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Let 𝑆𝐻 be a subfractional Brownian motion with index 0 < 𝐻 < 1. Based on the S-transform in white noise analysis we study the
stochastic integral with respect to 𝑆𝐻, and we also prove a Girsanov theorem and derive an Itô formula. As an application we study
the solutions of backward stochastic differential equations driven by 𝑆𝐻 of the form−𝑑𝑌

𝑡
= 𝑓(𝑡, 𝑌

𝑡
, 𝑍

𝑡
)𝑑𝑡−𝑍

𝑡
𝑑𝑆
𝐻

𝑡
, 𝑡 ∈ [0, 𝑇], 𝑌

𝑇
= 𝜉,

where the stochastic integral used in the above equation is Pettis integral. We obtain the explicit solutions of this class of equations
under suitable assumptions.

1. Introduction

As an extension of Brownian motion, Bojdecki et al. [1, 2]
introduced and studied a rather special class of self-similar
Gaussian processes which preserves many properties of the
fractional Brownian motion of theWeyl type here and below.
This process arises from occupation time fluctuations of
branching particle systems with Poisson initial condition.
This process is called the subfractional Brownianmotion (sub-
fBm). The so-called sub-fBm with index𝐻 ∈ (0, 1) is a mean
zero Gaussian process 𝑆𝐻 = {𝑆𝐻

𝑡
, 𝑡 ≥ 0} with 𝑆𝐻

0
= 0 and the

covariance

𝐸 [𝑆
𝐻

𝑡
𝑆
𝐻

𝑠
] = 𝑠

2𝐻
+ 𝑡

2𝐻
−
1

2
[(𝑠 + 𝑡)

2𝐻
+ |𝑡 − 𝑠|

2𝐻
] (1)

for all 𝑠, 𝑡 ≥ 0. For 𝐻 = 1/2, 𝑆𝐻 coincides with the standard
Brownian motion 𝐵. 𝑆𝐻 is neither a semimartingale nor a
Markov process unless 𝐻 = 1/2. So many of the powerful
techniques from stochastic analysis are not available when
dealing with 𝑆𝐻. As a Gaussian process, it is possible to
construct a stochastic calculus of variations with respect to
𝑆
𝐻 (see, e.g., Alòs et al. [3] and Nualart [4]).The sub-fBm has

properties analogous to those of fractional Brownian motion
and satisfies the following estimates:

[(2 − 2
2𝐻−1

) ∧ 1] (𝑡 − 𝑠)
2𝐻
≤ 𝐸 [(𝑆

𝐻

𝑡
− 𝑆

𝐻

𝑠
)
2

]

≤ [(2 − 2
2𝐻−1

) ∨ 1] (𝑡 − 𝑠)
2𝐻
.

(2)

Thus, Kolmogorov’s continuity criterion implies that subfrac-
tional Brownian motion is Hölder continuous of order 𝛾 for
any 𝛾 < 𝐻. But its increments are not stationary. More works
for sub-fBm can be found in Bojdecki et al. [5], Liu and Yan
[6], Shen and Chen [7], Tudor [8–11], Yan et al. [12–14], and
the references therein.

On the other hand, it is well known that general backward
stochastic differential equations (BSDEs) driven by a Brown-
ianmotionwere first studied by Pardoux andPeng [15], where
they also gave a probabilistic interpretation for the viscosity
solution of semilinear partial differential equations. Because
of their important value in various areas including probability
theory, finance, and control, BSDEs have been subject to the
attention and interest of researchers. A survey and complete
literature for BSDEs could be found in Peng [16]. Recently,
motivated by stochastic control problems, Biagini et al. [17]
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first studied linear BSDEs driven by a fractional Brownian
motion, where existence and uniqueness were discussed in
order to study a maximum principle. Bender [18] gave
explicit solutions for a linear BSDEs driven by a fractional
Brownian motion, and Hu and Peng [19] studied the linear
and nonlinear BSDEs driven by a fractional Brownianmotion
using the quasi-conditional expectation. More works for the
BSDEs driven by Brownian motion and fractional Brownian
motion can be found in Bisumt [20], Geiss et al. [21], Karoui
et al. [22], Ma et al. [23], Maticiuc and Nie [24], Peng [25],
and the references therein. In this paper, we study the BSDEs
driven by a sub-fBm 𝑆𝐻 of the form

−𝑑𝑌
𝑡
= 𝑓 (𝑡, 𝑌

𝑡
, 𝑍
𝑡
) 𝑑𝑡 − 𝑍

𝑡
𝑑𝑆
𝐻

𝑡
, 𝑡 ∈ [0, 𝑇] ,

𝑌
𝑇
= 𝜉,

(3)

where the stochastic integral used in above equation is Pettis
integral.

In recent years, there has been considerable interest in
studying fractional Brownian motion due to its applications
in various scientific areas including telecommunications,
turbulence, image processing, and finance and also due to
some of its compact properties such as long-range depen-
dence, self-similarity, stationary increments, and Hölder’s
continuity (see, e.g., Mandelbrot and van Ness [26], Biagini
et al. [27], Hu [28], Mishura [29], Li [30], Li and Zhao
[31, 32], and Lim and Muniandy [33]). Moreover, many
authors have proposed to use more general self-similar
Gaussian processes and random fields as stochastic models.
Such applications have raised many interesting theoretical
questions about self-similar Gaussian processes and fields in
general.Therefore, other generalizations of Brownianmotion
have been introduced such as sub-fBm, bifractional Brownian
motion, andweighted-fractional Brownianmotion.However,
in contrast to the extensive studies on fractional Brownian
motion, there has been little systematic investigation on other
self-similar Gaussian processes. The main reason for this
is the complexity of dependence structures for self-similar
Gaussian processes which do not have stationary increments.
The sub-fBm has properties analogous to those of fractional
Brownian motion (self-similarity, long-range dependence,
Hölder paths, the variation, and the renormalized varia-
tion). However, in comparison with fractional Brownian
motion, the sub-fBm has nonstationary increments and the
increments over nonoverlapping intervals are more either
weakly or strongly correlated and their covariance decays
polynomially as a higher rate in comparison with fractional
Brownian motion (for this reason in Bojdecki et al. [1] is
called subfractional Brownianmotion).The abovementioned
properties make sub-fBm a possible candidate for models
which involve long-range dependence, self-similarity, and
nonstationary. Thus, it seems interesting to study the BSDEs
driven by a sub-fBm.

This paper is organized as follows. Section 2 contains
some basic results. In Section 3, we give a definition of
subfractional Itô integral based on an S-transform in white
noise analysis. As an application we establish a Girsanov
theorem for this integral. In Section 4, we give an Itô formula
for functionals of a Wiener integral for a sub-fBm. We also

discuss the geometric sub-fBm in this section. Section 5
considers the BSDEs (3). Finally, we will conclude the paper
in Section 6.

2. Preliminaries

In this section, we briefly recall some basic definitions and
results of sub-fBm.Throughout this paper we assume that 0 <
𝐻 < 1 is arbitrary but fixed and let 𝑆𝐻 = {𝑆𝐻

𝑡
, 0 ≤ 𝑡 ≤ 𝑇}

be a one-dimensional sub-fBm with Hurst index 𝐻 defined
on (Ω,F𝐻

, 𝑃). To simplify, we denote 𝛼 = 𝐻 − 1/2, and let
𝐵 = {𝐵

𝑡
}
𝑡∈R be a two-sides Brownian motion and

1
(𝑎,𝑏) (𝑡) =

{{

{{

{

1, if 𝑎 ≤ 𝑡 < 𝑏,
−1, if 𝑏 ≤ 𝑡 < 𝑎,
0, others.

(4)

We also denote

(i) |𝑓|
2
: the usual 𝐿2(R)-norm, and the corresponding

inner product is denoted by (𝑓, 𝑔)
2
;

(ii) 𝑆(R): the Schwartz space of rapidly decreasing
smooth functions of real valued;

(iii) 𝐼(𝑓): the Wiener integral ∫
R
𝑓(𝑠)𝑑𝐵

𝑠
of the function

𝑓 ∈ 𝐿
2
(R);

(iv) G: the 𝜎-field generated by {𝐼(𝑓), 𝑓 ∈ 𝐿2(R)};

(v) ‖Φ‖
2
: the 𝐿2(Ω,G, 𝑃)-norm.

𝑆
𝐻 can be written as a Volterra process with the following

moving average representation:

𝑆
𝐻

𝑡
= 𝐶

𝛼

𝐻
∫
R

[(𝑡 − 𝑠)
𝛼

+
+ (𝑡 + 𝑠)

𝛼

−
− 2(−𝑠)

𝛼

+
] 𝑑𝐵

𝑠
, (5)

where 𝐶𝛼
𝐻
= Γ(𝐻 + 1/2)/√𝐻 sin𝜋𝐻Γ(2𝐻), 𝑥

+
= max(𝑥, 0),

𝑥
−
= max(−𝑥, 0). The sub-fBm 𝑆

𝐻 is also possible to
construct a stochastic calculus of variations with respect
to the Gaussian process 𝑆𝐻, which will be related to the
Malliavin calculus. Some surveys and complete literatures for
Malliavin calculus ofGaussian process could be found inAlòs
et al. [3], Nualart [4] and Tudor [9, 10], Zähle [34], and the
references therein.

Let 0 < 𝛽 < 1. Consider Weyl’s type fractional integrals
𝐼
𝛽

±
of order 𝛽

(𝐼
𝛽

−
𝑓) (𝑥) :=

1

Γ (𝛽)
∫

∞

𝑥

𝑓 (𝑡) (𝑡 − 𝑥)
𝛽−1
𝑑𝑡,

(𝐼
𝛽

+
𝑓) (𝑥) :=

1

Γ (𝛽)
∫

𝑥

−∞

𝑓 (𝑡) (𝑥 − 𝑡)
𝛽−1
𝑑𝑡,

(6)

if the integrals exist for almost all 𝑥 ∈ R, andMarchand’s type
fractional derivatives𝐷𝛽

±
of order 𝛽

(𝐷
𝛽

±
𝑓) := lim

𝜀↓0
+

(𝐷
𝛽

±,𝜀
𝑓) (7)
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if the limit exists in 𝐿𝑝(R) for some 𝑝 > 1, where

(𝐷
𝛽

±,𝜀
𝑓) (𝑥) :=

𝛽

Γ (1 − 𝛽)
∫

∞

𝜀

𝑓 (𝑥) − (𝑥 ∓ 𝑡)

𝑡1+𝛽
𝑑𝑡 (8)

for 𝜀 > 0. Define the operator

𝑀
𝐻

±
𝑓 :=

{{{{{

{{{{{

{

𝐶
𝐻
𝐷
−𝛼

±
𝑓, if 0 < 𝐻 < 1

2
,

𝑓, if 𝐻 = 1
2
,

𝐶
𝐻
𝐼
𝛼

±
𝑓, if 1

2
< 𝐻 < 1,

(9)

where 𝐶
𝐻
= √2𝐻 sin𝜋𝐻Γ(2𝐻) and Γ(⋅) denotes the gamma

function defined by

Γ (𝑧) = ∫

∞

0

𝑡
𝑧−1
𝑒
−𝑡
𝑑𝑡, 𝑧 > 0. (10)

Recall that we now give a stochastic version of the Hardy-
Littlewood theorem as follows.

Theorem 1 (Theorem 2.10 in [35]). Let 1/2 < 𝐻 < 1 and
let the operators 𝑀𝐻

±
be defined as above. Then 𝑀𝐻

±
is a

continuous operator from 𝐿𝑝(R; Ω) into 𝐿𝑞(R; Ω) if 1 < 𝑝 <
2/(2𝐻 − 1) and 𝑞 = 2𝑝/(2 − 𝑝(2𝐻 − 1)).

Define the function

𝑓
0
(𝑥) := {

𝑓 (𝑥) , 𝑥 ≥ 0,

−𝑓 (−𝑥) , 𝑥 < 0
(11)

for any Borel function 𝑓 on R
+
. Then the function 𝑓0 is

odd, which is called the odd extension of 𝑓. Based on the
moving average representation (5), we can show the following
proposition.

Proposition 2. Let the operators 𝑀𝐻

±
be defined as above.

Then𝑀𝐻

−
(1
0

[0,𝑡)
) ∈ 𝐿

2
(R) and 𝑆𝐻 admits the following integral

representation:

𝑆
𝐻

𝑡
=
1

√2
∫
R

𝑀
𝐻

−
(1
0

[0,𝑡)
) (𝑠) 𝑑𝐵𝑠 (12)

for all 𝑡 ≥ 0.

We finally recall the S-transform. The S-transform is
an important tool in white noise analysis. Here we give a
definition and state some results that do not depend on
properties of the white noise space. Denote the S-transform
ofΦ ∈ 𝐿2(Ω,G, 𝑃) (see, e.g., [35, 36] for more details) by

SΦ(𝜂) := 𝐸 [Φ⋅ : 𝑒
𝐼(𝜂)
:] , 𝜂 ∈ S (R) , (13)

where the Wick exponential : 𝑒𝐼(𝜂): of 𝐼(𝜂) is given by

: 𝑒
𝐼(𝜂)
:= 𝑒

𝐼(𝜂)−(1/2)|𝜂|
2

2 . (14)

The S-transform has the following important properties.

(𝐴
1
)The S-transform is injective; that is, SΦ(𝜂) = SΨ(𝜂)
for all 𝜂 ∈ S(R), implies thatΦ = Ψ.

(𝐴
2
) Let𝑓

𝑛
be a sequence that converges to𝑓 in𝐿2(R); then

: 𝑒𝐼(𝑓𝑛): converges to : 𝑒𝐼(𝑓): in 𝐿2(R).

(𝐴
3
) 𝐸[: 𝑒

𝐼(𝑓)
:] = 1 for 𝑓 ∈ 𝐿2(R). Hence it can deduce a

probability measure onF by

𝑑𝑄
𝑓
=: 𝑒

𝐼(𝑓)
: 𝑑𝑃, (15)

especially, for 𝜂 ∈ S(R), we can rewrite the S-tran-
sform as

SΦ(𝜂) = 𝐸
𝑄
𝜂 [Φ] . (16)

(𝐴
4
) Let 𝑋 : R × Ω → R be a progressively measurable
process such that

𝐸∫
R

󵄨󵄨󵄨󵄨𝑋𝑡
󵄨󵄨󵄨󵄨

2
𝑑𝑡 < ∞. (17)

Then ∫
R
𝑋
𝑡
𝑑𝐵

𝑡
is the unique element in 𝐿2(Ω,G, 𝑃) with

S-transform given by

∫
R

(S𝑋
𝑡
) (𝜂) 𝜂 (𝑡) 𝑑𝑡. (18)

(𝐴
5
)The Wiener integral 𝐼(𝑓), 𝑓 ∈ 𝐿2(R) is the unique
element in 𝐿2(Ω,G, 𝑃) with S-transform given by

∫
R

𝑓 (𝑡) 𝜂 (𝑡) 𝑑𝑡. (19)

The following result points out that the operators 𝑀𝐻

±

interchanges with the S-transform.

Lemma 3 (Lemma 2.9 in [35]). Let𝑀𝐻

±
𝑋 exist for some 𝑋 :

R → 𝐿
2
(Ω,G, 𝑃). Then one has

𝐸 [(𝑀
𝐻

±
𝑋)

𝑡
Ψ] = 𝑀

𝐻

±
(𝐸 [𝑋

𝑡
Ψ]) (20)

for allΨ ∈ 𝐿2(Ω,G, 𝑃). In the case𝐻 < 1/2 the convergence of
the fractional derivative on the right-hand side is in the 𝐿𝑝(R)
sense, if𝑀−(𝐻−1/2)

±
𝑋 ∈ 𝐿

𝑝
(R; 𝐿2(Ω,G, 𝑃)). In particular, the

operators𝑀𝐻

±
interchange with the S-transform.

3. A Subfractional Itô Integral

In this section, based on the S-transform we aim to define
the subfractional Itô integral, denoted byΦ = ∫𝑏

𝑎
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
with

0 ≤ 𝑎 < 𝑏, and introduce the Girsanov theorem. To this
end, inspired by theHitsuda-Skorohod integral, we define the
subfractional Itô integral as the unique random variable Φ
such that

SΦ(𝜂) = ∫
𝑏

𝑎

S (𝑋
𝑡
) (𝜂)

𝑑

𝑑𝑡
S (𝑆

𝐻

𝑡
) (𝜂) 𝑑𝑡 (21)
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for all 𝜂 ∈ S(R), provided the integral exists under suitable
conditions. According to (12) and Property (𝐴

5
), we have

𝑑

𝑑𝑡
S (𝑆

𝐻

𝑡
) (𝜂)

=
1

√2

𝑑

𝑑𝑡
∫
R

𝑀
𝐻

−
(1
0

[0,𝑡)
) 𝜂 (𝑠) 𝑑𝑠

=
1

√2

𝑑

𝑑𝑡
∫
R

(1
0

[0,𝑡)
)𝑀

𝐻

+
𝜂 (𝑠) 𝑑𝑠

=
1

√2

𝑑

𝑑𝑡
∫

𝑡

0

𝑀
𝐻

+
𝜂 (𝑠) 𝑑𝑠 −

1

√2

𝑑

𝑑𝑡
∫

0

−𝑡

𝑀
𝐻

+
𝜂 (𝑠) 𝑑𝑠

=
1

√2
[𝑀

𝐻

+
𝜂 (𝑡) − 𝑀

𝐻

+
𝜂 (−𝑡)] .

(22)

Combining this with the fact (𝐴
1
) in Section 2, we give the

following definition.

Definition 4. Let 𝑀 ⊂ R+ be a Borel set. A mapping 𝑋 :

𝑀 → 𝐿
2
(Ω,G, 𝑃) is said to be subfractional Itô integrable

on𝑀 if

(S𝑋.) (𝜂) [(𝑀
𝐻

+
𝜂) (⋅) − (𝑀

𝐻

+
𝜂) (−⋅)] ∈ 𝐿

1
(𝑀) (23)

for any 𝜂 ∈ S(R), and there is a Φ ∈ 𝐿2(Ω,G, 𝑃) such that

SΦ(𝜂) =
1

√2
∫
𝑀

S (𝑋
𝑡
) (𝜂) [(𝑀

𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)] 𝑑𝑡

(24)

for all 𝜂 ∈ 𝑆(R).

It is important to note that Φ in the above definition is
unique because the S-transform is injective, which is called
the subfractional Itô integral of 𝑋 on𝑀 and we denote it by

Φ = ∫
𝑀

𝑋
𝑡
𝑑𝑆
𝐻

𝑡
. (25)

In this paper, sub-fractional Itô integralalways refers to
the S-transform approach proposed in Definition 4.

Proposition 5. The following statements hold.

(1) For any 𝑎 < 𝑏 one has

𝑆
𝐻

𝑏
− 𝑆

𝐻

𝑎
= ∫

𝑏

𝑎

𝑑𝑆
𝐻

𝑡
. (26)

(2) Let𝑋 : [𝑎, 𝑏] → 𝐿
2
(Ω,G, 𝑃) be subfractional Itô inte-

grable for 0 ≤ 𝑎 < 𝑏. Then

∫

𝑏

𝑎

𝑋
𝑡
𝑑𝑆
𝐻

𝑡
= ∫

R

1
[𝑎,𝑏] (𝑡) 𝑋𝑡𝑑𝑆

𝐻

𝑡
,

𝐸 [∫

𝑏

𝑎

𝑋
𝑡
𝑑𝑆
𝐻

𝑡
] = 0.

(27)

Proof. These results are some simple examples.

Recall that the Wick product 𝐹 ⬦ 𝐺 of 𝐹, 𝐺 ∈ 𝐿2(Ω,G, 𝑃)
is an element 𝐹 ⬦ 𝐺 ∈ 𝐿2(Ω,G, 𝑃) such that

S (𝐹 ⬦ 𝐺) (𝜂) = S (𝐹) (𝜂)S (𝐺) (𝜂) (28)

for all 𝜂 ∈ S(R). The following theorem expresses the
relationship between the subfractional Itô integral defined as
above and the integral based on Wick product ⬦.

Theorem6. Let𝑋 : R+ → 𝐿
2
(Ω,G, 𝑃) and𝑌 ∈ 𝐿2(Ω,G, 𝑃);

then

𝑌 ⬦ ∫
R+
𝑋
𝑠
𝑑𝑆
𝐻

𝑠
= ∫

R+
𝑌 ⬦ 𝑋

𝑠
𝑑𝑆
𝐻

𝑠
(29)

in the sense that if one side is well defined then so is the other,
and both coincide.

We can obtain it by calculating the S-transform of both
sides. In particular, for 𝑌 ∈ 𝐿2(Ω,G, 𝑃), this theorem implies
that

𝑌 ⬦ (𝑆
𝐻

𝑏
− 𝑆

𝐻

𝑎
) = ∫

R+
1
(𝑎,𝑏) (𝑠) 𝑌𝑑𝑆

𝐻

𝑠
. (30)

It means that the subfractional Itô integral is the 𝐿2(Ω,G, 𝑃)-
limit of Wick-Riemann sums for some suitable processes.
That is,

∫

𝑇

0

𝑋
𝑠
𝑑𝑆
𝐻

𝑠
= lim
|𝜋𝑛|→0

𝑛

∑

𝑖=0

𝑋
𝑠
𝑖

⬦ (𝑆
𝐻

𝑠
𝑖+1

− 𝑆
𝐻

𝑠
𝑖

) (31)

for some suitable processes 𝑋, where 𝜋
𝑛
= {0 = 𝑠

0
< 𝑠

1
<

⋅ ⋅ ⋅ < 𝑠
𝑛+1
= 𝑇} is a partition of [0, 𝑇] with |𝜋

𝑛
| := max{𝑠

𝑖+1
−

𝑠
𝑖
} and the convergence is in 𝐿2(Ω,G, 𝑃).
Now we calculate the expectation of a subfractional Itô

integral under a measure 𝑄
𝑓
, 𝑓 ∈ 𝐿

2
(R).

Theorem 7. Let 0 < 𝐻 < 1 and 𝑄
𝑓
, 𝑓 ∈ 𝐿

2
(R) be given by

(15). If the following assumptions hold:

(1) 𝑋 : R+ → 𝐿
2
(Ω,G, 𝑃) is subfractional Itô integrable,

and 𝑋 ∈ 𝐿1/𝐻(R+, 𝐿2(Ω,G, 𝑃));
(2) 𝑀𝐻

+
𝑓 ∈ 𝐿

1/(1−𝐻) and𝑀𝐻

−
𝑋 ∈ 𝐿

2
(R+) for𝐻 < 1/2,

One then has

𝐸
𝑄
𝑓 [∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
]

=
1

√2
∫
R+
𝐸
𝑄
𝑓 [𝑋

𝑡
] [(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡.

(32)

Proof. Let (𝜂
𝑛
)
𝑛∈N ⊂ S(R) be given such that 𝜂

𝑛
converges to

𝑓 in 𝐿2(R), we have the identity

𝐸
𝑄
𝜂𝑛 [∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
]

=
1

√2
∫
R+
𝐸
𝑄
𝜂𝑛 [𝑋

𝑡
] [(𝑀

𝐻

+
𝜂
𝑛
) (𝑡) − (𝑀

𝐻

+
𝜂
𝑛
) (−𝑡)] 𝑑𝑡.

(33)
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It can be easily obtained that the left-hand side of (33) con-
verges to the same side of (32) by Theorem 1 and (𝐴

2
) in

Section 2.
Then we just need to prove the right-hand side of (33)

converges to (32) correspondingly. By Lemma 3, applying the
fractional integration by parts rule, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R+
𝐸
𝑄
(𝜂𝑛) [𝑋

𝑡
] [(𝑀

𝐻

+
𝜂
𝑛
) (𝑡) − (𝑀

𝐻

+
𝜂
𝑛
) (−𝑡)]

−𝐸
𝑄
𝑓 [𝑋

𝑡
] [(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R+
𝐸 [𝑋

𝑡
: 𝑒
𝐼(𝜂
𝑛
)
:] [(𝑀

𝐻

+
𝜂
𝑛
) (𝑡) − (𝑀

𝐻

+
𝜂
𝑛
) (−𝑡)]

−𝐸 [𝑋
𝑡
: 𝑒
𝐼(𝑓)
:] [(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(34)

which is bounded by

󵄨󵄨󵄨󵄨󵄨
∫
R+
𝐸[(𝑀

𝐻

−
𝑋)
𝑡

: 𝑒
𝐼(𝜂
𝑛
)
:] 𝜂
𝑛
(𝑡) − 𝐸 [(𝑀

𝐻

−
𝑋)
𝑡

: 𝑒
𝐼(𝑓)

:] 𝑓 (𝑡) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
∫
R+
𝐸[(𝑀

𝐻

−
𝑋)
𝑡

: 𝑒
𝐼(𝑓)

:] 𝑓 (−𝑡) − 𝐸 [(𝑀
𝐻

−
𝑋)
𝑡

: 𝑒
𝐼(𝜂
𝑛
)
:] 𝜂
𝑛
(−𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
∫
R+
𝐸[
󵄨󵄨󵄨󵄨󵄨
(𝑀
𝐻

−
𝑋)
𝑡

(: 𝑒
𝐼(𝜂
𝑛
)
: − : 𝑒

𝐼(𝑓)
:)
󵄨󵄨󵄨󵄨󵄨
]
󵄨󵄨󵄨󵄨𝜂𝑛 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
∫
R+
𝐸[
󵄨󵄨󵄨󵄨󵄨
(𝑀
𝐻

−
𝑋)
𝑡

: 𝑒
𝐼(𝑓)

:
󵄨󵄨󵄨󵄨󵄨
]
󵄨󵄨󵄨󵄨𝜂𝑛 (𝑡) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
∫
R+
𝐸[
󵄨󵄨󵄨󵄨󵄨
(𝑀
𝐻

−
𝑋)
𝑡

(: 𝑒
𝐼(𝜂
𝑛
)
: − : 𝑒

𝐼(𝑓)
:)
󵄨󵄨󵄨󵄨󵄨
]
󵄨󵄨󵄨󵄨𝜂𝑛 (−𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
∫
R+
𝐸[
󵄨󵄨󵄨󵄨󵄨
(𝑀
𝐻

−
𝑋)
𝑡

: 𝑒
𝐼(𝑓)

:
󵄨󵄨󵄨󵄨󵄨
]
󵄨󵄨󵄨󵄨𝜂𝑛 (−𝑡) − 𝑓 (−𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨

≡ 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
.

(35)

We can easily show that 𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
converge to zero, as 𝑛 →

∞, respectively, by Hölder’s inequality. This completes the
proof.

Remark 8. Under the assumptions of Theorem 7, ∫
R+
𝑋
𝑡

[(𝑀
𝐻

+
𝑓)(𝑡) − (𝑀

𝐻

+
𝑓)(−𝑡)]𝑑𝑡 exists as a Pettis integral (see

Definition 2.3 in [35]). In fact, for all Φ ∈ 𝐿2(Ω,G, 𝑃),

∫
R+

󵄨󵄨󵄨󵄨󵄨
𝐸 [𝑋

𝑡
[(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)]Φ]

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤ (∫
R+

󵄨󵄨󵄨󵄨󵄨
(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)

󵄨󵄨󵄨󵄨󵄨

1/(1−𝐻)

𝑑𝑡)

1−𝐻

× (∫
R+
𝐸[
󵄨󵄨󵄨󵄨𝑋𝑡
󵄨󵄨󵄨󵄨

2
]
1/2𝐻

𝑑𝑡)

𝐻

𝐸[|Φ|
2
]
1/2

≤ [(∫
R+

󵄨󵄨󵄨󵄨󵄨
(𝑀

𝐻

+
𝑓) (𝑡)

󵄨󵄨󵄨󵄨󵄨

1/(1−𝐻)

𝑑𝑡)

1−𝐻

+(∫
R+

󵄨󵄨󵄨󵄨󵄨
(𝑀

𝐻

+
𝑓) (−𝑡)

󵄨󵄨󵄨󵄨󵄨

1/(1−𝐻)

𝑑𝑡)

1−𝐻

]

× (∫
R+
𝐸[
󵄨󵄨󵄨󵄨𝑋𝑡
󵄨󵄨󵄨󵄨

2
]
1/2𝐻

𝑑𝑡)

𝐻

𝐸[|Φ|
2
]
1/2

< ∞.

(36)

Thus, the property of the Pettis integral deduces

𝐸
𝑄
𝑓 [∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
]

=
1

√2
𝐸
𝑄
𝑓 ∫

R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡.

(37)

Now, we establish a Girsanov theorem for subfractional
Itô integral. Consider the measure 𝑄

𝑓
, 𝑓 ∈ 𝐿

2
(R), the

probability space (Ω,F, 𝑄
𝑓
) carries a two-side Brownian

motion given by

𝐵
𝑡
= 𝐵

𝑡
− ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 (38)

according to the classical Girsanov theorem. On this proba-
bility space, we denote S

𝑄
𝑓

the S-transform with respect to
the measure 𝑄

𝑓
, 𝑓 ∈ 𝐿

2
(R); that is,

(S
𝑄
𝑓

𝑋) (𝜂) := 𝐸
𝑄
𝑓 [: 𝑒

𝐼
𝐵
(𝜂)
: 𝑋] , (39)

and the following identity holds:

: 𝑒
𝐼
𝐵
(𝑔)
: ⋅ : 𝑒

𝐼(𝑓)
:=: 𝑒

𝐼(𝑓+𝑔)
: (40)

for all 𝑔 ∈ 𝐿2(R).

Theorem9. Let the assumptions ofTheorem 7 be satisfied, and

𝐸
𝑄
𝑓 [

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
−
1

√2
∫
R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓)(𝑡)−(𝑀

𝐻

+
𝑓)(−𝑡)]𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

< ∞.

(41)

Then, the identity

∫
R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡

= ∫
R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
−
1

√2
∫
R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡

(42)

holds in 𝐿2(Ω,F, 𝑄
𝑓
)-almost surely.
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Proof. We apply Theorem 7 to 𝑓 + 𝜂, 𝜂 ∈ S(R). It is easy to
check that𝑀𝐻

+
(𝑓 + 𝜂) ∈ 𝐿

1/(1−𝐻)
(R) according to Lemma 2.5

in [36]. ByTheorem 7 and (40), it follows

S
𝑄
𝑓

(∫
R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
−∫

R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓) (𝑡)−(𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡) (𝜂)

= 𝐸
𝑄
𝑓+𝜂 [∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
−∫

R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓) (𝑡)−(𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡]

=
1

√2
∫
R+
𝐸
𝑄
𝑓+𝜂 [𝑋

𝑡
] [𝑀

𝐻

+
(𝑓 + 𝜂) (𝑡) − 𝑀

𝐻

+
(𝑓 + 𝜂) (−𝑡)] 𝑑𝑡

−
1

√2
∫
R+
𝐸
𝑄
𝑓+𝜂 [𝑋

𝑡
] [(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡

=
1

√2
∫
R+
𝐸
𝑄
𝑓+𝜂 [𝑋

𝑡
] [(𝑀

𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)] 𝑑𝑡

=
1

√2
∫
R+

S
𝑄
𝑓

𝑋
𝑡
(𝜂) [(𝑀

𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)] 𝑑𝑡.

(43)

The second identity based on the fact that ∫
R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓)(𝑡)−

(𝑀
𝐻

+
𝑓)(−𝑡)]𝑑𝑡 exists as a Pettis integral which is proved in

Remark 8. The proof is complete.

4. An Itô Formula

In this section, we prove an Itô formula for a subfractional
Wiener integral using the S-transform approach. An indefi-
nite subfractional Wiener integral is understood as a process

𝑋
𝑡
= ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑆
𝐻

𝑠
≡ ∫

R

1
[0,𝑡] (𝑠) 𝜑 (𝑠) 𝑑𝑆

𝐻

𝑠
(44)

for all 0 ≤ 𝑡 ≤ 𝑇 provided 𝜑 is a deterministic function such
that the above integral exists as a subfractional Itô integral for
all 0 ≤ 𝑡 ≤ 𝑇.

Proposition 10. Assume that 𝜑 : [0, 𝑇] → R is continuous
for 1/2 ≤ 𝐻 < 1, and 𝜆-Hölder continuous with 𝜆 > 1/2 − 𝐻
for 0 < 𝐻 < 1/2. Then the indefinite subfractional Wiener
integral ∫𝑡

0
𝜑(𝑠)𝑑𝑆

𝐻

𝑠
exists, and

∫

𝑡

0

𝜑 (𝑠) 𝑑𝑆
𝐻

𝑠
=
1

√2
𝐼 (𝑀

𝐻

−
(1
(0,𝑡)
𝜑)
0
) . (45)

Proof. We should prove that 𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0
∈ 𝐿

2
(R) and

S(∫
𝑡

0
𝜑(𝑠)𝑑𝑆

𝐻

𝑠
)(𝜂) exists.

For 1/2 ≤ 𝐻 < 1, since 𝜑 is continuous on [0, 𝑇], by
Hardy-Littlwood theorem, it is obvious that 𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0
∈

𝐿
2
(R).
For 0 < 𝐻 < 1/2, similar to the argument in Proposition

5.1 in [35], there exists a function 𝑔 ∈ 𝐿2(R), such that

1
(0,𝑡)
𝜑 = 𝐼

1/2−𝐻

−
𝑔. (46)

Hence,𝑀𝐻

−
(1
(0,𝑡)
𝜑) ∈ 𝐿

2
(R), and so is𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0
∈ 𝐿

2
(R).

𝜑 is a deterministic function implies that S(∫𝑡
0
𝜑(𝑠)𝑑𝑆

𝐻

𝑠
)(𝜂)

exists.

Next, consider the S-transform of the right-hand side in
(45), then by (19), we obtain that

S(
1

√2
𝐼 (𝑀

𝐻

−
(1
(0,𝑡)
𝜑)
0
)) (𝜂)

=
1

√2
∫
R

𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0
𝜂𝑑𝑠

=
1

√2
∫
R

(1
(0,𝑡)
𝜑)
0
𝑀
𝐻

+
(𝜂) 𝑑𝑠

=
1

√2
∫

𝑡

0

𝜑 (𝑠) (𝑀
𝐻

+
𝜂) (𝑠) 𝑑𝑠 +

1

√2
∫

−𝑡

0

𝜑 (−𝑠) (𝑀
𝐻

+
𝜂) (𝑠) 𝑑𝑠

=
1

√2
∫

𝑡

0

𝜑 (𝑠) (𝑀
𝐻

+
𝜂) (𝑠) 𝑑𝑠 −

1

√2
∫

𝑡

0

𝜑 (𝑠) (𝑀
𝐻

+
𝜂) (−𝑠) 𝑑𝑠

= S(∫
𝑡

0

𝜑 (𝑠) 𝑑𝑆
𝐻

𝑠
) (𝜂) .

(47)

This completes the proof.

The following lemma is essential to the proof of our Itô’s
formula.

Lemma 11. Let 𝜑 : R → R be continuous and𝐻 > 1/2. Then
one has

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

= 8𝛼𝐻∫

𝑡

0

∫

𝜏

0

𝜑 (𝑠) 𝜑 (𝜏) [(𝜏 − 𝑠)
2𝛼−1

+ (𝑠 + 𝜏)
2𝛼−1
] 𝑑𝑠 𝑑𝜏.

(48)

In particular,

(1) for all 𝑡 > 0, |𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0
|
2

2
≤ 3max

𝑠∈[0,𝑡]
|𝜑(𝑠)|

2
𝑡
2𝐻;

(2) |𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0
|
2

2
is differentiable in 𝑡, and for all 𝑡 ≥ 0,

one has

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

= 8𝛼𝐻𝜑 (𝑡) ∫

𝑡

0

𝜑 (𝑠) [(𝑡 − 𝑠)
2𝛼−1

+ (𝑠 + 𝑡)
2𝛼−1
] 𝑑𝑠

≤ 4𝐻max
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝜑 (𝑠)
󵄨󵄨󵄨󵄨

2
𝑡
2𝛼
.

(49)

Proof. For𝐻 > 1/2, the following identity holds:

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
𝜑
󵄨󵄨󵄨󵄨󵄨

2

2
= 2𝛼𝐻∬

R

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 − 𝜏|
2𝛼−1
𝑑𝑠 𝑑𝜏. (50)
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Then,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨󵄨

2

2

= 2𝛼𝐻∬
R

(1
(0,𝑡)
𝜑)
0

(𝑠) (1(0,𝑡)𝜑)
0

(𝜏) |𝑠 − 𝜏|
2𝛼−1
𝑑𝑠 𝑑𝜏

= 4𝛼𝐻∬

𝑡

0

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 − 𝜏|
2𝛼−1
𝑑𝑠 𝑑𝜏

+ 4𝛼𝐻∬

𝑡

0

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 + 𝜏|
2𝛼−1
𝑑𝑠 𝑑𝜏

= 8𝛼𝐻∫

𝑡

0

∫

𝜏

0

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 − 𝜏|
2𝛼−1
𝑑𝑠 𝑑𝜏

+ 8𝛼𝐻∫

𝑡

0

∫

𝜏

0

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 + 𝜏|
2𝛼−1
𝑑𝑠 𝑑𝜏.

(51)

Equation (48) easily follows and the other assertions are
trivial.

Remark 12. Since the right of (48) is not hold when 𝐻 <

1/2, there is a lack of a result similar to the above Lemma.
Hence, we only consider the case of constant 𝜑, and we have
|𝑀

𝐻

−
(1
(0,𝑡)
𝜑)
0
|
2

2
= (2 − 2

2𝐻−1
)𝜑
2
𝑡
2𝐻.

Now we give the following Itô formula.

Theorem 13. Let 𝑇 > 0, such that

(𝐵
1
) 𝑋 be an indefinite subfractional Wiener integral; that
is, for all 0 ≤ 𝑡 ≤ 𝑇, 𝑋

𝑡
= ∫

𝑡

0
𝜑(𝑠)𝑑𝑆

𝐻

𝑠
, where 𝜑 is cont-

inuous when𝐻 ≥ 1/2, constant when𝐻 < 1/2;

(𝐵
2
) 𝐹 ∈ C1,2([0, 𝑇] ×R);

(𝐵
3
) there exists constants 𝐶 ≥ 0 and 𝜆 ≤ [2√3𝑇

𝐻
⋅

max
𝑠∈[0,𝑇]

|𝜑(𝑠)|]
−2 such that

max{|𝐹 (𝑡, 𝑥)| ,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
𝐹 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝐹 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

≤ 𝐶𝑒
𝜆𝑥
2

.

(52)

Then the following equality holds in (𝐿2):

∫

𝑇

0

𝜑 (𝑡)
𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
) 𝑑𝑆

𝐻

𝑡

= 𝐹 (𝑇,𝑋
𝑇
) − 𝐹 (0, 0) − ∫

𝑇

0

𝜕

𝜕𝑡
𝐹 (𝑡, 𝑋

𝑡
) 𝑑𝑡

−
1

2
∫

𝑇

0

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
𝑜󵄨󵄨󵄨󵄨󵄨

2

2

𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑋

𝑡
) 𝑑𝑡.

(53)

Proof. It suffices to show that both sides have the same S-
transform. Indeed, by Definition 4, the integral of the left-
hand side has the S-transform given by

S(∫
𝑇

0

𝜑 (𝑡)
𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
) 𝑑𝑆

𝐻

𝑡
) (𝜂)

=
1

√2
∫

𝑇

0

𝜑 (𝑡) [(𝑀
𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)]S

× (
𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) 𝑑𝑡.

(54)

Henceforth, we just need to show the right-hand side has the
same result. Firstly, we show the integrals of the right-hand
side exist in (𝐿2). Without loss of generality, denote 𝐺 = 𝐹,
(𝜕/𝜕𝑡)𝐹(𝑡, 𝑥), (𝜕/𝜕𝑥)𝐹(𝑡, 𝑥), (𝜕2/𝜕𝑥2)𝐹(𝑡, 𝑥), and 0 ≤ 𝑡 ≤ 𝑇.
By the growth condition (52), we obtain

󵄩󵄩󵄩󵄩𝐺(𝑡, 𝑋𝑡)
󵄩󵄩󵄩󵄩

2

2
≤ 𝐶

2
(1 − 4𝜆

󵄨󵄨󵄨󵄨󵄨
(𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
)

(−1/2)

≤ const.
(55)

Consequently, ∫𝑇
0
(𝜕/𝜕𝑡)𝐹(𝑡, 𝑋

𝑡
)𝑑𝑡 exists. For the last one, by

Lemma 11 and Remark 12, we have

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

𝜕

𝜕𝑥2
𝐹(𝑡, 𝑋

𝑡
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

𝑑𝑡

≤ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥2
𝐹(𝑡, 𝑋

𝑡
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

𝑑𝑡

≤ const. ∫
𝑇

0

𝑡
2𝐻
𝑑𝑡 < ∞.

(56)

Hence, the last integral exists as a Pettis integral in the (𝐿2)-
sense.

On the other hand, denote the heat kernel as follows:

𝑔 (𝑡, 𝑥) :=
1

√2𝜋𝑡
exp{−𝑥

2

2𝑡
} . (57)

Thanks to the classical Girsanov theorem, for arbitrary 𝜂 ∈
S(R), under the measure 𝑄

𝜂
, we can easily calculate that

𝑋
𝑡
is a Gaussian random variable with mean (1/√2) ∫𝑡

0
𝜑(𝑠)

[(𝑀
𝐻

+
𝜂)(𝑠) − (𝑀

𝐻

+
)𝜂(−𝑠)]𝑑𝑠 and variance |𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0
|
2

2
.

Thus, we obtain

S (𝐹 (𝑡, 𝑋
𝑡
)) (𝜂)

= 𝐸
𝑄
𝜂 [𝐹 (𝑡, 𝑋

𝑡
)]

= ∫
R

𝐹(𝑡, 𝑢 +
1

√2
∫

𝑡

0

𝜑 (𝑠) [(𝑀
𝐻

+
𝜂) (𝑠) − (𝑀

𝐻

+
𝜂) (−𝑠)] 𝑑𝑠)

× 𝑔(
󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
, 𝑢) 𝑑𝑢.

(58)
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Moreover, by (𝐵
3
), integration and differentiation can be

interchanged. Since the heat kernel fulfills (𝜕/𝜕𝑡)𝑔 =

(1/2)(𝜕
2
/𝜕𝑥

2
)𝑔, we have

𝑑

𝑑𝑡
S (𝐹 (𝑡, 𝑋

𝑡
)) (𝜂)

= S(
𝜕

𝜕𝑡
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂)

+
1

√2
[(𝑀

𝐻

+
𝜂) (𝑡)−(𝑀

𝐻

+
𝜂) (−𝑡)] 𝜑 (𝑡)S(

𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂)

+
1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
⋅S(

𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) .

(59)

Consequently,

S (𝐹 (𝑇,𝑋
𝑇
) − 𝐹 (0, 0)) (𝜂)

= lim
𝜀→0

S (𝐹 (𝑇,𝑋
𝑇
) − 𝐹 (𝜀, 𝑋

𝜀
)) (𝜂)

= ∫

𝑇

0

S(
𝜕

𝜕𝑡
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) 𝑑𝑡

+
1

√2
∫

𝑇

0

[(𝑀
𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)] 𝜑 (𝑡)

× S(
𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) 𝑑𝑡

+
1

2
∫

𝑇

0

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
⋅S(

𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) 𝑑𝑡.

(60)

Compared with (54), the proof can be completed.

The objective of this part is to define the geometric sub-
fBm and establish an Itô formula with respect to it.

Definition 14. Let𝐻 ∈ (0, 1), 𝑥
0
> 0, and 𝜑, 𝑟 : [0,∞) → R,

Then one calls

𝑃
𝑡
:= 𝑥

0
exp{∫

𝑡

0

𝑟 (𝑠) 𝑑𝑠 −
1

2

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
+ ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑆
𝐻

𝑠
}

(61)

a geometric sub-fBm with coefficients 𝐻, 𝑥
0
, 𝜑, 𝑟, provided

the right-hand side exists as an element of (𝐿2) for all 0 ≤ 𝑡 <
∞.

Theorem 15. Let 𝑇 > 0, such that

(i) 𝑃 be a geometric sub-fBm with continuous coefficients
𝜑, 𝑟, and let 𝜑 be a constant when𝐻 < 1/2;

(ii) (𝐵
2
), (𝐵

3
) hold.

Then the following equality holds in (𝐿2):

∫

𝑇

0

𝜑 (𝑡) 𝑃𝑡

𝜕

𝜕𝑥
𝐹 (𝑡, 𝑃

𝑡
) 𝑑𝑆

𝐻

𝑡

= 𝐹 (𝑇, 𝑃
𝑇
) − 𝐹 (0, 𝑥

0
) − ∫

𝑇

0

𝜕

𝜕𝑡
𝐹 (𝑡, 𝑃

𝑡
) 𝑑𝑡

− ∫

𝑇

0

𝑟 (𝑡) 𝑃𝑡

𝜕

𝜕𝑥
𝐹 (𝑡, 𝑃

𝑡
) 𝑑𝑡

−
1

2
∫

𝑇

0

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
𝑃
2

𝑡

𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑃

𝑡
) 𝑑𝑡.

(62)

Proof. Let

𝑔 (𝑡, 𝑥) := 𝑥0 exp{∫
𝑡

0

𝑟 (𝑠) 𝑑𝑠 −
1

2

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
+ 𝑥} .

(63)

Then, apply Theorem 13 to 𝐹(𝑡, 𝑔(𝑡, 𝑥)), and the result is
obvious.

The special case 𝐹(𝑡, 𝑥) = 𝑥 yields the following.

Corollary 16. Let 𝑃 be a geometric sub-fBm as inTheorem 15;
then for all 𝑡 ≥ 0,

𝑃
𝑡
= 𝑥

0
+ ∫

𝑡

0

𝑟 (𝑠) 𝑃𝑠 𝑑𝑠 + ∫

𝑡

0

𝜑 (𝑠) 𝑃𝑠 𝑑𝑆
𝐻

𝑠
. (64)

For this reason, one calls it “geometric sub-fBm”.

5. Explicit Solution of a Class of Linear
Subfractional BSDEs

General BSDEs driven by a Brownian motion are usually of
the form

−𝑑𝑌
𝑡
= 𝑓 (𝑡, 𝑌

𝑡
, 𝑍
𝑡
) 𝑑𝑡 − 𝑍

𝑡
𝑑𝐵

𝑡
, 𝑡 ∈ [0, 𝑇] ,

𝑌
𝑇
= 𝜉,

(65)

where 𝑓, 𝜉 are given. The generator 𝑓(𝑡, 𝑦, 𝑧) is a G
𝑡
-adapted

process for every pair (𝑦, 𝑧) ∈ R2, the terminal value 𝜉
is a G

𝑇
-measureable random variable, and G

𝑡
denotes the

filtration generated by 𝐵
𝑡
. We say a pair (𝑌, 𝑍) is a solution of

this equation, if the processes 𝑌,𝑍 which areG
𝑡
-adapted and

satisfy a suitable integrability condition solve the equation 𝑃-
almost surely.

After these preparations, we now turn to the problems to
solve the BSDEs driven by a sub-fBm of the form

𝑌
𝑡
= 𝜉 − ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑡
, 𝑍
𝑡
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑍
𝑡
𝑑𝑆
𝐻

𝑠
, (66)

where 𝑓, 𝜉 = 𝑌
𝑇
are given. The generator 𝑓(𝑡, 𝑦, 𝑧) is a G

𝑡
-

adapted process for every pair (𝑦, 𝑧) ∈ R2, the terminal value
𝜉 is a G

𝑇
-measureable random variable, and G

𝑡
denotes the

filtration generated by 𝑆𝐻
𝑡
. We say a pair (𝑌, 𝑍) is a solution of

this equation, if the processes 𝑌,𝑍 which areG
𝑡
-adapted and
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satisfy a suitable integrability condition solve the equation 𝑃-
almost surely.

Let us recall a result about the following PDE, which is
a parabolic partial differential equation solved by the heat
equation (seeTheorem9 in [18]). Let the following conditions
be satisfied:

(𝐶
1
) 𝑆 ∈ C1((0, 𝑇),R) ∩ C([0, 𝑇],R) and 𝑆 is strictly inc-
reasing with 𝑆(0) = 0 and 𝑆󸀠 ∈ 𝐿1([0, 𝑇],R);

(𝐶
1
) 𝑟, 𝐴, 𝑓 ∈ C((0, 𝑇],R) ∩ 𝐿1([0, 𝑇],R);

(𝐶
1
) 𝜙 ∈ C(R,R) and there exists constant 𝐶 ≥ 0 and
𝜆 < (8𝑆(𝑇))

−1 such that for all (𝑡, 𝑥) ∈ [0, 𝑇] × R,
|𝜙(𝑡, 𝑥)| ≤ 𝐶𝑒

𝜆𝑥
2

.

Then the PDE

𝜕
𝑡
𝑢 (𝑡, 𝑥) = −

1

2
𝑆
󸀠
(𝑡) 𝜕𝑥𝑥𝑢 (𝑡, 𝑥) + 𝑟 (𝑡) 𝜕𝑥𝑢 (𝑡, 𝑥)

+ 𝐴 (𝑡) 𝑢 (𝑡, 𝑥) + 𝑓 (𝑡) ,

𝑢 (𝑇, 𝑥) = 𝜙 (𝑥) ,

(67)

has a classical solution given by

𝑢 (𝑡, 𝑥) := − ∫

𝑇

𝑡

𝑓 (𝑠) 𝑒
∫
𝑡

𝑠
𝐴(𝑢)𝑑𝑢

𝑑𝑠

+
𝑒
−∫
𝑇

𝑡
𝐴(𝑠)𝑑𝑠

√2𝜋 (𝑆 (𝑇) − 𝑆 (𝑡))

× ∫
R

𝜙 (𝑦) exp
{{

{{

{

−(𝑥 − 𝑦 − ∫
𝑇

𝑡
𝑟 (𝑠) 𝑑𝑠)

2

2 (𝑆 (𝑇) − 𝑆 (𝑡))

}}

}}

}

𝑑𝑦.

(68)

Next we give the main result of this paper.

Theorem 17. Let Φ
𝑡
= 𝑥

0
+ 𝑏(𝑡) + ∫

𝑡

0
𝜑(𝑠)𝑑𝑆

𝐻

𝑠
and 𝑇 > 0.

Suppose the following conditions are satisfied:

(𝐷
1
) 𝜑 : [0, 𝑇] → R+ is continuous when 𝐻 ≥ 1/2, cons-
tant when𝐻 < 1/2, and there exist constants 0 < 𝐾

1
≤

𝐾
2
, such that 𝐾

1
≤ 𝜑(𝑡) ≤ 𝐾

2
, 𝑡 ∈ [0, 𝑇];

(𝐷
2
) 𝑥

0
∈ R, 𝑏 ∈ C1((0, 𝑇),R) ∩C([0, 𝑇],R);

(𝐷
3
) (𝐶

2
) holds with 𝑟(𝑡) = 𝜑(𝑡)ℎ(𝑡)−𝑏󸀠(𝑡) and ℎ : [0, 𝑇] →

R with 𝜑ℎ bounded on [0, 𝑇];

(𝐷
4
) 𝜙 ∈ C(R,R) and there exist constants 𝐶 ≥ 0, and 𝜆 ≤
1/(12𝑇

2𝐻max
𝑠∈[0,𝑇]

|𝑓(𝑠)|
2
) such that for all (𝑡, 𝑥) ∈

[0, 𝑇] ×R, |𝜙(𝑡, 𝑥)| ≤ 𝐶𝑒𝜆𝑥
2

.

Then the BSDEs,

𝑌
𝑡
= 𝜙 (Φ

𝑇
) − ∫

𝑇

𝑡

[𝑓 (𝑠) + 𝐴 (𝑠) 𝑌𝑠 + ℎ (𝑠) 𝑍𝑠] 𝑑𝑠

− ∫

𝑇

𝑡

𝑍
𝑠
𝑑𝑆
𝐻

𝑠
,

(69)

have a solution (𝑌, 𝑍) of the form

𝑌 (𝑡) := V (𝑡, Φ
𝑡
) , 𝑍

𝑡
:= 𝜑 (𝑡) 𝜕

𝑥
V (𝑡, Φ

𝑡
) ,

V (𝑡, 𝑥)

:= −∫

𝑇

𝑡

𝑓 (𝑠) 𝑒
∫
𝑡

𝑠
𝐴(𝑢)𝑑𝑢

𝑑𝑠

+
𝑒
−∫
𝑇

𝑡
𝐴(𝑠)𝑑𝑠

√2𝜋 (
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑇)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
−
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
)

× ∫
R

𝜙 (𝑦) exp
{{

{{

{

−(𝑥 − 𝑦 − ∫
𝑇

𝑡
(𝜑 (𝑠) ℎ (𝑠) − 𝑏

󸀠
(𝑠)) 𝑑𝑠)

2

2
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑇)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
− 2
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

}}

}}

}

𝑑𝑦.

(70)

Proof. Let 𝑆(𝑡) := |𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0
|
2

2
; from Lemma 11 and

Remark 12, we have 𝑆(𝑡) satisfies (𝐶
1
). By the growth con-

dition (𝐷
4
), (𝐶

3
) is yielded, and (𝐶

2
) follows from (𝐷

3
).

Henceforth, V(𝑡, 𝑥) is a classical solution of the PDE

𝜕
𝑡
V (𝑡, 𝑥) = −

1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
𝜕
𝑥𝑥
V (𝑡, 𝑥)

+ [𝜑 (𝑡) ℎ (𝑡) − 𝑏
󸀠
(𝑡)] 𝜕𝑥V (𝑡, 𝑥) + 𝐴 (𝑡) V (𝑡, 𝑥)

+ 𝑓 (𝑡) ; (𝑡, 𝑥) ∈ ((0, 𝑇) ,R) ,

V (𝑇, 𝑥) = 𝜙 (𝑥) , 𝑥 ∈ R.

(71)

Moreover, by Lemma 10 and Corollary 11 in [18], suppose that
𝐹(𝑡, 𝑥) := V(𝑡, 𝑥

0
+ 𝑏(𝑡) + 𝑥), which fulfills the conditions of

Theorem 13 for all 0 ≤ 𝑡 ≤ 𝑇 − 𝜀 and 𝜀 > 0. Consequently,

V (𝑡, Φ
𝑡
)

= V (𝑇 − 𝜀, Φ
𝑇−𝜀
) − ∫

𝑇−𝜀

𝑡

𝜑 (𝑠) 𝜕𝑥V (𝑠, Φ𝑠) 𝑑𝑆
𝐻

𝑠

− ∫

𝑇−𝜀

𝑡

𝑓 (𝑠) + 𝐴 (𝑠) V (𝑠, Φ𝑠) + ℎ (𝑠) 𝜑 (𝑠) 𝜕𝑥V (𝑠, Φ𝑠) 𝑑𝑠.

(72)

Next, according to Definition 4 and the growth condition,
∫
𝑇−𝜀

𝑡
𝜑(𝑠)𝜕

𝑥
V(𝑠, Φ

𝑠
)𝑑𝑆

𝐻

𝑠
exists when 𝜀 tends to zero.

On the other hand, similar to (58), we obtain

S (V (𝑇 − 𝜀, Φ
𝑇−𝜀
)) (𝜂)

= ∫
R

𝐹(𝑇 − 𝜀, 𝑥

+
1

√2
∫

𝑇−𝜀

0

𝜑 (𝑠) [(𝑀
𝐻

+
𝜂) (𝑠) − (𝑀

𝐻

+
𝜂) (−𝑠)] 𝑑𝑠)

× 𝑔(
󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑇−𝜀)

𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
, 𝑥) 𝑑𝑥.

(73)
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By the growth and the continuity conditions of V, we have
S(V(𝑇 − 𝜀, Φ

𝑇−𝜀
))(𝜂) converges to S(V(𝑇, Φ

𝑇
))(𝜂) as 𝜀 tends

to zero.
Now it remains to show the existence of the last integral

of (72). In fact, there exists a constant𝐾, such that

∫

𝑇

0

󵄩󵄩󵄩󵄩𝑓(𝑠) + 𝐴(𝑠)V(𝑠, Φ𝑠) + ℎ(𝑠)𝜑(𝑠)𝜕𝑥V(𝑠, Φ𝑠)
󵄩󵄩󵄩󵄩2𝑑𝑠

≤
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨𝐿1([0,𝑇]) + 𝐾|𝐴|𝐿1([0,𝑇])

+ 𝐾∫

𝑇

0

1

√
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑇)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
−
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

𝑑𝑡.

(74)

For𝐻 > 1/2, (48) and (𝐷
1
) yield

∫
𝑇

0

1

√
󵄨󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1(0,𝑇)𝜑)

0󵄨󵄨󵄨󵄨󵄨󵄨

2

2
−
󵄨󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1(0,𝑡)𝜑)

0󵄨󵄨󵄨󵄨󵄨󵄨

2

2

𝑑𝑡

= ∫
𝑇

0
[8𝛼𝐻∫

𝑇

𝑡
∫
𝜏

0
𝜑 (𝑠) 𝜑 (𝜏) [(𝜏 − 𝑠)

2𝛼−1
+ (𝑠 + 𝜏)

2𝛼−1
] 𝑑𝑠 𝑑𝜏]

−1/2

𝑑𝑡

≤
1

𝐾1

∫
𝑇

0
[8𝛼𝐻∫

𝑇

𝑡
∫
𝜏

0
[(𝜏 − 𝑠)

2𝛼−1
+ (𝑠 + 𝜏)

2𝛼−1
] 𝑑𝑠 𝑑𝜏]

−1/2

𝑑𝑡

=
1

𝐾1

∫
𝑇

0

1

√𝑇
2𝐻
− 𝑡
2𝐻

𝑑𝑡 =
𝑇
1−𝐻

𝐻𝐾12
𝐻+1

Γ (1/2) Γ (1/2𝐻)

Γ (1/2𝐻+ 1/2)
.

(75)

For𝐻 < 1/2, |𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0
|
2

2
= (2 − 2

2𝐻−1
)𝜑
2
𝑡
2𝐻, we obtain

∫

𝑇

0

1

√
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑇)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2
−
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

𝑑𝑡

=
1

√2 − 22𝐻−1𝜑

∫

𝑇

0

1

√𝑇2𝐻 − 𝑡2𝐻
𝑑𝑡

=
1

√2 − 22𝐻−1𝑓

𝑇
1−𝐻
Γ (1/2) Γ (1/2𝐻)

2𝐻Γ (1/2𝐻 + 1/2)
.

(76)

This means that ∫𝑇
0
𝑓(𝑠) +𝐴(𝑠)V(𝑠, Φ

𝑠
) + ℎ(𝑠)𝜑(𝑠)𝜕

𝑥
V(𝑠, Φ

𝑠
)𝑑𝑠

is well defined, which completes the proof.

The above theorem also holds for geometric sub-fBm as
described in the following proposition.

Proposition 18. Let a geometric sub-fBm 𝑃
𝑡
= 𝑥

0
exp{𝑘𝑆𝐻

𝑡
+

𝜇𝑡 − (1/2)(2 − 2
2𝐻−1

)𝑘
2
𝑡
2𝐻
}, and 𝐺 is continuous and of

polynomial growth. Then Theorem 17 holds with the terminal
value of the form 𝐺(𝑃

𝑇
).

Proof. We just need to apply Theorem 17 with Φ(𝑡) = ln𝑥
0
+

𝑘𝑆
𝐻

𝑡
+ 𝜇𝑡 − (1/2)(2 − 2

2𝐻−1
)𝑘
2
𝑡
2𝐻 and 𝜙(𝑥) = 𝐺(𝑒𝑥).

The regularity of the obtained solutions is described as
follows.

Proposition 19. Let 𝑌, 𝑍 as defined in Theorem 17. Then 𝑌 ∈
𝐿
2
([0, 𝑇], (𝐿

2
)). Moreover, 𝑍 ∈ 𝐿1/𝐻([0, 𝑇], (𝐿2)) when 𝐻 >

1/4.

It is a straightforward result in view of the growth condi-
tion of V.

6. Conclusion

We have presented the subfractional Itô integral using the
method of theS-transform.AGirsanov theoremwith respect
to the subfractional Itô integral and an Itô formula for
functionals of a subfractionalWiener integral has been estab-
lished. As an application, we obtain explicit solutions for a
class of linear BSDEs driven by a sub-fBm with arbitrary
Hurst parameter under suitable assumptions.
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