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Discrete neural models are of great importance in numerical simulations and practical implementations. In the current paper, a
discrete model of continuous-time neural networks with variable and distributed delays is investigated. By Lyapunov stability theory
and techniques such as linear matrix inequalities, sufficient conditions guaranteeing the existence and global exponential stability
of the unique equilibrium point are obtained. Introduction of LMIs enables one to take into consideration the sign of connection
weights. To show the effectiveness of the method, an illustrative example, along with numerical simulation, is presented.

1. Introduction

During the past decades, various types of neural networks
have been proposed and investigated intensively, since they
play important roles and have found successful applications
in fields such as pattern recognition, signal and image
processing, nonlinear optimization problems, and parallel
computation. The dynamical behaviors in neural models,
such as the existence and their asymptotic stability of equi-
libria, periodic solutions, bifurcations, and chaos, have been
the most active areas of research and have been extensively
explored over the past years [1-22].

Due to the finite transmission speed of signals among
neurons, time delays in interactions between neurons fre-
quently happen and will cause complex dynamics in neural
networks [6]; so it is necessary to introduce time delays
into the neural models. So far, discrete, time-varying, and
distributed delays have been, respectively, introduced to
describe the dynamics of neural networks, and various
sufficient conditions ensuring the stability have been given.

Note that in numerical simulation and practical imple-
mentations, discretization of continuous-time models is nec-
essary and of great importance. On the other hand, the
dynamics of discrete-time neural networks could be quite

different from those of continuous versions and will display
much more complicated behaviors. So it is of great theoretical
and practical significance to study the dynamics of discrete
neural models. For discrete models, such as discrete Hop-
field, bidirectional associate memory, and Cohen-Grossberg
neural networks, several authors [1, 7-22] have studied the
existence and exponential stability of equilibria and periodic
solutions.

In this paper, a discrete model with both variable and dis-
tributed time delays is introduced. By Lyapunov stability the-
ory and linear matrix inequality (LMI) technique, sufficient
conditions ensuring the existence and globally exponential
stability of a unique equilibrium point are obtained. To show
the effectiveness of our results, an illustrative example along
with numerical simulation is presented. To our best knowl-
edge, such general models have been seldom touched upon in
the existing literatures. As we see, the obtained conditions are
easy to verify. Furthermore, introduction of LMIs enables us
to take into consideration the sign of connection weights. In
contrast, sufficient conditions, for instance, in [7-12], depend
on the absolute values of connection weights. That will ignore
the differences between neuronal excitatory and inhibitory
effects.



2. Preliminaries

Set Z to be the set of integers and Z* the set of nonnegative
integers; let N(a, b) represent the set of integers between a and
bwitha <b, a,b € Z, namely, N(a,b) = {a,a + 1,...,b}.

Consider the discrete-time neural networks with both
variable and distributed delays:

x;(n+1) =ax;(n)+ Zbl]f] (xj n-k (n)))
i-1
o )
Z Z (p) g5 (x;(n=p)) +1,
with initial values
x;(D=¢; (), 1e€N(-00,0), )

where x(n) = col(x,(n),...,x,,(n)) € R, x,(n) are the states
of the ith neuron at time #; g; € (0, 1) represents the rate with
which the ith neuron resets its potential when isolated from
others; b; and ¢;; weigh the strengths of the jth unit on the ith
unit; f; and g; are the nonlinear activation functions of the
neurons; k(n) denotes the transmission delay along the axon
of the jth unit; % ;(p) > 0is the delay kernel; J; is the external
input on the ith neuron at time #; the initial value functions
¢;(I) are bounded N(-o00, 0), i=1,...,m

To investigate stability of system (1), make further
assumptions:

(H1) suppose that b, ¢, I; € R, fori =1,...,m,and 0 <

k(n) < k for n € N(0, 00), with k being constant;

(H2) suppose that % ;(p) = 0, Z;Zl H(p) = 1, and
Yoo F (P

1,...,m

< +00, for some v > 1, alli,j =

(H3) assume that functions f; and g; are bounded and

satisty

fj(f)—fj(ﬂ)
§—n

T
n
3)

fi < <fi, g<

+ o+ -

for any &, € R, wh.e.re 17 Xk and g; are some con-
stants and can be positive, negative, or zero, j = 1,...,m. So
they are less restrictive than sigmoid activation functions and
Lipschitz-type ones.

For any ¢ = (¢y,...,¢,,), a solution of systems (1) and (2)
is a vector-valued function x : Z* — R™ satisfying system
(1) and initial conditions (2) for n € Z". In this paper, it is
always assumed that neural model (1) admits a solution
represented by x(rn,¢) or simply x(n). Since the activation
functions f, g; are bounded, it is not difficult to check that
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system (1) has at least one equilibrium point by Brouwer’s
fixed point theorem. So with loss of generality, assume that
fj(O) = gj(O) = 0; that is, x = 0 is an equilibrium point.
Throughout the paper, denote

lx I = Y |x; ()%,

i=1

ky = sup {k (n)}, K, = i%f {k (n)},
Fy =diag{f, fi - fuful>
Fy =diag{f, + fi,... fu + >
G, = diag{gi 91> G}
G, = diag{g) + 1> G + 9}
A = diag{ay,...,a,}, B= (b,])mxm C-= ( ,])mxm
T T
f=Uonfn)s 9= 0m)
(4)
K = diag(H,,.... H ) - (5)
System (1) can be rewritten into the form
x(n+1) = Ax(n) + Bf (x (n—k (n)))
(6)

LS H (p)g(xn-p).
p=1

Definition 1. The equilibrium point x = 0 of system (1) is glo-
bally exponentially stable if there exist constants # > 1 and
C* > 0 such that for any solution x(n, ¢) of system (1) with
initial conditions ¢, it holds that

meWscwlgw le 0.

VneZ*.
D0 (7)

3. Exponential Stability of Equilibrium Points

By Lyapunov stability theory and LMI technique, the global
exponential stability of the equilibrium point is established.
Clearly, if x = 0 is exponentially stable, the equilibrium point
is unique. Now we will investigate the exponential stability of
the origin.

Theorem 2. Suppose that (H1)-(H3) hold and further there
exist a number v > n > 1, positive definite matrix P,
Y = diagley,...,e,}, and semipositive diagonal matrices
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U = diag{u,,..., u,}, V.= diag{v,..., V) and S =

diag {s,...,s,,}, such that

w
[ D), 0 APB+UF, 0 VG, APC
* —2SF, 0 SF, 0 0
* * D5 0 0 0
T o« * * D4y 0 B'PC
* * * x*  aX—2V 0
* * * * * ;7CTPC -2
<0,
(8)
where
®,, = HAPA - P - 2UF, - 2VG,,
D5 = (kM—km + 1)2—2U,
o =nBT —kn 9)
4 =HB PB—-n "™MX -2,

a = diag {oy, ..., q,,}, (szzt%j(p)ﬂp'
p=1

Then the origin of system (1) is exponentially stable.

Proof. Define a Lyapunov functional V(n) = V(x,,..., x,,)(n)
as follows:

Vn)=Vy(n)+V,(n)+V;(n)+V,(n), (10)
where
Vi (n) = f'x" (n) Px (),
v, (n) = Zl 1 fT () Zf (x(5),

s=n—k(n) (11)

—k,,+1 n—1

Vim= Y ) g f ) Ef(x(s),

r=—kp+2 s=n+r—1

m oo n—-1
Vi =Y Y Z;(p) Y 07 (x;9)e;  (12)
=1 p=1 s=n=p

To investigate the exponential stability of the origin, it is
necessary to calculate the difference AV(n) = V(n+1) - V(n)
along the trajectory of (6). From (6), we have

AV, () = 4" x" (n+ 1) Px (n+ 1) — 11"x" (x) Px (n)
= """ [x" (n) APAx (n) + 2x" (n) APBf
X (x (n -k (n))) +2x" (n) APC (x (n))
+ fT (x (n =k (n))) BT PBf (x (n — k (n)))
+2f" (x (n -k (m)) B"PCo (x (n))
+¢(x () 'C"PC (x (n)) |

—"x" (n) Px (n),
(13)

where ¢(x(n)) = Z;il F(p)g(x(n— p)). Since k,,, < k(n) <
ks> one obtains

n

AV, = )

s=n+1-k(n+1)

7 fT (x () Zf (x(s))

n—-1
- Y AT If (x(5)

s=n—k(n)
=" f7 (x () =f (x (n))

— "M T (x (n— k () f

n—-1
x(x(—k@)+ Y 7' f () (x(s))

s=n+l-k,,

n—-k,,

)

s=n+1-k(n+1)

7 fT (e () 2f (x (s))

n—1
— Y ) (x ()

s=n+1-k(n)
<" f1 (x () =f (x (n))

MO T (x (n - k () =f

n—-k,,
xxo-km)+ Y g f () (x (),

s=n+1-ky,

AV, (1) = (kyg — k) " f1 (x () 2F (x (n))



n—k,,
- Y g6 (x(s)

s=n+1-ky,

AV, (n) =) Y H;(p) [ g] (x ()

j=1p=1
-1'g; (x(n-p))]e;

=) <Z%j (p) n")gﬁ (x(m)e;

=1 \p=1
Y3, (0) g (< (- p))e,

j:]p:l

=1'g" (x(n) aZg (x (1)

Ly z(zz <p>)zzf ) 2(x (n= p)) e,

j=1 \p=1
<" [g" () azg (x ()

—¢" (x () Z¢ (x ()] .
(14)

Therefore, we have

AV (n) = AV, (n) + AV, (n) + AV (n)
<" [x" (n) (APA - P) x (n)
+2x" (n) APBf (x (n - k (n)))
+2x" (n) APC$ (x (n))
+(kyg =k + 1) f7
X (x (n) Zf (x (n)) (15)
+ T (x(n~k 1)) (nB"PB - %)
X f (x(n—k(n)))
+2f7 (x (n =k (n))) B'PC (x ()
+g' (x(m)azg (x(n)
+¢(x ()" (nC"PC ~2) ¢ (x ()]

From (H3), one has

(f; (x; ) = f72;m) (f (x; ) = f7x; () <0,
(9; (x;m) = g7 x; ) (g; (x; W) = g (m)) <0

j=12,...,m.
(16)
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Then for U = diag{u,,..., u,,} >0,V = diag{v,,..., v, } >0,
and S = diag{s,,...,s,,} = 0, one has

AV (n) < AV (n) — ZZuj (f; (xj (n)) - f;xj (n))

j=1

% (f; (3 m) = fx; (m))

- zj_i"f (9; (x; ) - g;x; ()

x (95 (x; ) - g5, )

- 2}251. (f; (x; (1 =k @) ~ fx; (1~ k)

X (f; (x; (= kD) = fx; (1= k ()

<E'WE,
(17)

where & = (x'(n),x" (n - k(n)), f" (x(n)), f" (x(n - k(n))),
g7 (x(n)), p(x(1)))". From W < 0, it follows that AV (1) < 0.
Note that

V()= A, (P) " lx ()%,

V(0) < x” (0) Px (0) + (kp; — k,, + 1)

-1
x Y 7' fT(x () Ef (x(s)

s=—ky;
ZZ%@ZW% (s))
=1 p=1 s==p
< Ay P)+8,L(ky —k,, +1+8,)] sup [x(s)
sEN(—00,0)
(18)

where A,,(P), A,,(P) are the minimum and maximum eigen-
values of matrix P, respectively, §; = 1/(y-1), §, = ym

=1 €%
and L = max{lf;|, |f; 1, |g;.r|, lg;1}, so one has

lx(me)f <C'n sup ¢, nez' o
1EN(—00,0)

where C* = A (P)[Ay(P) + 8,L(ky; — k,, + 1 + 8,)]. This
implies that the equilibrium solution x = 0 of system (1) is
globally exponentially stable. The proof is completed. O

Remark 3. By employing LMI (8), the signs of b, ¢, that
is, the differences between neural excitatory and inhibitory
interaction, are taken into consideration.

Remark 4. It y = 1, the equilibrium point 0 of system (1) is
said to be globally stable.
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FIGURE 1: Trajectories of x, (1) versus n.

4. Numerical Example

Next, an illustrative example is given to show the effectiveness
of the obtained results. Consider the discrete-time neural
model (6) with parameters:

0.5 0 0.05 0.1
A‘(o 0.6)’ B‘<—o.1 0.15>’
0.1 0.1
C‘(o.os 0.15)’

f1 (u) = tanh 2u), (20)

£, (u) = tanh (-2u),

g, () = g, (u) = arctan u,

T (p) = T (p) = o0 k)= 4421,

then it is not difficult to see that F;, = G, = 0, F, =
diag{2,-2}, G, = diag{l1,1}, k;; = 6, and k,, = 2. Take
n = 2, then by solving LMI (8), it has feasible solutions that
areX =S=V =TIand
2.5213 0
U= < 0 2.5710)’

(21)

_ {19.8208 -1.8309
~\-1.8309 17.0882 )’

so from Theorems 2, this system admits a unique equilibrium
0, with all other solutions converging to it exponentially as
n — oo see Figures 1 and 2.

5. Conclusions

In the current paper, a class of discrete-time neural networks
with both variable and distributed delays has been studied.
Using Lyapunov stability and LMI technique, the existence
and global exponential stability of the unique equilibrium
point have been established. The obtained results are easy to
verify, so they will be of practical use for applying discrete
neural models.
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FIGURE 2: Trajectories of x,(n) versus .
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