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We study the bifurcation phenomena of nonlinear waves described by a generalized Zakharov-Kuznetsov equation 𝑢
𝑡
+ (𝑎𝑢

2
+

𝑏𝑢
4
)𝑢

𝑥
+𝛾𝑢

𝑥𝑥𝑥
+𝛿𝑢

𝑥𝑦𝑦
= 0. We reveal four kinds of interesting bifurcation phenomena.The first kind is that the low-kink waves can

be bifurcated from the symmetric solitary waves, the 1-blow-up waves, the tall-kink waves, and the antisymmetric solitary waves.
The second kind is that the 1-blow-up waves can be bifurcated from the periodic-blow-up waves, the symmetric solitary waves, and
the 2-blow-up waves. The third kind is that the periodic-blow-up waves can be bifurcated from the symmetric periodic waves. The
fourth kind is that the tall-kink waves can be bifurcated from the symmetric periodic waves.

1. Introduction and Preliminary

Zakharov-Kuznetsov (Z-K) equation [1],

𝑢
𝑡
+ 𝑎𝑢𝑢

𝑥
+ (∇

2
𝑢)

𝑥
= 0, (1)

was first derived for describingweakly nonlinear ion-acoustic
wave in a strongly magnetized lossless plasma in two dimen-
sions. The Z-K equation governs the behavior of weakly
nonlinear ion-acoustic waves in a plasma comprising cold
ions andhot isothermal electrons in the presence of a uniform
magnetic field [2, 3].

There are lots of research for various generalized Z-K
equations [4–13]. For the Z-K equation

𝑢
𝑡
+ (𝑎𝑢 + 𝑏𝑢

2
) 𝑢

𝑥
+ 𝛾𝑢

𝑥𝑥𝑥
+ 𝛿𝑢

𝑥𝑦𝑦
= 0, (2)

Yan and Liu [4] gave some polynomial solutions, triangular
function solutions and elliptic periodic solutions, of (2) via a
direct symmetry method.

When 𝑎 = 0, 𝑏 = 1, and 𝛾 = 𝛿 = 1, equation (2) reduces
to

𝑢
𝑡
+ 𝑢

2
𝑢
𝑥
+ 𝑢

𝑥𝑥𝑥
+ 𝑢

𝑥𝑦𝑦
= 0; (3)

Bekir [5] used the (𝐺

/𝐺)-expansion method to obtain three

types of traveling wave solutions of (3).
For the generalized Zakharov-Kuznetsov equation

𝑢
𝑡
+ (𝑎𝑢

2
+ 𝑏𝑢

4
) 𝑢

𝑥
+ 𝛾𝑢

𝑥𝑥𝑥
+ 𝛿𝑢

𝑥𝑦𝑦
= 0, (4)

where 𝑎, 𝑏, 𝛾, and 𝛿 are real constants, Song and Cai [6] got
some solitary wave and kink wave solutions of (4).

When 𝛾 = 𝛿, Zhang [7] used the new generalized
algebraic method to obtain some soliton solutions, com-
bined soliton solutions, triangular periodic solutions, Jacobi
elliptic function solutions, combined Jacobi elliptic function
solutions, and rational function solutions of (4). Biswas and
Zerrad [8] obtained 1-soliton solution of (4) with dual-power
law nonlinearity.

When 𝛿 = 0, Liu and Yan [9] obtained some common
expressions and two kinds of bifurcation phenomena for
nonlinear waves of (4). Meanwhile, they pointed out that
there are two sets of kink waves which are called tall-kink
waves and low-kink waves, respectively.

In order to investigate the bifurcation phenomena of (4),
letting 𝑐 > 0 be wave speed and substituting 𝑢 = 𝜑(𝜉) with
𝜉 = 𝑥 + 𝑦 − 𝑐𝑡 into (4), it follows that

−𝑐𝜑

+ 𝑎𝜑

2
𝜑

+ 𝑏𝜑

4
𝜑

+ 𝛾𝜑


+ 𝛿𝜑


= 0. (5)
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Figure 1:The locations of the regions𝐴
𝑖
(𝑖 = 1, 2, . . . , 6) and curves

𝑙
𝑖
(𝑖 = 1, 2, 3, 4).

Integrating (5), we get

−𝑐𝜑 +

𝑎

3

𝜑
2
+

𝑏

5

𝜑
5
+ 𝛾𝜑


+ 𝛿𝜑


= 0. (6)

Setting 𝜑

= 𝜓; yields the following planar system:

𝜑

= 𝜓, 𝜓


=

𝑐𝜑 − (𝑎/3) 𝜑
3
− (𝑏/5) 𝜑

5

𝛾 + 𝛿

. (7)

Obviously, system (7) is a Hamiltonian system with Hamilto-
nian function

𝐻(𝜑, 𝜓) = (𝛾 + 𝛿) 𝜓
2
− 𝑐𝜑

2
+

𝑎

6

𝜑
4
+

𝑏

15

𝜑
6
= ℎ, (8)

where ℎ is the integral constant.
Let

𝜑
1
= √−

1

6𝑏

(5𝑎 + Δ), (9)

𝜑
2
= √−

1

6𝑏

(5𝑎 − Δ), (10)

Δ = √25𝑎
2
+ 180𝑏𝑐. (11)

On 𝑎 − 𝑏 parametric plane, let 𝑙
𝑖
(𝑖 = 1, 2, 3, 4) represent

the following four curves:

𝑙
1
: 𝑏 = 0 (𝑎 > 0) ,

𝑙
2
: 𝑏 = −

16𝑎
2

75𝑐

,

𝑙
3
: 𝑏 = −

2𝑎
2

9𝑐

,

𝑙
4
: 𝑏 = 0 (𝑎 < 0) .

(12)

Let 𝐴
𝑖
(𝑖 = 1, 2, . . . , 6) represent the regions surrounded by

𝑙
𝑖
(𝑖 = 1, 2, 3, 4) and the coordinate axes (see Figure 1).

In this paper, we employ bifurcationmethod of dynamical
systems [14–23] to investigate the bifurcation phenomena of
nonlinear waves described by (4).

We obtain three types of explicit expressions of nonlin-
ear wave solutions. Under different parameters conditions,
these expressions represent symmetric and antisymmetric
solitary waves, kink and anti-kink waves, symmetric periodic
and periodic-blow-up waves, and 1-blow-up and 2-blow-
up waves. Furthermore, we reveal four kinds of interesting
bifurcation phenomena which are introduced in the abstract
above.

This paper is organized as follows. The four kinds of
interesting bifurcation phenomena are shown in Sections 2–
5. A brief conclusion is given in Section 6.

2. Bifurcation of the Low-Kink Waves

In this section, we show that the low-kink waves can be
bifurcated from the symmetric solitary waves, the 1-blow-up
waves, the tall-kink waves, and the antisymmetric solitary
waves.

2.1. Bifurcation from Symmetric Solitary Waves and
1-Blow-Up Waves

Proposition 1. For 𝑎𝑏 ̸= 0, 𝛾 + 𝛿 > 0, and 𝐻(𝜑, 𝜓) = 𝐻(0, 0),
(4) has four nonlinear wave solutions as follows:

𝑢
±

𝑎
= ±√

4𝛼
1
𝜆

𝜆
2
𝑒
−𝜏
1
𝜉
− 2𝜆𝛽

1
+ (𝛽

2

1
− 4𝛼

1
) 𝑒

𝜏
1
𝜉
,

𝑢
±

𝑏
= ±√

4𝛼
1
𝜆

𝜆
2
𝑒
𝜏
1
𝜉
− 2𝜆𝛽

1
+ (𝛽

2

1
− 4𝛼

1
) 𝑒

−𝜏
1
𝜉
,

(13)

where

𝛼
1
= −

15𝑐

𝑏

, (14)

𝛽
1
=

5𝑎

2𝑏

, (15)

𝜏
1
= 2√

𝑐

𝛾 + 𝛿

, (16)

and 𝜆 ̸= 0 is an arbitrary real constant. For 𝜆 > 0, one has the
following results and bifurcation phenomena.

(1) If 𝜆 ̸=√𝛽
2

1
− 4𝛼

1
and (𝑎, 𝑏) ∈ 𝐴

2
, then 𝑢

±

𝑎
̸= 𝑢
±

𝑏
, and

they represent four symmetric solitary waves (see Fig-
ures 2(a)–2(c)). In particular, when 𝑏 → −(5𝑎

2
/48𝑐)+

0, the four symmetric solitary waves become four low-
kink waves (see Figure 2(d))

𝑢
±

𝑎0
= ±√

12𝑐

(−𝑏𝜆/5) 𝑒
−2√(𝑐/(𝛾+𝛿))𝜉

+ 𝑎

, (17)

𝑢
±

𝑏0
= ±√

12𝑐

− (𝑏𝜆/5) 𝑒
2√(𝑐/(𝛾+𝛿))𝜉

+ 𝑎

, (18)
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which were given by Song and Cai [6]. This implies
that one extends the previous results. For the varying
process, see Figure 2.

(2) If 𝜆 ̸=√𝛽
2

1
− 4𝛼

1
and (𝑎, 𝑏) belongs to any one of the

regions 𝐴
3
, 𝑙
3
, 𝐴

4
, and𝐴

5
, then 𝑢

±

𝑎
̸= 𝑢
±

𝑏
and they rep-

resent four 1-blow-up waves (see Figures 3(a)–3(c)). In
particular, when (𝑎, 𝑏) ∈ 𝐴

3
and 𝑏 → −(5𝑎

2
/48𝑐)−0,

the four 1-blow-up waves become four low-kink waves
with the expressions 𝑢

±

𝑎0
and 𝑢

±

𝑏0
. For the varying

process, see Figure 3.

(3) If (𝑎, 𝑏) ∈ 𝐴
2
and 𝜆 = √𝛽

2

1
− 4𝛼

1
, then 𝑢

±

𝑎
= 𝑢

±

𝑏
equal

to the hyperbolic solitary wave solutions

𝑢
±

𝑎𝑏
= ±

√
−

12𝑐

(√25𝑎
2
+ 240𝑏𝑐/5) cosh [2√𝑐/ (𝛾 + 𝛿)𝜉] − 𝑎

,

(19)

which were given by Song and Cai [6]. This implies
that one extends the previous results. When 𝑏 →

−(5𝑎
2
/48𝑐) + 0, 𝑢

±

𝑎𝑏
tend to two trivial solutions 𝑢 =

±√12𝑐/𝑎.

Proof. In (8), letting ℎ = 𝐻(0, 0), it follows that

𝜓 = ±√

1

𝛾 + 𝛿

(𝑐𝜑
2
−

𝑎

6

𝜑
4
−

𝑏

15

𝜑
6
). (20)

Substituting (20) into d𝜑/d𝜉 = 𝜓 and integrating it, we have

∫

𝜑

]

d𝑠

√(𝑠
2
/ (𝛾 + 𝛿)) (𝑐 − (𝑎/6) 𝑠

2
− (𝑏/15) 𝑠

4
)

= 𝜉, (21)

where ] is an arbitrary constant.
Completing the integral above and solving the equation

for 𝜑, it follows that

𝜑 = ±√
4𝛼

1
𝜆𝑒

𝜏
1
𝜉

𝜆
2
𝑒
2𝜏
1
𝜉
− 2𝜆𝛽

1
𝑒
𝜏
1
𝜉
+ (𝛽

2

1
− 4𝛼

1
)

, (22)

where 𝜆 = 𝜆(]) is an arbitrary real number.
Note that if 𝑢 = 𝜑(𝜉) is a solution of (4), so is 𝑢 = 𝜑(−𝜉).

Therefore, from (22) we obtain the solutions 𝑢±
𝑎
and 𝑢

±

𝑏
as (13).

In (13) letting 𝑏 → −5𝑎
2
/48𝑐, then 𝛽

2

1
− 4𝛼

1
→ 0, and

we get (17) and (18). From (13), (17) and (18), we get results (1)
and (2) of Proposition 1.

When 𝜆 = √𝛽
2

1
− 4𝛼

1
, via (13) it follows that

𝑢
±

𝑎
= 𝑢

±

𝑏

= ±
√

4𝛼
1

√𝛽
2

1
− 4𝛼

1
(𝑒
−𝜏
1
𝜉
+ 𝑒

𝜏
1
𝜉
) − 2𝛽

1

= ±
√

2𝛼
1

√𝛽
2

1
− 4𝛼

1
cosh (𝜏

1
𝜉) − 𝛽

1

= 𝑢
±

𝑎𝑏
(see (19)) ,

(23)

which is result (3) of Proposition 1.

2.2. Bifurcation from Tall-Kink Waves and Antisymmetric
Solitary Waves.

Proposition 2. If 𝛾 + 𝛿 > 0, 𝐻(𝜑, 𝜓) = 𝐻(𝜑
1
, 0), and (𝑎, 𝑏)

belongs to one of the regions𝐴
2
,𝐴

3
, 𝑙
2
, and 𝑙

3
, then (4) has four

real nonlinear wave solutions as follows:

𝑢
±

𝑐
= ±

√− (5𝑎 + Δ) /6𝑏 (2Δ − 5𝑎 + 6𝑏𝜂𝑒
𝜏
2
𝜉
)

√(5𝑎 − 2Δ)
2
+ 36𝑏

2
𝜂
2
𝑒
2𝜏
2
𝜉
− 12𝑏 (5𝑎 + 4Δ) 𝜂𝑒

𝜏
2
𝜉

,

𝑢
±

𝑑
= ±

√− (5𝑎 + Δ) /6𝑏 (2Δ − 5𝑎 + 6𝑏𝜂𝑒
−𝜏
2
𝜉
)

√(5𝑎 − 2Δ)
2
+ 36𝑏

2
𝜂
2
𝑒
−2𝜏
2
𝜉
− 12𝑏 (5𝑎 + 4Δ) 𝜂𝑒

−𝜏
2
𝜉

,

(24)

where 𝜂 ̸= 0 is an arbitrary real constant, Δ is given in (11), and

𝜏
2
= √−

Δ (Δ + 5𝑎)

45𝑏 (𝛾 + 𝛿)

. (25)

Letting

𝜇
0
=

5𝑎 − 2Δ

6𝑏

, (26)

corresponding to 𝜂 > 0, one has the following results and
bifurcation phenomena.

(1) If (𝑎, 𝑏) ∈ 𝐴
2
and 𝜂 ̸= |𝜇

0
|, then 𝑢

±

𝑐
̸= 𝑢
±

𝑑
, and they

represent four tall-kink waves (see Figures 4(a)–4(c)).
When 𝑏 → −(5𝑎

2
/48𝑐) + 0, the four tall-kink waves

become

𝑢
∓

𝑐0
= ∓√

12𝑐𝜂

𝑎𝜂 + 48𝑐𝑒
−2√(𝑐/(𝛾+𝛿))𝜉

, (27)

𝑢
∓

𝑑0
= ∓√

12𝑐𝜂

𝑎𝜂 + 48𝑐𝑒
2√(𝑐/(𝛾+𝛿))𝜉

, (28)

which represent four low-kink waves (see Figure 4(d)).
For the varying process, see Figure 4.
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Figure 2: Four low-kinkwaves are bifurcated from four symmetric solitarywaves.The varying process for the figures of 𝑢±
𝑎
and 𝑢

±

𝑏
when𝜆 > 0,

𝜆 ̸=√𝛽
2

1
− 4𝛼

1
, (𝑎, 𝑏) ∈ 𝐴

2
, and 𝑏 → −(5𝑎

2
/48𝑐)+0, where𝜆 = 50, 𝛾 = 𝛿 = 𝑐 = 𝑎 = 1, and (a) 𝑏 = −(5𝑎

2
/48𝑐)+10

−2, (b) 𝑏 = −(5𝑎
2
/48𝑐)+10

−4,
(c) 𝑏 = −(5𝑎

2
/48𝑐) + 10

−6, and (d) 𝑏 = −(5𝑎
2
/48𝑐) + 10

−9.

u

u+bu+a

O
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𝜉
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u

u+b u+a

O
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O
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𝜉
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Figure 3: Four low-kink waves are bifurcated from four 1-blow-up waves. The varying process for the figures of 𝑢±
𝑎
and 𝑢

±

𝑏
when 𝜆 > 0,

𝜆 ̸=√𝛽
2

1
− 4𝛼

1
, (𝑎, 𝑏) ∈ 𝐴

3
, and 𝑏 → −(5𝑎

2
/48𝑐)−0, where𝜆 = 50, 𝛾 = 𝛿 = 𝑐 = 𝑎 = 1, and (a) 𝑏 = −(5𝑎

2
/48𝑐)−10

−2, (b) 𝑏 = −(5𝑎
2
/48𝑐)−10

−5,
(c) 𝑏 = −(5𝑎

2
/48𝑐) − 10

−7, and (d) 𝑏 = −(5𝑎
2
/48𝑐) − 10

−9.
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Figure 4: Four low-kink waves are bifurcated from four tall-kink waves.The varying process for the figures of 𝑢±
𝑐
and 𝑢

±

𝑑
when 𝜂 > 0, 𝜂 ̸= |𝜇

0
|,

(𝑎, 𝑏) ∈ 𝐴
2
, and 𝑏 → −(5𝑎

2
/48𝑐) + 0, where 𝜂 = 10, 𝛿 = 𝛾 = 𝑐 = 𝑎 = 1, and (a) 𝑏 = −(5𝑎

2
/48𝑐) + 10

−2, (b) 𝑏 = −(5𝑎
2
/48𝑐) + 10

−3,
(c) 𝑏 = −(5𝑎

2
/48𝑐) + 10

−5, and (d) 𝑏 = −(5𝑎
2
/48𝑐) + 10

−7.

u

u+c u+d

O

u−c u−d

𝜉

(a)

u
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O
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Figure 5: Four low-kink waves are bifurcated from four antisymmetric solitary waves. The varying process for the figures of 𝑢±
𝑐
and 𝑢

±

𝑑
when

𝜂 > 0, 𝜂 ̸= |𝜇
0
|, (𝑎, 𝑏) ∈ 𝐴

3
, and 𝑏 → −(5𝑎

2
/48𝑐)−0, where 𝜂 = 10, 𝛿 = 𝛾 = 𝑐 = 𝑎 = 1, and (a) 𝑏 = −(5𝑎

2
/48𝑐)−10

−2, (b) 𝑏 = −(5𝑎
2
/48𝑐)−10

−3,
(c) 𝑏 = −(5𝑎

2
/48𝑐) − 10

−5, and (d) 𝑏 = −(5𝑎
2
/48𝑐) − 10

−7.
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(2) If (𝑎, 𝑏) ∈ 𝐴
3
and 𝜂 ̸= |𝜇

0
|, then 𝑢

±

𝑐
̸= 𝑢
±

𝑑
, and they

represent four antisymmetry solitary waves (see Figures
5(a)–5(c)). When 𝑏 → −(5𝑎

2
/36𝑐) + 0, the four

antisymmetry solitary waves become two trivial waves
𝑢 = ±√6𝑐/𝑎. In particular, when 𝑏 → −(5𝑎

2
/48𝑐) −

0, the four antisymmetry solitary waves become four
low-kink waves with the expressions 𝑢

±

𝑐0
and 𝑢

±

𝑑0
(see

Figure 5(d)). For the varying process, see Figure 5.

(3) If (𝑎, 𝑏) ∈ 𝐴
2
and 𝜂 = |𝜇

0
|, then 𝑢

±

𝑐
= 𝑢

∓

𝑑
= 𝑢

∓

𝑐𝑑
of

forms

𝑢
∓

𝑐𝑑
= ∓√

(5𝑎 + Δ) (5𝑎 − 2Δ)

3𝑏 [(2Δ − 5𝑎) cosh (𝜏
2
𝜉) + 5𝑎 + 4Δ]

sinh(

𝜏
2

2

𝜉) ,

(29)

which represent two tall-kink waves and tend to a
trivial wave 𝑢 = 0 when 𝑏 → −(5𝑎

2
/48𝑐) + 0.

(4) If (𝑎, 𝑏) ∈ 𝐴
3
and 𝜂 = |𝜇

0
|, then 𝑢

±

𝑐
= 𝑢

±

𝑑
= 𝑢

∓

𝑐𝑑
∗ of

forms

𝑢
∓

𝑐𝑑
∗ = ∓√

(5𝑎 + Δ) (2Δ − 5𝑎)

3𝑏 [(5𝑎 − 2Δ) cosh (𝜏
2
𝜉) + 5𝑎 + 4Δ]

cosh (

𝜏
2

2

𝜉) ,

(30)

which represent two antisymmetric solitary waves and
tend to the trivial wave 𝑢 = 0when 𝑏 → −(5𝑎

2
/48𝑐)−

0 and tend to 𝑢 = ±√12𝑐/𝑎when 𝑏 → −(5𝑎
2
/36𝑐)+0.

Proof. In (8), letting ℎ = 𝐻(𝜑
1
, 0), it follows that

𝜓 = ±√−

𝑏

15 (𝛾 + 𝛿)

(𝜑
2

1
− 𝜑

2
)
2

(𝜑
2
+ 𝜇

0
), (31)

where 𝜑
1
and 𝜇

0
are given in (9) and (26), respectively.

Substituting (31) into d𝜑/d𝜉 = 𝜓 and integrating it, we have

∫

𝜑

𝑝

d𝑠

√− (𝑏/15 (𝛾 + 𝛿)) (𝜑
2

1
− 𝜑

2
)
2

(𝜑
2
+ 𝜇

0
)

= 𝜉, (32)

where 𝑝 is an arbitrary constant.
Completing the integral above and solving the equation

for 𝜑, it follows that

𝜑 = ±√𝜑
2

1
−

4𝛼
2
𝜂𝑒

𝜏
2
𝜉

𝜂
2
𝑒
2𝜏
2
𝜉
− 2𝜂𝛽

2
𝑒
𝜏
2
𝜉
+ (𝛽

2

2
− 4𝛼

2
)

, (33)

where 𝜏
2
is given in (25), 𝜂 = 𝜂(𝑝) is an arbitrary real number,

and

𝛼
2
=

Δ (Δ + 5𝑎)

12𝑏
2

,

𝛽
2
=

4Δ + 5𝑎

6𝑏

.

(34)

Similarly, if 𝑢 = 𝜑(𝜉) is a solution of (4), so is 𝑢 = 𝜑(−𝜉).
Substituting (34) into (33), we get 𝑢±

𝑐
and 𝑢

±

𝑑
(see (24)).

When 𝑏 → −5𝑎
2
/48𝑐, it follows that

𝜏
2
→ 2√

𝑐

𝛾 + 𝛿

,

5𝑎 − 2Δ → 0.

(35)

From (24), it is easy to check that 𝑢±
𝑐
and 𝑢

±

𝑑
become 𝑢

±

𝑐0
and

𝑢
±

𝑑0
(see (27) and (28)).
If (𝑎, 𝑏) ∈ 𝐴

2
, then 2Δ − 5𝑎 > 0 and 𝜂 = |𝜇

0
| = (5𝑎 −

2Δ)/6𝑏, and we have

𝑢
±

𝑐
= ±

√− (5𝑎 + Δ) /6𝑏 (2Δ − 5𝑎 + 6𝑏𝜂𝑒
𝜏2𝜉)

√(5𝑎 − 2Δ)
2
+ 36𝑏

2
𝜂
2
𝑒
2𝜏2𝜉 − 12𝑏 (5𝑎 + 4Δ) 𝜂𝑒

𝜏2𝜉

= ±

√−(5𝑎 + Δ)/6𝑏 (2Δ − 5𝑎) (1 − 𝑒
𝜏2𝜉)

√(5𝑎 − 2Δ)
2
+ (5𝑎 − 2Δ)

2
𝑒
2𝜏2𝜉 − 2 (5𝑎 + 4Δ) (5𝑎 − 2Δ) 𝑒

𝜏2𝜉

= ∓2√−
5𝑎 + Δ

6𝑏

⋅√
2Δ − 5𝑎

2 (2Δ − 5𝑎) cosh (𝜏2𝜉) + 2 (4Δ + 5𝑎)
sinh(𝜏2

2
𝜉)

= ∓√
(5𝑎 + Δ) (5𝑎 − 2Δ)

3𝑏 [(2Δ − 5𝑎) cosh (𝜏2𝜉) + 5𝑎 + 4Δ]
sinh(𝜏2

2
𝜉)

= 𝑢
∓

𝑐𝑑
(see (29)) .

(36)

Similarly, we have 𝑢
±

𝑑
= 𝑢

±

𝑐𝑑
.

If (𝑎, 𝑏) ∈ 𝐴
3
, then 5𝑎 − 2Δ > 0 and 𝜂 = |𝜇

0
| = (2Δ −

5𝑎)/6𝑏, and we have

𝑢
±

𝑐
= ±

√− (5𝑎 + Δ) /6𝑏 (2Δ − 5𝑎 + 6𝑏𝜂𝑒
𝜏2𝜉)

√(5𝑎 − 2Δ)
2
+ 36𝑏

2
𝜂
2
𝑒
2𝜏2𝜉 − 12𝑏 (5𝑎 + 4Δ) 𝜂𝑒

𝜏2𝜉

= ±

√− (5𝑎 + Δ) /6𝑏 (2Δ − 5𝑎) (𝑒
𝜏2𝜉 + 1)

√(5𝑎 − 2Δ)
2
+ (5𝑎 − 2Δ)

2
𝑒
2𝜏2𝜉 + 2 (5𝑎 + 4Δ) (5𝑎 − 2Δ) 𝑒

𝜏2𝜉

= ∓√−
5𝑎 + Δ

6𝑏

⋅

√5𝑎 − 2Δ (𝑒
𝜏2𝜉/2 + 𝑒

−𝜏2𝜉/2)

√(5𝑎 − 2Δ) (𝑒
𝜏2𝜉/2 + 𝑒

−𝜏2𝜉/2) + 2 (4Δ + 5𝑎)

= ∓2√−
5𝑎 + Δ

6𝑏

⋅√
5𝑎 − 2Δ

2 (5𝑎 − 2Δ) cosh (𝜏2𝜉) + 2 (4Δ + 5𝑎)
cosh(𝜏2

2
𝜉)

= ∓√
(5𝑎 + Δ) (2Δ − 5𝑎)

3𝑏 [(5𝑎 − 2Δ) cosh (𝜏2𝜉) + 5𝑎 + 4Δ]
cosh(𝜏2

2
𝜉)

= 𝑢
∓

𝑐𝑑
∗ (see (30)) .

(37)

Similarly, we have 𝑢
±

𝑑
= 𝑢

∓

𝑐𝑑
∗ .

Hereto, we have completed the proof for Proposition 2.
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O
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𝜉

(b)

u
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O
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𝜉

(c)

u

u+a u+b

O

u−a u−b

𝜉

(d)

Figure 6: Four 2-blow-up waves become four 1-blow-up waves.The varying process for the figures of 𝑢±
𝑎
and 𝑢

±

𝑏
when 𝜆 < 0, 𝜆 ̸= −√𝛽

2

1
− 4𝛼

1
,

(𝑎, 𝑏) ∈ 𝐴
2
, and 𝑏 → −(5𝑎

2
/48𝑐) + 0, where 𝜆 = −50, 𝛾 = 𝛿 = 𝑐 = 𝑎 = 1, and (a) 𝑏 = −(5𝑎

2
/48𝑐) + 10

−2, (b) 𝑏 = −(5𝑎
2
/48𝑐) + 10

−4,
(c) 𝑏 = −(5𝑎

2
/48𝑐) + 10

−5, and (d) 𝑏 = −(5𝑎
2
/48𝑐) + 10

−7.

u

u+ab∗

O

u−ab∗

𝜉

(a)

u

u+ab∗

O

u−ab∗

𝜉

(b)

u

u+ab∗

O

u−ab∗

𝜉

(c)

u

u+ab∗ u+ab∗

O

u−ab∗ u−ab∗

𝜉

(d)

Figure 7: Two 1-blow-up waves are bifurcated from two symmetric solitary waves. The varying process for the figures of 𝑢±
𝑎𝑏
∗ when 𝜆 =

−√𝛽
2

1
− 4𝛼

1
, (𝑎, 𝑏) ∈ 𝐴

6
, and 𝑏 → 0 + 0, where 𝜆 = 𝑎 = −1, 𝛾 = 𝛿 = 𝑐 = 1, and (a) 𝑏 = 0 + 5 × 10

−1, (b) 𝑏 = 0 + 10
−2, (c) 𝑏 = 0 + 10

−4, and
(d) 𝑏 = 0 + 10

−7.

3. Bifurcation of the 1-Blow-Up Waves

In this section, we show that the 1-blow-up waves can be
bifurcated from the 2-blow-up waves, the symmetric solitary
waves, and the periodic-blow-up waves.

3.1. Bifurcation from 2-Blow-Up Waves and Symmetric
Solitary Waves

Proposition 3. In (13), corresponding to 𝜆 < 0, one has the
following results and bifurcation phenomena.
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u
u+e u+e

O

u−e u−e

𝜉

(a)

u

u+e
u+e

O

u−e u−e

𝜉

(b)

u

u+e u+e

O

u−e u−e

𝜉

(c)

u
u+e u+e

O

u−e u−e

𝜉

(d)

Figure 8: The 1-blow-up waves are bifurcated from the periodic-blow-up waves. The varying process for the figures of 𝑢
±

𝑒
when 𝑏 →

−(5𝑎
2
/36𝑐) + 0, where 𝛾 = 𝛿 = 𝑐 = 𝑎 = 1 and (a) 𝑏 = −(5𝑎

2
/36𝑐) + 10

−1, (b) 𝑏 = −(5𝑎
2
/36𝑐) + 10

−2, (c) 𝑏 = −(5𝑎
2
/36𝑐) + 10

−3, and
(d) 𝑏 = −(5𝑎

2
/36𝑐) + 10

−4.

(1) If (𝑎, 𝑏) ∈ 𝐴
2
and 𝜆 ̸= − √𝛽

2

1
− 4𝛼

1
, then 𝑢

±

𝑎
̸= 𝑢
±

𝑏
,

and they represent four 2-blow-up waves. When 𝑏 →

−(5𝑎
2
/48𝑐) + 0, 𝑢±

𝑎
, and 𝑢

±

𝑏
, respectively, become 𝑢

±

𝑎0

and 𝑢
±

𝑏0
(see (17) and (18)) which represent four 1-blow-

up waves (see Figure 6(d)). For the varying process, see
Figure 6.

(2) If 𝜆 = −√𝛽
2

1
− 4𝛼

1
, then 𝑢

±

𝑎
= 𝑢

±

𝑏
and become

𝑢
±

𝑎𝑏
∗ = ±

√

12𝑐

(√25𝑎
2
+ 240𝑏𝑐/5) cosh [2√𝑐/ (𝛾 + 𝛿)𝜉] + 𝑎

,

(38)

which were given by Song and Cai [6].This implies that
one extends the previous results.

When (𝑎, 𝑏) ∈ 𝐴
2
, 𝑢

±

𝑎𝑏
∗ represent hyperbolic blow-up

waves. Specially, when 𝑏 → −(5𝑎
2
/48𝑐) + 0, 𝑢±

𝑎𝑏
∗ tend to two

trivial solutions 𝑢 = ±√12𝑐/𝑎.
When (𝑎, 𝑏) belongs to any one of the regions 𝐴

1
, 𝐴

6
, 𝑢±

𝑎𝑏
∗

represent two symmetric solitary waves. In particular, when
(𝑎, 𝑏) ∈ 𝐴

6
and 𝑏 → 0+0, 𝑢±

𝑎𝑏
∗ become two 1-blow-up waves.

For the varying process, see Figure 7.

Similar to the proof of Proposition 1, we get the results of
Proposition 3.

3.2. Bifurcation from Periodic-Blow-Up Waves

Proposition 4. Under 𝛾 + 𝛿 > 0 and𝐻(𝜑, 𝜓) = 𝐻(𝜑
2
, 0), one

has the following results and bifurcation phenomena.

(1) If (𝑎, 𝑏) belongs to one of the regions 𝐴
2
, 𝐴

3
, and 𝑙

2
,

then (4) has two periodic-blow-up wave solutions

𝑢
±

𝑒
= ±√

(5𝑎 − Δ) (5𝑎 + 2Δ)

3𝑏 [(5𝑎 + 2Δ) cos (𝜏
3
𝜉) + 4Δ − 5𝑎]

sin(

𝜏
3

2

𝜉) ,

(39)

where

𝜏
3
= √

Δ (Δ − 5𝑎)

45𝑏 (𝛾 + 𝛿)

. (40)

(2) If (𝑎, 𝑏) ∈ 𝐴
3
and 𝑏 → −(5𝑎

2
/36𝑐) + 0, the periodic-

blow-up wave solutions 𝑢±
𝑒
become two fractional wave

solutions

𝑢
±

𝑒0
= ±

√6𝑐𝜉

√𝑎 [𝑐𝜉
2
− 3 (𝛾 + 𝛿)]

, (41)

which represent two 1-blow-up waves (see Figure 8(d)).
For the varying process, see Figure 8.

Proof. (1) In (8), letting ℎ = 𝐻(𝜑
2
, 0), it follows that

𝜓 = ±√−

𝑏

15 (𝛾 + 𝛿)

(𝜑
2
− 𝜑

2

2
)
2

(𝜑
2
+ 𝜇

1
), (42)
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where 𝜑
2
is given in (10), and

𝜇
1
=

5𝑎 + 2Δ

6𝑏

. (43)

Substituting (42) into d𝜑/d𝜉 = 𝜓 and integrating it, we
have

∫

𝜑

𝑞

d𝑠

√− (𝑏/15 (𝛾 + 𝛿)) (𝜑
2
− 𝜑

2

2
)
2

(𝜑
2
+ 𝜇

1
)

= 𝜉, (44)

where 𝑞 is an arbitrary constant.
Completing the integral in (44) and solving the equation

for 𝜑, it follows that

𝜑 = ±√𝜑
2

2
−

2𝛼
3

𝜇
1
sin (𝜏

3
𝜉 + 𝜃

1
) + 𝛽

3

, (45)

where 𝜏
3
is given in (40), 𝜃

1
= 𝜃

1
(𝑞) is an arbitrary constant,

and

𝛼
3
=

Δ (Δ − 5𝑎)

12𝑏
2

,

𝛽
3
=

4Δ − 5𝑎

6𝑏

.

(46)

In (45) letting 𝜃
1

= 𝜋/2, we obtain the solutions 𝑢
±

𝑒
as

(39).
(2) Note that

cos (𝜏
3
𝜉) = 1 −

𝜏
2

3
𝜉
2

2

+

𝜏
4

3
𝜉
4

4!

+ ⋅ ⋅ ⋅

= 1 −

Δ (Δ + 5𝑎) 𝜉
2

90𝑏 (𝛾 + 𝛿)

+ 𝑂 (Δ
2
) ,

(47)

lim
𝑏→−(5𝑎

2
/36𝑐)+0

Δ = lim
𝑏→−(5𝑎

2
/36𝑐)+0

√25𝑎
2
+ 180𝑏𝑐 = 0. (48)

Thus, we have

𝑢
±

𝑒
= ±√

(5𝑎 + Δ) (5𝑎 − 2Δ) [1 − cos (𝜏
3
𝜉)]

6𝑏 [(5𝑎 − 2Δ) cos (𝜏
3
𝜉) − 5𝑎 − 4Δ]

= ±
√

(1/90𝑏 (𝛾 + 𝛿)) (5𝑎 + Δ) (5𝑎 − 2Δ) Δ (Δ + 5𝑎) 𝜉
2
+ 𝑂 (Δ

2
)

6𝑏 [(5𝑎 − 2Δ) (1 − (Δ (5𝑎 + Δ) 𝜉
2
) /90𝑏 (𝛾 + 𝛿)) − 5𝑎 − 4Δ + 𝑂 (Δ

2
)]

= ±√
(5𝑎 + Δ)

2
(5𝑎 − 2Δ) 𝜉

2
+ 𝑂 (Δ)

6𝑏 [−540𝑏 (𝛾 + 𝛿) − (5𝑎 − 2Δ) (5𝑎 + Δ) 𝜉
2
+ 𝑂 (Δ)]

.

(49)

Furthermore, we get

lim
𝑏→−(5𝑎

2
/36𝑐)+0

𝑢
±

𝑒

= lim
𝑏→−(5𝑎

2
/36𝑐)+0

± √
(5𝑎 + Δ)

2
(5𝑎 − 2Δ) 𝜉

2
+ 𝑂 (Δ)

6𝑏 [−540𝑏 (𝛾 + 𝛿) − (5𝑎 − 2Δ) (5𝑎 + Δ) 𝜉
2
+ 𝑂 (Δ)]

= ±√
25𝑎

2
× 5𝑎𝜉

2

6 × (−5𝑎
2
/36𝑐) [−540 × (−5𝑎

2
/36𝑐) (𝛾 + 𝛿) − 25𝑎

2
𝜉
2
]

= ±

√6𝑐𝜉

√𝑎 [𝑐𝜉
2
− 3 (𝛾 + 𝛿)]

= 𝑢
±

𝑒0
(see (41)) .

(50)

Hereto, we have completed the proof for Proposition 4.

4. Bifurcation of the Periodic-Blow-Up Waves

In this section, we show that the periodic-blow-up waves can
be bifurcated from symmetric periodic waves.

4.1. Bifurcation from Periodic Waves
Proposition 5. If 𝑎𝑏 ̸= 0, 𝛾 + 𝛿 < 0, and 𝐻(𝜑, 𝜓) = 𝐻(0, 0),
(4) has two nonlinear wave solutions

𝑢
±

𝑓
= ±

√

−2𝛼
1

√𝛽
2

1
− 4𝛼

1
cos (𝜏

4
𝜉) + 𝛽

1

, (51)
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where

𝜏
4
= 2√−

𝑐

𝛾 + 𝛿

. (52)

One has the following results and bifurcation phenomena.

(1) If (𝑎, 𝑏) belongs to any one of the regions 𝐴
1
and 𝐴

6
,

then 𝑢
±

𝑓
represent periodic-blow-up waves.

(2) If (𝑎, 𝑏) ∈ 𝐴
2
, then 𝑢

±

𝑓
represent periodic waves. In

particular, when 𝑏 → 0−0, the periodic waves become
periodic-blow-up waves as follows:

𝑢
±

𝑓0
= ±√

12𝑐

𝑎 [1 − cos (𝜏
4
𝜉)]

. (53)

For the varying process, see Figure 9.
When 𝑏 → −(5𝑎

2
/48𝑐) + 0, the periodic wave tends to

two trivial waves 𝑢 = ±√12𝑐/𝑎. For the varying process, see
Figure 10.

Proof. Completing the integral in (21) and solving the equa-
tion for 𝜑, it follows that

𝜑 = ±
√

−2𝛼
1

√𝛽
2

1
− 4𝛼

1
sin (𝜏

4
𝜉 + 𝜃

2
) + 𝛽

1

, (54)

where 𝜏
4
is given in (52) and 𝜃

2
= 𝜃

2
(]) is an arbitrary

constant.
In (54) letting 𝜃

2
= 𝜋/2, we obtain the solutions 𝑢±

𝑓
as (51).

From (14) and (15), we have

√𝛽
2

1
− 4𝛼

1
=

√
240𝑏𝑐 + 25𝑎

2

4𝑏
2

= −

√240𝑏𝑐 + 25𝑎
2

2𝑏

.

(55)

Letting 𝑏 → 0 − 0, then

lim
𝑏→0−0

𝑢
±

𝑓
= lim

𝑏→0−0

±
√

−2𝛼
1

√𝛽
2

1
− 4𝛼

1
cos (𝜏

4
𝜉) + 𝛽

2

= lim
𝑏→0−0

± √

60𝑐

−√240𝑏𝑐 + 25𝑎
2 cos (𝜏

4
𝜉) + 5𝑎

= ± √

12𝑐

𝑎 [1 − cos (𝜏
4
𝜉)]

= 𝑢
±

𝑓0
(see (53)) .

(56)

Hereto, we have completed the proof for Proposition 5.

5. Bifurcation of the Tall-Kink Waves

In this section, we show that the tall-kink waves can be
bifurcated from the symmetric periodic waves.

5.1. Bifurcation from Symmetric Periodic Waves

Proposition 6. Under 𝛾 + 𝛿 < 0 and𝐻(𝜑, 𝜓) = 𝐻(𝜑
1
, 0), one

has the following results and bifurcation phenomena.

(1) If (𝑎, 𝑏) belongs to the region 𝐴
3
, then (4) has two

periodic wave solutions

𝑢
±

𝑔
= √

(5𝑎 + Δ) (5𝑎 − 2Δ)

3𝑏 [(5𝑎 − 2Δ) cos (𝜏
5
𝜉) − 5𝑎 − 4Δ]

sin(

𝜏
5

2

𝜉) , (57)

where

𝜏
5
= √

Δ (Δ + 5𝑎)

45𝑏 (𝛾 + 𝛿)

. (58)

(2) If (𝑎, 𝑏) ∈ 𝐴
3
and 𝑏 → −(5𝑎

2
/36𝑐) + 0, the periodic

wave solutions 𝑢±
𝑔
tend to two fractional wave solutions

𝑢
±

𝑔0
which have the expressions as 𝑢

±

𝑒0
(see (41)) and

represent two tall-kink waves (see Figure 11(d)). For the
varying process, see Figure 11.

Proof. Completing the integral in (31) and solving the equa-
tion for 𝜑, it follows that

𝜑 = ±√𝜑
2

1
−

2𝛼
2

𝜇
0
sin (𝜏

5
𝜉 + 𝜃

3
) − 𝛽

2

, (59)

where 𝜏
5
is given in (58) and 𝜃

3
= 𝜃

3
(𝑝) is an arbitrary

constant.
In (59) letting 𝜃

3
= 𝜋/2, we obtain the solutions𝑢±

𝑔
as (57).

Similar to the proof of Proposition 4, we get the results of
Proposition 6.

Besides these bifurcation phenomena above, there is
another bifurcation phenomenon as follows.

Proposition 7. If 𝛾 + 𝛿 < 0 and (𝑎, 𝑏) belongs to one of the
regions 𝐴

2
, 𝐴

3
, and 𝑙

2
, then (4) has four symmetric solitary

wave solutions (see Figures 12(a)–12(c)) as follows:

𝑢
±

ℎ
= ±

√(Δ − 5𝑎) /6𝑏 (6𝑏𝜔𝑒
𝜏
6
𝜉
− 5𝑎 − 2Δ)

√36𝑏
2
𝜔
2
𝑒
2𝜏
6
𝜉
− 12𝑏 (5𝑎 − 4Δ) 𝜔𝑒

𝜏
6
𝜉
+ (5𝑎 + 2Δ)

2

,

𝑢
±

𝑖
= ±

√(Δ − 5𝑎) /6𝑏 (6𝑏𝜔𝑒
−𝜏
6
𝜉
− 5𝑎 − 2Δ)

√36𝑏
2
𝜔
2
𝑒
−2𝜏
6
𝜉
− 12𝑏 (5𝑎 − 4Δ) 𝜔𝑒

−𝜏
6
𝜉
+ (5𝑎 + 2Δ)

2

,

(60)

where

𝜏
6
= √

Δ (5𝑎 − Δ)

45𝑏 (𝛾 + 𝛿)

. (61)

In particular, when (𝑎, 𝑏) ∈ 𝐴
3
and 𝑏 → −(5𝑎

2
/36𝑐) + 0,

𝑢
±

ℎ
and 𝑢

±

𝑖
tend to two trivial solutions 𝑢 = ±√12𝑐/𝑎. For the

varying process, see Figure 12.
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Figure 9: The periodic-blow-up waves are bifurcated from the symmetric periodic waves. The varying process for the figures of 𝑢±
𝑓
when

(𝑎, 𝑏) ∈ 𝐴
2
and 𝑏 → 0 − 0, where 𝑐 = 𝑎 = 1, 𝛾 = 𝛿 = −1, and (a) 𝑏 = 0 − 10

−1, (b) 𝑏 = 0 − 10
−2, (c) 𝑏 = 0 − 10

−4, and (d) 𝑏 = 0 − 10
−7.
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Figure 10:The periodic waves become the trivial waves. The varying process for the figures of 𝑢±
𝑓
when (𝑎, 𝑏) ∈ 𝐴

2
and 𝑏 → −(5𝑎

2
/48𝑐) + 0,

where 𝑐 = 𝑎 = 1, 𝛾 = 𝛿 = −1, and (a) 𝑏 = −(5𝑎
2
/48𝑐)+10

−1, (b) 𝑏 = −(5𝑎
2
/48𝑐)+10

−2, (c) 𝑏 = −(5𝑎
2
/48𝑐)+10

−3, and (d) 𝑏 = −(5𝑎
2
/48𝑐)+10

−7.
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Figure 11: Two tall-kink waves are bifurcated form the symmetric periodic waves. The varying process for the figures of 𝑢±
𝑔
when (𝑎, 𝑏) ∈ 𝐴

3

and 𝑏 → −(5𝑎
2
/36𝑐) + 0, where 𝑐 = 𝑎 = 1, 𝛿 = 𝛾 = −1, and (a) 𝑏 = −(5𝑎

2
/36𝑐) + 10

−2, (b) 𝑏 = −(5𝑎
2
/36𝑐) + 10

−3, (c) 𝑏 = −(5𝑎
2
/36𝑐) + 10

−4,
and (d) 𝑏 = −(5𝑎

2
/36𝑐) + 10

−7.
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Figure 12: Four symmetric solitarywaves become two trivial waves.The varying process for the figures of𝑢±
ℎ
and𝑢

±

𝑖
when 𝑏 → −(5𝑎

2
/36𝑐)+0,

where 𝑐 = 𝑎 = 𝜔 = 1, 𝛾 = 𝛿 = −1, and (a) 𝑏 = −(5𝑎
2
/36𝑐) + 10

−2, (b) 𝑏 = −(5𝑎
2
/36𝑐) + 10

−3, (c) 𝑏 = −(5𝑎
2
/36𝑐) + 10

−4, and (d) 𝑏 =

−(5𝑎
2
/36𝑐) + 10

−6.
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Proof. Completing the integral in (44) and solving the equa-
tion for 𝜑, it follows that

𝜑 = √𝜑
2

2
−

4𝛼
3
𝜔𝑒

𝜏
6
𝜉

𝜔
2
𝑒
2𝜏
6
𝜉
+ 2𝜔𝛽

3
𝑒
𝜏
6
𝜉
+ (𝛽

2

3
− 4𝛼

3
)

, (62)

where 𝛼
3
, 𝛽

3
, and 𝜏

6
are given in (46) and (61) and 𝜔 = 𝜔(𝑞)

is an arbitrary constant.
Similar to the derivations for 𝑢±

𝑐
and 𝑢

±

𝑑
, we get 𝑢±

ℎ
and 𝑢

±

𝑖

(see (60)) from (62).
Hereto, we have completed the proofs for all propositions.

6. Conclusion

In this paper, we have studied the bifurcation behavior of
the nonlinear waves in a generalized Z-K equation. Firstly,
we obtained three types of explicit nonlinear wave solutions.
The first type is the exp-function expressions 𝑢

±

𝑎
, 𝑢

±

𝑏
, 𝑢

±

𝑐
,

𝑢
±

𝑑
, 𝑢±

ℎ
, and 𝑢

±

𝑖
(see (13), (24), and (60)). The second type is

the trigonometric expressions 𝑢
±

𝑒
, 𝑢±

𝑓
, and 𝑢

±

𝑔
(see (39), (51),

and (57)). The third type is the fractional expressions 𝑢
±

𝑒0

(see (41)). Furthermore, four kinds of interesting bifurcation
phenomena have been revealed.The first kind is that the low-
kink waves can be bifurcated from four types of nonlinear
waves, the symmetric solitary waves, the 1-blow-up waves,
the tall-kink waves, and the antisymmetric solitary waves
(see Propositions 1 and 2). The second kind is that the 1-
blow-up waves can be bifurcated from the 2-blow-up waves,
the symmetric solitary waves, and the periodic-blow-up
waves (see Propositions 3 and 4). The third kind is that
the periodic-blow-up waves can be bifurcated from the
symmetric periodic waves (see Proposition 5). The fourth
kind is that the tall-kink waves can be bifurcated from the
symmetric periodicwaves (see Proposition 6). Someprevious
results are our some special cases (see (17), (19), and (38)).
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