
.

(36)

Thus, we get the solution of (4):

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝑢
𝑛
(𝑥, 𝑡) , (37)

where

𝑢
𝑛
(𝑥, 𝑡) = 𝐸

𝛼
(−

𝑡
𝛼

2
)

× (𝐴
𝑛
cos
𝛼
𝜌𝑡
𝛼
+ 𝐵
𝑛
sin
𝛼
𝜌𝑡
𝛼
) sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

,

(38)

with

𝐴
𝑛
=
2 ∫
𝑙

0
𝑓 (𝑥) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

𝑙𝛼
(𝑛 = 0, 1, 2, . . .) ,

𝐵
𝑛
=
2 ∫
𝑙

0
𝐺 (𝑥) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

𝜌𝑙𝛼
(𝑛 = 0, 1, 2, . . .) ,

(39)

with

𝐺 (𝑥) = 𝑔 (𝑥) +
1

2
𝑓 (𝑥) . (40)

4. Illustrative Examples

In order to illustrate the above result in this section, we give
two examples.

Let us consider (4) subject to initial and boundary
conditions

𝑢 (0, 𝑡) = 𝑢 (𝑙, 𝑡) =
𝜕
𝛼
𝑢 (𝑙, 0)

𝜕𝑥𝛼
= 0,

𝑢 (𝑥, 0) = 𝑓 (𝑥) =
𝑥
𝛼

Γ (1 + 𝛼)
,

𝜕
𝛼
𝑢 (𝑥, 0)

𝜕𝑡𝛼
= 𝑔 (𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)
.

(41)

In view of (40), we have

𝐺 (𝑥) = 𝑔 (𝑥) +
1

2
𝑓 (𝑥) =

3

2

𝑥
𝛼

Γ (1 + 𝛼)
, (42)

such that

𝐴
𝑛
=
2 ∫
𝑙

0
(𝑥
𝛼
/Γ (1 + 𝛼)) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

𝑙𝛼

=
2Γ (1 + 𝛼)

𝑙𝛼
0
𝐼
𝑙

(𝛼) 𝑥
𝛼

Γ (1 + 𝛼)
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

=
2Γ (1 + 𝛼)

(𝑛𝜋)
𝛼

{
𝑙
𝛼

Γ (1 + 𝛼)
cos
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

− (
𝑙

𝑛𝜋
)

𝛼

[cos
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

− 1]} ,

(43)

𝐵
𝑛
=
3 ∫
𝑙

0
(𝑥
𝛼
/Γ (1 + 𝛼)) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

𝜌𝑙𝛼

=
3Γ (1 + 𝛼)

𝜌𝑙
𝛼 0

𝐼
𝑙

(𝛼) 𝑥
𝛼

Γ (1 + 𝛼)
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

= −
3Γ (1 + 𝛼)

𝜌(𝑛𝜋)
𝛼

[
𝑙
𝛼

Γ (1 + 𝛼)
cos
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

− (
𝑙

𝑛𝜋
)

𝛼

sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

] .

(44)

Hence,

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝐸
𝛼
(−

𝑡
𝛼

2
)

× (𝐴
𝑛
cos
𝛼
𝜌𝑡
𝛼
+ 𝐵
𝑛
sin
𝛼
𝜌𝑡
𝛼
) sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

,

(45)

where

𝐴
𝑛
= −

2Γ (1 + 𝛼)

𝜌(𝑛𝜋)
𝛼

[
𝑙
𝛼

Γ (1 + 𝛼)
cos
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

−(
𝑙

𝑛𝜋
)

𝛼

sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

] ,

𝐵
𝑛
= −

3Γ (1 + 𝛼)

𝜌(𝑛𝜋)
𝛼

[
𝑙
𝛼

Γ (1 + 𝛼)
cos
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

−(
𝑙

𝑛𝜋
)

𝛼

sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

] .

(46)
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In view of (4), our second example is initial and boundary
conditions as follows:

𝑢 (0, 𝑡) = 𝑢 (𝑙, 𝑡) =
𝜕
𝛼
𝑢 (𝑙, 0)

𝜕𝑥𝛼
= 0,

𝑢 (𝑥, 0) = 𝑓 (𝑥) =
𝑥
𝛼

Γ (1 + 𝛼)
,

𝜕
𝛼
𝑢 (𝑥, 0)

𝜕𝑡𝛼
= 𝑔 (𝑥) = 0.

(47)

Following (40), we get

𝐺 (𝑥) =
1

2

𝑥
𝛼

Γ (1 + 𝛼)
. (48)

Hence, we obtain

𝐴
𝑛
=
2 ∫
𝑙

0
(𝑥
𝛼
/Γ (1 + 𝛼)) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

𝑙𝛼

=
2Γ (1 + 𝛼)

𝑙𝛼
0
𝐼
𝑙

(𝛼) 𝑥
𝛼

Γ (1 + 𝛼)
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

= −
2Γ (1 + 𝛼)

𝜌(𝑛𝜋)
𝛼

[
𝑙
𝛼

Γ (1 + 𝛼)
cos
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

−(
𝑙

𝑛𝜋
)

𝛼

sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

] ,

𝐵
𝑛
=
∫
𝑙

0
(𝑥
𝛼
/Γ (1 + 𝛼)) sin

𝛼
𝑛
𝛼
(𝜋𝑥/𝑙)

𝛼
(𝑑𝑥)
𝛼

𝜌𝑙𝛼

=
Γ (1 + 𝛼)

𝜌𝑙𝛼
0
𝐼
𝑙

(𝛼) 𝑥
𝛼

Γ (1 + 𝛼)
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

= −
Γ (1 + 𝛼)

𝜌(𝑛𝜋)
𝛼
[

𝑙
𝛼

Γ (1 + 𝛼)
cos
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

−(
𝑙

𝑛𝜋
)

𝛼

sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

] .

(49)

So,

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝐸
𝛼
(−

𝑡
𝛼

2
)

× (𝐴
𝑛
cos
𝛼
𝜌𝑡
𝛼
+ 𝐵
𝑛
sin
𝛼
𝜌𝑡
𝛼
) sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

,

(50)

with

𝐴
𝑛
=
2Γ (1 + 𝛼)

(𝑛𝜋)
𝛼

{
𝑙
𝛼

Γ (1 + 𝛼)
sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

−(
𝑙

𝑛𝜋
)

𝛼

[cos
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

− 1]} ,

𝐵
𝑛
= −

Γ (1 + 𝛼)

𝜌(𝑛𝜋)
𝛼
[

𝑙
𝛼

Γ (1 + 𝛼)
cos
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

−(
𝑙

𝑛𝜋
)

𝛼

sin
𝛼
𝑛
𝛼
(
𝜋𝑥

𝑙
)

𝛼

] .

(51)
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Figure 1: For 𝛼 = ln 2/ ln 3, graph of a Lebesgue-Cantor staircase
function shown at 𝑥 ∈ [0, 1].

We notice that fraction boundary condition is expressed
as a Lebesgue-Cantor staircase function [21, 32]; namely,

𝑢 (𝑥, 0) = 𝑓 (𝑥) = 𝐻
𝛼
(𝐶 ∩ (0, 𝑥))

=
0
𝐼
𝑥

(𝛼)
1 =

𝑥
𝛼

Γ (1 + 𝛼)
,

(52)

where 𝐶 is any fractal set and the fractal dimension of
𝑥
𝛼
/Γ(1 + 𝛼) is 𝛼. For 𝑥 ∈ [0, 1] the graph of the Lebesgue-

Cantor staircase function (52) is shown in Figure 1 when
fractal dimension is 𝛼 = ln 2/ ln 3.

5. Conclusions

The present work expresses the local fractional Fourier series
solution to wave equations with local fractional derivative.
Two examples are given to illustrat approximate solutions for
wave equations with local fractional derivative resulting from
local fractional Fourier series method. The results obtained
from the local fractional analysis seem to be general since
the obtained solutions go back to the classical one when
fractal dimension 𝛼 = 1; namely, it is a process from fractal
geometry to Euclidean geometry. Local fractional Fourier
seriesmethod is one of very efficient and powerful techniques
for finding the solutions of the local fractional differential
equations. It is also worth noting that the advantage of the
local fractional differential equations displays the nondiffer-
ential solutions, which show the fractal and local behaviors
of moments. However, the classical Fourier series is used to
handle the continuous functions.
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