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Abstract. 
The aim of this paper is to study representations of 3-dimensional simple multiplicative Hom-Lie algebras 
	
		
			
				(
				𝔤
				;
				[
				⋅
				,
				⋅
				]
				;
				𝛼
				)
			

		
	
 (whose structure is of A 1-type). In this paper we can see that a finite dimensional representation of 
	
		
			
				(
				𝔤
				;
				[
				⋅
				,
				⋅
				]
				;
				𝛼
				)
			

		
	
 is not always completely reducible, and a representation of 
	
		
			
				(
				𝔤
				;
				[
				⋅
				,
				⋅
				]
				;
				𝛼
				)
			

		
	
 is irreducible if and only if it is a regular Lie-type representation.


1. Introduction
In 2006, Hartwig, Larsson, and Silvestrov introduced the notion of a Hom-Lie algebra [1], which is a generalization of the notion of a Lie algebra. In particular, if 
	
		
			
				𝛼
				=
				i
				d
			

		
	
, then a Hom-Lie algebra is exactly a Lie algebra.
Because the Hom-Lie algebras are closely related to discrete and deformed vector fields, differential calculus [2, 3], and mathematical physics [4, 5], the Hom-Lie algebras have attracted more and more attention and become an active topic in recent years [6–8].
The representation theory plays an important role in Lie theory [9–11]. By means of the representation theory, we would be more aware of the corresponding algebras. Thus it is meaningful to obtain more information about the representations of Hom-Lie algebras.
In [7] the author defined the representations of Hom-Lie algebras and the corresponding Hom-cochain complexes, and studied the cohomologies associated with the adjoint representation and the trivial representation. As is known, specific calculations about the representations of Hom-Lie algebras are still not solved. The diversity of the twist map of 
	
		
			

				𝔤
			

		
	
 makes this topic interesting and complicated.
Thanks to the relationship between multiplicative Hom-Lie algebras with 
	
		
			

				𝛼
			

		
	
 invertible and Lie algebras (Lemma 3), the representation theory of Lie algebras can be a reference to what is considered. The representation of a 3-dimensional simple Lie algebra plays a crucial role in the representation theory of semisimple Lie algebras over 
	
		
			

				ℂ
			

		
	
 [9]. By the same reason, in this paper, we study the representations of 3-dimensional simple multiplicative Hom-Lie algebras.
The paper is organized as follows. In Section 2 we study the structures of 3-dimensional simple multiplicative Hom-Lie algebra and show that 3-dimensional simple multiplicative Hom-Lie algebras are of 
	
		
			

				𝐴
			

			

				1
			

		
	
-type. In Section 3, the representation 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 of a multiplicative Hom-Lie algebra with 
	
		
			

				𝛼
			

		
	
 invertible is investigated and shows that when 
	
		
			

				𝛽
			

		
	
 is invertible, 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is of Lie-type, which makes it convenient to study representations of multiplicative Hom-Lie algebras. In Section 4, we study regular Lie-type representations of 3-dimensional simple multiplicative Hom-Lie algebras and reflect the existence and irreducibility of representations of this type. In Section 5, we work over finite dimensional representations of 3-dimensional simple multiplicative Hom-Lie algebras 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
. In this section we can see that a finite dimensional representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is not always completely reducible and a representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is irreducible if and only if it is a regular Lie-type one.
Throughout this paper, unless otherwise stated, all algebras are finite dimensional and over the complex field 
	
		
			

				ℂ
			

		
	
.
2. The Structures of 3-Dimensional Simple Multiplicative Hom-Lie Algebras
First we give some important definitions on Hom-Lie algebras.
Definition 1 (see [1]). A Hom-Lie algebra is a triple 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 consisting of a vector space 
	
		
			

				𝔤
			

		
	
 over 
	
		
			

				ℂ
			

		
	
, a linear sef-map 
	
		
			

				𝛼
			

		
	
, and a bilinear map 
	
		
			
				[
				⋅
				,
				⋅
				]
				∶
				𝔤
				×
				𝔤
				→
				𝔤
			

		
	
 such that
							
	
 		
 			
				(
				1
				)
			
 			
				(
				2
				)
			
 		
	

	
		
			
				[
				]
				[
				]
				[
				[
				+
				[
				[
				+
				[
				[
				𝑥
				,
				𝑦
				=
				−
				𝑦
				,
				𝑥
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝔤
				,
				𝛼
				(
				𝑥
				)
				,
				𝑦
				,
				𝑧
				]
				]
				𝛼
				(
				𝑦
				)
				,
				𝑧
				,
				𝑥
				]
				]
				𝛼
				(
				𝑧
				)
				,
				𝑥
				,
				𝑦
				]
				]
				=
				0
				,
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝔤
				.
			

		
	

A Hom-Lie algebra 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is said to be multiplicative if 
	
		
			
				𝛼
				(
				[
				𝑥
				,
				𝑦
				]
				)
				=
				[
				𝛼
				(
				𝑥
				)
				,
				𝛼
				(
				𝑦
				)
				]
			

		
	
 for any 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝔤
			

		
	
; see [7].
Definition 2. Let 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 be a Hom-Lie algebra. If there exists a Lie algebra 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
 such that 
	
		
			
				[
				𝑥
				,
				𝑦
				]
				=
				𝛼
				(
				[
				𝑥
				,
				𝑦
				]
			

			

				
			

			
				)
				=
				[
				𝛼
				(
				𝑥
				)
				,
				𝛼
				(
				𝑦
				)
				]
			

			

				
			

			
				,
				f
				o
				r
				a
				l
				l
				𝑥
				,
				𝑦
				∈
				𝔤
			

		
	
, then 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is said to be of Lie-type, and 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
 is called the compatible Lie algebra of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
. Furthermore, if the compatible Lie algebra of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is an 
	
		
			

				𝐴
			

		
	
 (or 
	
		
			

				𝐵
			

		
	
, 
	
		
			

				𝐶
			

		
	
, 
	
		
			

				𝐷
			

		
	
)-type Lie algebra, one calls 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 an 
	
		
			

				𝐴
			

		
	
 (or 
	
		
			

				𝐵
			

		
	
, 
	
		
			

				𝐶
			

		
	
, 
	
		
			

				𝐷
			

		
	
)-type Hom-Lie algebra.
A subspace 
	
		
			

				𝔤
			

			

				1
			

		
	
 of 
	
		
			

				𝔤
			

		
	
 is called an ideal of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 if 
	
		
			
				𝛼
				(
				𝔤
			

			

				1
			

			
				)
				⊆
				𝔤
			

			

				1
			

			
				,
				[
				𝔤
			

			

				1
			

			
				,
				𝔤
				]
				⊆
				𝔤
			

			

				1
			

		
	
 are satisfied. A center of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is defined as 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				
				
				
				
				
				.
				𝐶
				(
				𝔤
				)
				=
				𝑥
				∈
				𝔤
				∣
				𝑥
				,
				𝔤
				=
				0
				;
				𝛼
				(
				𝑥
				)
				,
				𝔤
				=
				0
			

		
	

A Hom-Lie algebra 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is called simple if it has no nontrivial ideals and 
	
		
			
				[
				𝔤
				,
				𝔤
				]
				=
				𝔤
			

		
	
.
Lemma 3.  Let 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 be a multiplicative Hom-Lie algebra with 
	
		
			

				𝛼
			

		
	
 invertible. Then 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is Lie-type with the compatible Lie algebra 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
, where 
	
		
			
				[
				⋅
				,
				⋅
				]
			

			

				
			

		
	
 is defined by 
	
		
			
				[
				𝑥
				,
				𝑦
				]
			

			

				
			

			
				=
				𝛼
			

			
				−
				1
			

			
				(
				[
				𝑥
				,
				𝑦
				]
				)
				,
				𝑓
				𝑜
				𝑟
				𝑎
				𝑙
				𝑙
				𝑥
				,
				𝑦
				∈
				𝔤
			

		
	
.
Proof. Let 
	
		
			
				[
				𝑥
				,
				𝑦
				]
			

			

				
			

			
				=
				𝛼
			

			
				−
				1
			

			
				(
				[
				𝑥
				,
				𝑦
				]
				)
			

		
	
 for any 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝔤
			

		
	
. Since 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is multiplicative, we have
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				[
				]
				[
				]
				𝛼
				(
				𝑥
				,
				𝑦
				)
				=
				𝛼
				(
				𝑥
				)
				,
				𝛼
				(
				𝑦
				)
				⟹
				𝛼
			

			

				2
			

			
				
				[
				]
				𝑥
				,
				𝑦
			

			

				
			

			
				
				
				[
				]
				=
				𝛼
				𝛼
				(
				𝑥
				)
				,
				𝛼
				(
				𝑦
				)
			

			

				
			

			
				
				,
			

		
	

						and thus 
	
		
			
				𝛼
				(
				[
				𝑥
				,
				𝑦
				]
			

			

				
			

			
				)
				=
				[
				𝛼
				(
				𝑥
				)
				,
				𝛼
				(
				𝑦
				)
				]
			

			

				
			

		
	
 follows.In the following we will show that 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
 is a Lie algebra. First it is obvious that 
	
		
			
				[
				⋅
				,
				⋅
				]
			

			

				
			

		
	
 is skew-symmetric. Next 
	
		
			
				∀
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝔤
			

		
	
,
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				↺
			

			
				𝑥
				,
				𝑦
				,
				𝑧
			

			
				
				[
				]
				𝑥
				,
				𝑦
				,
				𝑧
			

			

				
			

			

				
			

			

				
			

			
				=
				↺
			

			
				𝑥
				,
				𝑦
				,
				𝑧
			

			

				𝛼
			

			
				−
				1
			

			
				
				𝑥
				,
				𝛼
			

			
				−
				1
			

			
				(
				[
				]
				)
				
				𝑦
				,
				𝑧
				=
				↺
			

			
				𝑥
				,
				𝑦
				,
				𝑧
			

			

				𝛼
			

			
				−
				1
			

			
				
				𝛼
			

			
				−
				1
			

			
				𝛼
				(
				𝑥
				)
				,
				𝛼
			

			
				−
				1
			

			
				(
				[
				]
				)
				
				𝑦
				,
				𝑧
				=
				↺
			

			
				𝑥
				,
				𝑦
				,
				𝑧
			

			

				𝛼
			

			
				−
				2
			

			
				(
				[
				[
				𝛼
				(
				𝑥
				)
				,
				𝑦
				,
				𝑧
				]
				]
				)
				=
				0
				,
			

		
	

						where 
	
		
			

				↺
			

			
				𝑥
				,
				𝑦
				,
				𝑧
			

		
	
 denotes a summation over the cyclic permutation on 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
			

		
	
. Now it follows that 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
 is a Lie algebra.
Theorem 4.  Let 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 be a 3-dimensional simple multiplicative Hom-Lie algebra; then 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is 
	
		
			

				𝐴
			

			

				1
			

		
	
-type and 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				[
				]
				)
				=
				
				[
				]
				[
				]
				(
				𝔤
				,
				⋅
				,
				⋅
				,
				𝛼
				ℎ
				,
				𝑒
				,
				𝑓
				∣
				ℎ
				,
				𝑒
				=
				2
				𝑎
				𝑒
				,
				ℎ
				,
				𝑓
				=
				−
				2
				𝑎
			

			
				−
				1
			

			
				[
				]
				
				,
				𝛼
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑓
				,
				𝑒
				,
				𝑓
				=
				ℎ
				(
				ℎ
				,
				𝑒
				,
				𝑓
				)
				=
				(
				ℎ
				,
				𝑒
				,
				𝑓
				)
				1
				0
				0
				0
				𝑎
				0
				0
				0
				𝑎
			

			
				−
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
			

			
				0
				≠
				𝑎
				∈
				ℂ
			

			

				.
			

		
	

Proof. If 
	
		
			
				K
				e
				r
				(
				𝛼
				)
				≠
				0
			

		
	
, then 
	
		
			
				𝛼
				(
				K
				e
				r
				(
				𝛼
				)
				)
				=
				0
			

		
	
, 
	
		
			
				𝛼
				(
				[
				𝔤
				,
				K
				e
				r
				(
				𝛼
				)
				]
				)
				=
				0
			

		
	
; that is, 
	
		
			
				K
				e
				r
				(
				𝛼
				)
			

		
	
 is a nontrivial ideal of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
, which is a contradiction to the simplicity of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
. So 
	
		
			

				𝛼
			

		
	
 is invertible. Now by Lemma 3, we have that 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is Lie-type with the 3-dimensional Hom-Lie admissible algebra 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			
				)
				=
				(
				𝔤
				,
				𝛼
			

			
				−
				1
			

			
				(
				[
				⋅
				,
				⋅
				]
				)
				)
			

		
	
.If 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
 is an abelian Lie algebra, then we can deduce that 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 is also abelian, which is absurd.Suppose that 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
 has a 1-dimensional center 
	
		
			
				ℂ
				𝑥
			

		
	
. Note that 
	
		
			
				[
				𝑥
				,
				𝔤
				]
				=
				𝛼
				(
				[
				𝑥
				,
				𝔤
				]
			

			

				
			

			
				)
				=
				0
			

		
	
, and 
	
		
			
				f
				o
				r
				a
				l
				l
				𝑦
				∈
				𝔤
				,
				∃
				𝑦
			

			

				
			

			
				∈
				𝔤
			

		
	
 such that 
	
		
			
				𝑦
				=
				𝛼
				(
				𝑦
			

			

				
			

			

				)
			

		
	
, we have 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				[
				]
				=
				
				
				𝑦
				𝛼
				(
				𝑥
				)
				,
				𝑦
				𝛼
				(
				𝑥
				)
				,
				𝛼
			

			

				
			

			
				
				
				=
				𝛼
				
				
				𝑥
				,
				𝑦
			

			

				
			

			
				
				
				=
				0
				.
			

		
	
That is, 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 has a 1-dimensional center 
	
		
			
				ℂ
				𝑥
			

		
	
, which is a contradiction to the simplicity of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
.If 
	
		
			
				[
				𝔤
				,
				𝔤
				]
			

			

				
			

			
				≠
				𝔤
			

		
	
, then 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				
				
				𝔤
				,
				𝔤
				=
				𝛼
			

			
				−
				1
			

			
				
				
				
				𝔤
				,
				𝔤
			

			

				
			

			
				
				=
				
				𝛼
			

			
				−
				1
			

			
				(
				𝔤
				)
				,
				𝛼
			

			
				−
				1
			

			
				
				(
				𝔤
				)
			

			

				
			

			
				=
				
				
				𝔤
				,
				𝔤
			

			

				
			

			
				≠
				𝔤
				,
			

		
	

						which is impossible.Now we can get that 
	
		
			
				[
				𝔤
				,
				𝔤
				]
			

			

				
			

			
				=
				𝔤
			

		
	
. By Lie theory, 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
 is an 
	
		
			

				𝐴
			

			

				1
			

		
	
-type Lie algebra with a basis 
	
		
			
				{
				ℎ
				,
				𝑒
				,
				𝑓
				}
			

		
	
 and a bracket 
	
		
			
				[
				ℎ
				,
				𝑒
				]
			

			

				
			

			
				=
				2
				𝑒
				,
				[
				ℎ
				,
				𝑓
				]
			

			

				
			

			
				=
				−
				2
				𝑓
				,
				[
				𝑒
				,
				𝑓
				]
			

			

				
			

			
				=
				ℎ
			

		
	
. On one hand, by the proof of Lemma 3, we have that 
	
		
			

				𝛼
			

		
	
 is an automorphism of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
. On the other hand, by Lie theory, the automorphism of 
	
		
			

				𝐴
			

			

				1
			

		
	
 has the form 
	
		
			
				𝛼
				=
				e
				x
				p
			

			
				𝑎
				𝑑
				𝑘
				ℎ
			

			
				,
				𝑘
				∈
				ℂ
			

		
	
. Thus
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝛼
				(
				ℎ
				,
				𝑒
				,
				𝑓
				)
				=
				(
				ℎ
				,
				𝑒
				,
				𝑓
				)
				1
				0
				0
				0
				e
				x
				p
			

			
				2
				𝑘
			

			
				0
				0
				0
				e
				x
				p
			

			
				−
				2
				𝑘
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

						Now it follows that 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				[
				]
				
				[
				]
				ℎ
				,
				𝑒
				=
				𝛼
				ℎ
				,
				𝑒
			

			

				
			

			
				
				=
				2
				e
				x
				p
			

			
				2
				𝑘
			

			
				[
				]
				
				[
				]
				𝑒
				,
				ℎ
				,
				𝑓
				=
				𝛼
				ℎ
				,
				𝑓
			

			

				
			

			
				
				=
				−
				2
				e
				x
				p
			

			
				−
				2
				𝑘
			

			
				[
				]
				
				[
				]
				𝑓
				,
				𝑒
				,
				𝑓
				=
				𝛼
				𝑒
				,
				𝑓
			

			

				
			

			
				
				=
				ℎ
				.
			

		
	
Let 
	
		
			
				𝑎
				=
				e
				x
				p
			

			
				2
				𝑘
			

			
				≠
				0
			

		
	
. The result follows.
3. The Representations of Multiplicative Hom-Lie Algebras
First we give the definition of the representations of multiplicative Hom-Lie algebras.
Definition 5 (see [7]). Let 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 be a multiplicative Hom-Lie algebra, 
	
		
			

				𝑉
			

		
	
 a finite dimensional vector space, and 
	
		
			
				𝛽
				∈
				g
				l
				(
				𝑉
				)
			

		
	
. If a linear map 
	
		
			
				𝜌
				∶
				𝔤
				→
				g
				l
				(
				𝑉
				)
			

		
	
 satisfies
							
	
 		
 			
				(
				1
				1
				)
			
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝜌
				(
				[
				]
				𝑥
				,
				𝑦
				)
				𝛽
				(
				𝑣
				)
				=
				𝜌
				(
				𝛼
				(
				𝑥
				)
				)
				𝜌
				(
				𝑦
				)
				𝑣
				−
				𝜌
				(
				𝛼
				(
				𝑦
				)
				)
				𝜌
				(
				𝑥
				)
				𝑣
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝔤
				,
				𝑣
				∈
				𝑉
				,
				3
				𝛽
				(
				𝜌
				(
				𝑥
				)
				𝑣
				)
				=
				𝜌
				(
				𝛼
				(
				𝑥
				)
				)
				𝛽
				(
				𝑣
				)
				,
				∀
				𝑥
				∈
				𝔤
				,
				𝑣
				∈
				𝑉
				,
			

		
	

						then 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is called a representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
, and 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is called a Hom-
	
		
			

				𝔤
			

		
	
-module via the action 
	
		
			
				𝑥
				𝑣
				=
				𝜌
				(
				𝑥
				)
				𝑣
				,
				f
				o
				r
				a
				l
				l
				𝑥
				∈
				𝔤
				,
				𝑣
				∈
				𝑉
			

		
	
.
For a Hom-
	
		
			

				𝔤
			

		
	
-module 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
, if a subspace 
	
		
			

				𝑉
			

			

				1
			

			
				⊆
				𝑉
			

		
	
 is invariant under 
	
		
			

				𝛽
			

		
	
, then 
	
		
			
				(
				𝑉
			

			

				1
			

			
				,
				𝛽
				)
			

		
	
 is called a Hom-
	
		
			

				𝔤
			

		
	
-submodule of 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
. A Hom-
	
		
			

				𝔤
			

		
	
-module 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is called irreducible, if it has precisely two Hom-
	
		
			

				𝔤
			

		
	
-submodules (itself and 0). A Hom-
	
		
			

				𝔤
			

		
	
-module 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is called completely reducible if 
	
		
			
				𝑉
				=
				𝑉
			

			

				1
			

			
				⊕
				⋯
				⊕
				𝑉
			

			

				𝑠
			

		
	
, where 
	
		
			
				𝛽
				(
				𝑉
			

			

				𝑖
			

			
				)
				⊆
				𝑉
			

			

				𝑖
			

			
				(
				𝑖
				=
				1
				,
				…
				,
				𝑠
				)
			

		
	
 and 
	
		
			
				(
				𝑉
			

			

				𝑖
			

			
				,
				𝛽
				)
				(
				𝑖
				=
				1
				,
				…
				,
				𝑠
				)
			

		
	
 are irreducible Hom-
	
		
			

				𝔤
			

		
	
-submodules.
Proposition 6.  Let 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 be a multiplicative Hom-Lie algebra with 
	
		
			

				𝛼
			

		
	
 invertible, 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 its representation with 
	
		
			

				𝛽
			

		
	
 invertible, and 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			
				
				𝔤
			

			

				)
			

		
	
 the compatible Lie algebra. Let 
	
		
			

				𝜌
			

			

				
			

			
				=
				𝛽
			

			
				−
				1
			

			

				𝜌
			

		
	
; then 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
				)
			

		
	
 is a representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			
				
				𝔤
			

			

				)
			

		
	
.
 Proof. Equation (12) is equivalent to
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝜌
				(
				𝛼
				(
				𝑥
				)
				)
				=
				𝛽
				𝜌
				(
				𝑥
				)
				𝛽
			

			
				−
				1
			

			
				,
				∀
				𝑥
				∈
				𝔤
				.
			

		
	
Equation (11) is equivalent to 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝜌
				[
				]
				𝑥
				,
				𝑦
				=
				𝛽
				𝜌
				(
				𝑥
				)
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑦
				)
				𝛽
			

			
				−
				1
			

			
				−
				𝛽
				𝜌
				(
				𝑦
				)
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑥
				)
				𝛽
			

			
				−
				1
			

			
				,
				∀
				𝑥
				∈
				𝔤
				,
				𝑣
				∈
				𝑉
				.
			

		
	
Denote that by 
	
		
			
				𝛼
				(
				𝑥
				)
				=
				𝑥
			

			

				
			

		
	
, (13) can be rewritten as 
	
		
			
				𝜌
				(
				𝛼
			

			
				−
				1
			

			
				(
				𝑥
			

			

				
			

			
				)
				)
				=
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑥
			

			

				
			

			
				)
				𝛽
			

		
	
; by the arbitrary of 
	
		
			

				𝑥
			

		
	
 and the invertibility of 
	
		
			

				𝛼
			

		
	
 we have 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝜌
				
				𝛼
			

			
				−
				1
			

			
				
				(
				𝑥
				)
				=
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑥
				)
				𝛽
				,
				∀
				𝑥
				∈
				𝔤
				.
			

		
	
On vector space 
	
		
			

				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝔤
				)
			

		
	
, for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝔤
			

		
	
, define a commutator bracket 
	
		
			
				[
				⋅
				,
				⋅
				]
			

			

				
			

		
	
 as
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑥
				)
				,
				𝛽
			

			
				−
				1
			

			
				
				𝜌
				(
				𝑦
				)
			

			

				
			

			
				=
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑥
				)
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑦
				)
				−
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑦
				)
				𝛽
			

			
				−
				1
			

			
				=
				
				𝜌
				𝜌
				(
				𝑥
				)
			

			

				
			

			
				(
				𝑥
				)
				,
				𝜌
			

			

				
			

			
				
				(
				𝑦
				)
			

			

				
			

			

				.
			

		
	
Clearly, 
	
		
			
				(
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝔤
				)
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
 is a Lie algebra.On the other hand, for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝔤
			

		
	
,
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝜌
			

			

				
			

			
				
				[
				]
				𝑥
				,
				𝑦
			

			
				
				𝔤
			

			
				
				=
				𝜌
			

			

				
			

			
				
				𝛼
			

			
				−
				1
			

			
				(
				[
				]
				)
				
				𝑥
				,
				𝑦
				=
				𝛽
			

			
				−
				1
			

			
				𝜌
				𝛼
				
				
			

			
				−
				1
			

			
				(
				𝑥
				)
				,
				𝛼
			

			
				−
				1
			

			
				(
				𝑦
				)
				
				
				=
				𝛽
			

			
				−
				1
			

			
				
				
				𝛼
				𝛽
				𝜌
			

			
				−
				1
			

			
				
				𝛽
				(
				𝑥
				)
			

			
				−
				1
			

			
				𝜌
				
				𝛼
			

			
				−
				1
			

			
				
				𝛽
				(
				𝑦
				)
			

			
				−
				1
			

			
				
				𝛼
				−
				𝛽
				𝜌
			

			
				−
				1
			

			
				
				𝛽
				(
				𝑦
				)
			

			
				−
				1
			

			
				𝜌
				
				𝛼
			

			
				−
				1
			

			
				
				𝛽
				(
				𝑥
				)
			

			
				−
				1
			

			
				
				=
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑥
				)
				𝛽
				𝛽
			

			
				−
				1
			

			

				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑦
				)
				𝛽
				𝛽
			

			
				−
				1
			

			
				−
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑦
				)
				𝛽
				𝛽
			

			
				−
				1
			

			

				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑥
				)
				𝛽
				𝛽
			

			
				−
				1
			

			
				=
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑥
				)
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑦
				)
				−
				𝛽
			

			
				−
				1
			

			
				𝜌
				(
				𝑦
				)
				𝛽
			

			
				−
				1
			

			
				=
				
				𝜌
				𝜌
				(
				𝑥
				)
			

			

				
			

			
				(
				𝑥
				)
				,
				𝜌
			

			

				
			

			
				
				(
				𝑦
				)
			

			

				
			

			

				.
			

		
	
Then the result follows easily.
From Proposition 6, we can get a method of computing representations of a multiplicative Hom-Lie algebra with 
	
		
			
				𝛼
				,
				𝛽
			

		
	
 invertible.
Let 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 be a representation of a Lie-type Hom-Lie algebra. If 
	
		
			
				𝜌
				=
				𝛽
				𝜌
			

			

				
			

		
	
, where 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
				)
			

		
	
 is a representation of the compatible Lie algebra, then 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is called a Lie-type representation. It is easy to know that the representation in Proposition 6 is Lie-type. In addition, suppose that 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
				)
			

		
	
 is an irreducible representation of the compatible Lie algebra; then 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is called a regular Lie-type representation.
Theorem 7.  Let 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 be a Lie-type Hom-Lie algebra with the compatible Lie algebra 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
. (1) If 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 (
	
		
			

				𝛽
			

		
	
 invertible) is a representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
, then
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝛽
				
				𝜌
			

			

				
			

			
				
				(
				𝑥
				)
				𝑣
				=
				𝜌
			

			

				
			

			
				(
				𝛼
				(
				𝑥
				)
				)
				𝛽
				(
				𝑣
				)
				,
				∀
				𝑥
				∈
				𝔤
				,
				𝑣
				∈
				𝑉
				,
			

		
	

						where 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
				)
				=
				(
				𝛽
			

			
				−
				1
			

			
				𝜌
				,
				𝑉
				)
			

		
	
 is a representation of the compatible Lie algebra. (2) Suppose that 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
				)
			

		
	
 is a representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
			

			

				
			

			

				)
			

		
	
. If  
	
		
			
				∃
				𝛽
				∈
				g
				l
				(
				𝑉
				)
			

		
	
 such that (18) is satisfied, let 
	
		
			
				𝜌
				=
				𝛽
				𝜌
			

			

				
			

		
	
; then 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is a representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
.
Proof. (1) By the invertibility of 
	
		
			

				𝛽
			

		
	
 and (12), we can get (18) easily.(2) 
	
		
			
				f
				o
				r
				a
				l
				l
				𝑥
				∈
				𝔤
				,
				𝑣
				∈
				𝑉
			

		
	
, (12) follows from (18) easily. 
	
		
			
				f
				o
				r
				a
				l
				l
				𝑥
				,
				𝑦
				∈
				𝔤
				,
				𝑣
				∈
				𝑉
			

		
	
, we have
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				[
				]
				
				𝜌
				𝜌
				(
				𝑥
				,
				𝑦
				)
				𝛽
				(
				𝑣
				)
				=
				𝛽
			

			

				
			

			
				
				𝛼
				
				[
				]
				𝑥
				,
				𝑦
			

			

				
			

			
				
				𝜌
				
				
				𝛽
				(
				𝑣
				)
				=
				𝛽
				
				
			

			

				
			

			
				(
				𝛼
				(
				𝑥
				)
				)
				𝜌
			

			

				
			

			
				(
				𝛼
				(
				𝑦
				)
				)
				−
				𝜌
			

			

				
			

			
				(
				𝛼
				(
				𝑦
				)
				)
				𝜌
			

			

				
			

			
				
				
				
				𝜌
				(
				𝛼
				(
				𝑥
				)
				)
				𝛽
				(
				𝑣
				)
				=
				𝛽
			

			

				
			

			
				
				𝜌
				(
				𝛼
				(
				𝑥
				)
				)
				𝛽
			

			

				
			

			
				
				(
				𝑦
				)
				𝑣
				−
				𝜌
			

			

				
			

			
				
				𝜌
				(
				𝛼
				(
				𝑦
				)
				)
				𝛽
			

			

				
			

			
				(
				𝑥
				)
				𝑣
				
				
				=
				𝜌
				(
				𝛼
				(
				𝑥
				)
				)
				𝜌
				(
				𝑦
				)
				𝑣
				−
				𝜌
				(
				𝛼
				(
				𝑥
				)
				)
				𝜌
				(
				𝑦
				)
				𝑣
				.
			

		
	
Now we can get (11). Therefore 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is a representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
.
4. Regular Lie-Type Representations of 3-Dimensional Simple Multiplicative Hom-Lie Algebras
Lemma 8.  Let 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 be a representation of a multiplicative Hom-Lie algebra 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
; then 
	
		
			
				(
				K
				e
				r
				(
				𝛽
				)
				,
				𝛽
				)
			

		
	
 is a Hom-
	
		
			

				𝔤
			

		
	
-submodule of 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
.
Proof. 
	
		
			
				f
				o
				r
				a
				l
				l
				𝑣
				∈
				K
				e
				r
				(
				𝛽
				)
			

		
	
, by 
	
		
			
				𝛽
				(
				𝜌
				(
				𝑥
				)
				𝑣
				)
				=
				𝜌
				(
				𝛼
				(
				𝑥
				)
				)
				𝛽
				(
				𝑣
				)
				=
				0
				,
				f
				o
				r
				a
				l
				l
				𝑥
				∈
				𝔤
			

		
	
, it is easy to know that 
	
		
			
				𝜌
				(
				𝑥
				)
				K
				e
				r
				(
				𝛽
				)
				⊆
				K
				e
				r
				(
				𝛽
				)
			

		
	
; then the result follows easily.
Lemma 9.  Let 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 be an irreducible or a completely reducible representation of a multiplicative Hom-Lie algebra 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
; then 
	
		
			

				𝛽
			

		
	
 is invertible.
Proof. By the reason of Lemma 8, if 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is an irreducible Hom-
	
		
			

				𝔤
			

		
	
 module, we have that 
	
		
			

				𝛽
			

		
	
 is invertible. If 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is a completely reducible Hom-
	
		
			

				𝔤
			

		
	
 module, then 
	
		
			
				𝑉
				=
				𝑉
			

			

				1
			

			
				⊕
				⋯
				⊕
				𝑉
			

			

				𝑠
			

		
	
, where 
	
		
			
				(
				𝑉
			

			

				𝑖
			

			
				,
				𝛽
				|
			

			

				𝑉
			

			

				𝑖
			

			

				)
			

		
	
 (
	
		
			
				𝑖
				=
				1
				,
				…
				,
				𝑠
			

		
	
) are irreducible Hom-
	
		
			

				𝔤
			

		
	
 submodules. By the irreducibility of 
	
		
			
				(
				𝑉
			

			

				𝑖
			

			
				,
				𝛽
				|
			

			

				𝑉
			

			

				𝑖
			

			

				)
			

		
	
, we have that 
	
		
			
				𝛽
				|
			

			

				𝑉
			

			

				𝑖
			

		
	
 (
	
		
			
				𝑖
				=
				1
				,
				…
				,
				𝑠
			

		
	
) is invertible, so 
	
		
			

				𝛽
			

		
	
 is an invertible linear map of 
	
		
			

				𝑉
			

		
	
.
Lemma 10.  Let 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 with 
	
		
			

				𝛽
			

		
	
 invertible be a nontrivial finite dimensional regular Lie-type representation of a Lie-type Hom-Lie algebra; then 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is an irreducible Hom-
	
		
			

				𝔤
			

		
	
-module.
Proof. Suppose to the contrary that 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is reducible. Then we assume that 
	
		
			
				(
				𝑉
			

			

				1
			

			
				,
				𝛽
				)
			

		
	
 is a nontrivial Hom-
	
		
			

				𝔤
			

		
	
-submodule of 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
. Let 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
				)
				=
				(
				𝛽
			

			
				−
				1
			

			
				𝜌
				,
				𝑉
				)
			

		
	
 be the representation of the compatible Lie algebra. Then 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝜌
			

			

				
			

			
				(
				𝑥
				)
				𝑉
			

			

				1
			

			
				=
				𝛽
			

			
				−
				1
			

			
				
				𝜌
				(
				𝑥
				)
				𝑉
			

			

				1
			

			
				
				⊆
				𝛽
			

			
				−
				1
			

			
				
				𝑉
			

			

				1
			

			
				
				⊆
				𝑉
			

			

				1
			

			

				.
			

		
	
That is, 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
			

			

				1
			

			

				)
			

		
	
 is a nontrivial subrepresentation of the compatible Lie algebra, which is a contradiction. Therefore 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is an irreducible Hom-
	
		
			

				𝔤
			

		
	
-module.
It is natural to ask the question: are there nontrivial finite dimensional regular Lie-type representations in 3-dimensional simple multiplicative Hom-Lie algebras? Let us see the following theorem.
Theorem 11.  Let 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 be a 3-dimensional simple multiplicative Hom-Lie algebra; then there exist nontrivial finite dimensional regular Lie-type representations 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
, and these representations are irreducible. For every such representation, 
	
		
			
				𝜌
				(
				ℎ
				)
			

		
	
 is a semisimple linear transformation of 
	
		
			

				𝑉
			

		
	
. In addition, there is a basis 
	
		
			
				{
				𝑣
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				,
				…
				,
				𝑣
			

			

				𝑚
			

			

				}
			

		
	
 of 
	
		
			

				𝑉
			

		
	
 such that (a)
	
		
			
				𝜌
				(
				ℎ
				)
				𝑣
			

			

				𝑖
			

			
				=
				(
				𝑚
				−
				2
				𝑖
				)
				𝑎
			

			
				−
				𝑖
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			

				𝑖
			

			
				,
				𝛽
				(
				𝑣
			

			

				𝑖
			

			
				)
				=
				𝑎
			

			
				−
				𝑖
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			

				𝑖
			

			
				,
				𝑖
				=
				0
				,
				…
				,
				𝑚
			

		
	
;
								(b)
	
		
			
				𝜌
				(
				𝑓
				)
				𝑣
			

			

				𝑖
			

			
				=
				(
				𝑖
				+
				1
				)
				𝑎
			

			
				−
				𝑖
				−
				1
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			
				𝑖
				+
				1
			

			
				,
				𝑖
				=
				0
				,
				…
				,
				𝑚
				−
				1
				;
				𝜌
				(
				𝑓
				)
				𝑣
			

			

				𝑚
			

			
				=
				0
			

		
	
;
								(c)
	
		
			
				𝜌
				(
				𝑒
				)
				𝑣
			

			

				0
			

			
				=
				0
				,
				𝜌
				(
				𝑒
				)
				𝑣
			

			

				𝑖
			

			
				=
				(
				𝑚
				−
				𝑖
				+
				1
				)
				𝑎
			

			
				−
				𝑖
				+
				1
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			
				𝑖
				−
				1
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑚
			

		
	
. 								
Proof. Let 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
				)
			

		
	
 be an 
	
		
			
				𝑚
				+
				1
			

		
	
 dimensional irreducible representation of the compatible Lie algebra 
	
		
			

				𝐴
			

			

				1
			

		
	
. Take 
	
		
			
				{
				𝑣
			

			

				0
			

			
				,
				𝑣
			

			

				1
			

			
				,
				…
				,
				𝑣
			

			

				𝑚
			

			

				}
			

		
	
 as a basis of 
	
		
			

				𝑉
			

		
	
, where 
	
		
			

				𝑣
			

			

				𝑖
			

			
				=
				1
				/
				𝑖
				𝜌
			

			

				
			

			
				(
				𝑓
				)
				𝑣
			

			
				𝑖
				−
				1
			

			
				(
				𝑖
				=
				1
				,
				…
				,
				𝑚
				)
			

		
	
 satisfies
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝜌
			

			

				
			

			
				(
				ℎ
				)
				𝑣
			

			

				𝑖
			

			
				=
				(
				𝑚
				−
				2
				𝑖
				)
				𝑣
			

			

				𝑖
			

			
				,
				𝜌
			

			

				
			

			
				(
				𝑒
				)
				𝑣
			

			

				𝑖
			

			
				=
				(
				𝑚
				−
				𝑖
				+
				1
				)
				𝑣
			

			
				𝑖
				−
				1
			

			
				(
				𝜌
				𝑖
				=
				1
				,
				…
				,
				𝑚
				)
				,
			

			

				
			

			
				(
				𝑒
				)
				𝑣
			

			

				0
			

			
				=
				0
				.
			

		
	
Now we prove that when 
	
		
			
				𝛽
				∈
				g
				l
				(
				𝑉
				)
			

		
	
 is defined by
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝛽
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑣
			

			

				0
			

			

				𝑣
			

			

				1
			

			
				⋮
				𝑣
			

			

				𝑚
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
			

			

				𝑇
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑣
			

			

				0
			

			

				𝑣
			

			

				1
			

			
				⋮
				𝑣
			

			

				𝑚
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
			

			

				𝑇
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑏
			

			

				0
			

			

				𝑎
			

			
				−
				1
			

			

				𝑏
			

			

				0
			

			
				⋱
				𝑎
			

			
				−
				𝑚
			

			

				𝑏
			

			

				0
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
				𝑏
			

			

				0
			

			
				≠
				0
				,
			

		
	
(18) is always satisfied. Because
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝛽
				
				𝜌
			

			

				
			

			
				(
				ℎ
				)
				𝑣
			

			

				𝑖
			

			
				
				
				𝑣
				=
				(
				𝑚
				−
				2
				𝑖
				)
				𝛽
			

			

				𝑖
			

			
				
				=
				(
				𝑚
				−
				2
				𝑖
				)
				𝑎
			

			
				−
				𝑖
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			

				𝑖
			

			
				,
				𝜌
			

			

				
			

			
				
				𝑣
				(
				𝛼
				(
				ℎ
				)
				)
				𝛽
			

			

				𝑖
			

			
				
				=
				𝜌
			

			

				
			

			
				(
				ℎ
				)
				𝑎
			

			
				−
				𝑖
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			

				𝑖
			

			
				=
				𝑎
			

			
				−
				𝑖
			

			

				𝑏
			

			

				0
			

			
				(
				𝑚
				−
				2
				𝑖
				)
				𝑣
			

			

				𝑖
			

			
				
				𝜌
				=
				𝛽
			

			

				
			

			
				(
				ℎ
				)
				𝑣
			

			

				𝑖
			

			
				
				,
				𝛽
				
				𝜌
				𝑖
				=
				0
				,
				…
				,
				𝑚
				,
			

			

				
			

			
				(
				𝑓
				)
				𝑣
			

			

				𝑖
			

			
				
				
				𝑣
				=
				(
				𝑖
				+
				1
				)
				𝛽
			

			
				𝑖
				+
				1
			

			
				
				=
				(
				𝑖
				+
				1
				)
				𝑎
			

			
				−
				𝑖
				−
				1
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			
				𝑖
				+
				1
			

			
				,
				𝜌
			

			

				
			

			
				
				𝑣
				(
				𝛼
				(
				𝑓
				)
				)
				𝛽
			

			

				𝑖
			

			
				
				=
				𝑎
			

			
				−
				1
			

			

				𝜌
			

			

				
			

			
				(
				𝑓
				)
				𝑎
			

			
				−
				𝑖
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			

				𝑖
			

			
				=
				𝑎
			

			
				−
				𝑖
				−
				1
			

			

				𝑏
			

			

				0
			

			
				(
				𝑖
				+
				1
				)
				𝑣
			

			
				𝑖
				+
				1
			

			
				
				𝜌
				=
				𝛽
			

			

				
			

			
				(
				𝑓
				)
				𝑣
			

			

				𝑖
			

			
				
				𝛽
				
				𝜌
				,
				𝑖
				=
				0
				,
				…
				,
				𝑚
				,
			

			

				
			

			
				(
				𝑒
				)
				𝑣
			

			

				𝑖
			

			
				
				
				=
				𝛽
				(
				𝑚
				−
				𝑖
				+
				1
				)
				𝑣
			

			
				𝑖
				−
				1
			

			
				
				
				𝑣
				=
				(
				𝑚
				−
				𝑖
				+
				1
				)
				𝛽
			

			
				𝑖
				−
				1
			

			
				
				=
				(
				𝑚
				−
				𝑖
				+
				1
				)
				𝑎
			

			
				−
				(
				𝑖
				−
				1
				)
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			
				𝑖
				−
				1
			

			
				,
				𝜌
			

			

				
			

			
				
				𝑣
				(
				𝛼
				(
				𝑒
				)
				)
				𝛽
			

			

				𝑖
			

			
				
				=
				𝑎
				𝜌
			

			

				
			

			
				
				𝑣
				(
				𝑒
				)
				𝛽
			

			

				𝑖
			

			
				
				=
				𝜌
			

			

				
			

			
				(
				𝑒
				)
				𝑎
			

			
				−
				(
				𝑖
				−
				1
				)
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			

				𝑖
			

			
				=
				𝑎
			

			
				−
				(
				𝑖
				−
				1
				)
			

			

				𝑏
			

			

				0
			

			
				(
				𝑚
				−
				𝑖
				+
				1
				)
				𝑣
			

			
				𝑖
				−
				1
			

			
				
				𝜌
				=
				𝛽
			

			

				
			

			
				(
				𝑒
				)
				𝑣
			

			

				𝑖
			

			
				
				,
				𝑖
				=
				0
				,
				…
				,
				𝑚
				.
			

		
	
Thus for 
	
		
			

				𝛽
			

		
	
 defined by (22), (18) is always established. Let 
	
		
			
				𝜌
				=
				𝛽
				𝜌
			

			

				
			

		
	
; then it follows from Theorem 7 (2) that 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is a nontrivial finite dimensional regular Lie-type representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
. By Lemma 10, we have that 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is irreducible.Furthermore, we have
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝜌
				(
				ℎ
				)
				𝑣
			

			

				𝑖
			

			
				
				𝜌
				=
				𝛽
			

			

				
			

			
				(
				ℎ
				)
				𝑣
			

			

				𝑖
			

			
				
				=
				(
				𝑚
				−
				2
				𝑖
				)
				𝑎
			

			
				−
				𝑖
			

			

				𝑏
			

			

				0
			

			

				𝑣
			

			

				𝑖
			

			
				,
				𝑖
				=
				0
				,
				…
				,
				𝑚
				,
			

		
	

						and thus we can get (a). For some fixed 
	
		
			

				𝑏
			

			

				0
			

		
	
, it is obvious that 
	
		
			
				𝜌
				(
				ℎ
				)
			

		
	
 is a semisimple linear transformation of 
	
		
			

				𝑉
			

		
	
. Take 
	
		
			
				𝑥
				=
				𝑒
				,
				𝑓
			

		
	
 in 
	
		
			
				𝜌
				(
				𝑥
				)
				𝑣
			

			

				𝑖
			

			
				=
				𝛽
				(
				𝜌
			

			

				
			

			
				(
				𝑥
				)
				𝑣
			

			

				𝑖
			

			
				)
				(
				𝑖
				=
				0
				,
				…
				,
				𝑚
				)
			

		
	
; we can get (b) and (c) easily.
5. Irreducible and Completely Reducible Representations of a 3-Dimensional Simple Multiplicative Hom-Lie Algebra
In this section, 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 denotes a 3-dimensional simple multiplicative Hom-Lie algebra.
By Theorem 11, we know that there exist nontrivial finite dimensional irreducible regular Lie-type representations of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
. However, are there other nontrivial irreducible representations of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
? Is any finite dimensional representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
 completely reducible? We will study these questions in this section.
By Lemma 9, we only need to consider the case when 
	
		
			

				𝛽
			

		
	
 is invertible.
Let 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 with 
	
		
			

				𝛽
			

		
	
 invertible be a finite dimensional representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
. By Proposition 6, we have that 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is of Lie-type, and 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
				)
				=
				(
				𝛽
			

			
				−
				1
			

			
				𝜌
				,
				𝑉
				)
			

		
	
 is a finite dimensional representation of the compatible Lie algebra 
	
		
			

				𝐴
			

			

				1
			

		
	
. By Weyl theorem, we know that 
	
		
			
				(
				𝜌
			

			

				
			

			
				,
				𝑉
				)
			

		
	
 is completely reducible. That is, 
	
		
			
				𝑉
				=
				𝑉
			

			

				1
			

			
				⊕
				⋯
				⊕
				𝑉
			

			

				𝑠
			

		
	
, where 
	
		
			

				𝑉
			

			

				𝑖
			

			
				(
				𝑖
				=
				1
				,
				…
				,
				𝑠
				)
			

		
	
 are irreducible 
	
		
			

				𝐴
			

			

				1
			

		
	
-modules. Suppose that 
	
		
			
				d
				i
				m
				𝑉
			

			

				𝑖
			

			
				=
				𝑚
			

			

				𝑖
			

			
				+
				1
			

		
	
. Denote that a tuple 
	
		
			
				𝜏
				=
				(
				𝑚
			

			

				1
			

			
				,
				…
				,
				𝑚
			

			

				𝑠
			

			

				)
			

		
	
. By the representation theory of 
	
		
			

				𝐴
			

			

				1
			

		
	
, we have that 
	
		
			

				𝑉
			

			

				𝑗
			

			
				(
				𝑗
				=
				1
				,
				…
				,
				𝑠
				)
			

		
	
 is a highest weight module with highest weight vectors 
	
		
			

				𝑣
			

			
				𝑗
				0
			

		
	
 and the highest weight 
	
		
			

				𝑚
			

			

				𝑗
			

		
	
, respectively. Take 
	
		
			
				{
				𝑣
			

			
				𝑗
				0
			

			
				,
				𝑣
			

			
				𝑗
				1
			

			
				,
				…
				,
				𝑣
			

			
				𝑗
				𝑚
			

			

				𝑗
			

			

				}
			

		
	
 as a basis of 
	
		
			

				𝑉
			

			

				𝑗
			

		
	
 satisfying
						
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑣
			

			
				𝑗
				𝑖
			

			
				=
				1
			

			
				
			
			
				𝑖
				𝜌
			

			

				
			

			
				(
				𝑓
				)
				𝑣
			

			
				𝑗
				,
				𝑖
				−
				1
			

			
				,
				
				𝑖
				=
				1
				,
				…
				,
				𝑚
			

			

				𝑗
			

			
				
				,
				𝜌
			

			

				
			

			
				(
				ℎ
				)
				𝑣
			

			
				𝑗
				𝑖
			

			
				=
				
				𝑚
			

			

				𝑗
			

			
				
				𝑣
				−
				2
				𝑖
			

			
				𝑗
				𝑖
			

			
				,
				
				𝑖
				=
				0
				,
				…
				,
				𝑚
			

			

				𝑗
			

			
				
				,
				𝜌
			

			

				
			

			
				(
				𝑒
				)
				𝑣
			

			
				𝑗
				𝑖
			

			
				=
				
				𝑚
			

			

				𝑗
			

			
				
				𝑣
				−
				𝑖
				+
				1
			

			
				𝑗
				,
				𝑖
				−
				1
			

			
				,
				
				𝑖
				=
				1
				,
				…
				,
				𝑚
			

			

				𝑗
			

			
				
				,
				𝜌
			

			

				
			

			
				(
				𝑒
				)
				𝑣
			

			

				0
			

			
				=
				0
				.
			

		
	

Theorem 12.  When 
	
		
			
				𝜏
				=
				(
				𝑚
			

			

				1
			

			
				,
				…
				,
				𝑚
			

			

				𝑠
			

			

				)
			

		
	
, 
	
		
			

				𝑚
			

			

				𝑖
			

			
				≠
				𝑚
			

			

				𝑗
			

		
	
 for 
	
		
			
				1
				≤
				𝑖
				≠
				𝑗
				≤
				𝑠
			

		
	
, then (1)
	
		
			
				𝛽
				=
				d
				i
				a
				g
				(
				…
				,
				𝑏
			

			
				𝑖
				0
			

			
				,
				𝑏
			

			
				𝑖
				0
			

			
				/
				𝑎
				,
				…
				,
				𝑏
			

			
				𝑖
				0
			

			
				/
				𝑎
			

			

				𝑚
			

			

				𝑖
			

			
				,
				…
				)
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
			

		
	
;
								(2)
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is a completely reducible Hom-
	
		
			

				𝔤
			

		
	
-module with a decomposition 
	
		
			
				𝑉
				=
				𝑉
			

			

				1
			

			
				⊕
				⋯
				⊕
				𝑉
			

			

				𝑠
			

		
	
, where 
	
		
			
				(
				𝑉
			

			

				𝑖
			

			
				,
				𝛽
			

			

				𝑖
			

			
				)
				,
				(
				𝑖
				=
				1
				,
				…
				,
				𝑠
				)
			

		
	
 are irreducible Hom-
	
		
			

				𝔤
			

		
	
-submodules; here 
	
		
			

				𝛽
			

			

				𝑖
			

			
				=
				𝛽
				|
			

			

				𝑉
			

			

				𝑖
			

		
	
.
Proof. (1) According to (18), we get the result.(2) Because 
	
		
			
				(
				𝑉
			

			

				𝑗
			

			
				)
				⊆
				𝑉
			

			

				𝑗
			

			
				,
				𝑗
				=
				1
				,
				…
				,
				𝑠
			

		
	
, 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝜌
				(
				𝑥
				)
				𝑉
			

			

				𝑗
			

			
				
				𝜌
				=
				𝛽
			

			

				
			

			
				(
				𝑥
				)
				𝑉
			

			

				𝑗
			

			
				
				⊆
				𝑉
			

			

				𝑗
			

			

				.
			

		
	
Let 
	
		
			

				𝛽
			

			

				𝑗
			

			
				=
				𝛽
				|
			

			

				𝑉
			

			

				𝑗
			

		
	
, combined with Lemma 10; we have that 
	
		
			
				(
				𝑉
			

			

				𝑗
			

			
				,
				𝛽
			

			

				𝑗
			

			
				)
				(
				𝑗
				=
				1
				,
				…
				,
				𝑠
				)
			

		
	
 are irreducible Hom-
	
		
			

				𝔤
			

		
	
-submodules.
When 
	
		
			
				𝜏
				=
				(
				𝑚
				,
				…
				,
				𝑚
				)
			

		
	
, by (18) it can be checked that
						
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝐵
				𝛽
				=
			

			
				1
				1
			

			

				𝐵
			

			
				1
				2
			

			
				…
				𝐵
			

			
				1
				𝑠
			

			

				𝐵
			

			
				2
				1
			

			

				𝐵
			

			
				2
				2
			

			
				…
				𝐵
			

			
				2
				𝑠
			

			
				𝐵
				⋮
				⋮
				⋱
				⋮
			

			
				𝑠
				1
			

			

				𝐵
			

			
				𝑠
				2
			

			
				…
				𝐵
			

			
				𝑠
				𝑠
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
			

		
	

					where 
	
		
			

				𝐵
			

			
				𝑖
				𝑗
			

			
				=
				d
				i
				a
				g
				(
				𝑏
			

			
				𝑖
				𝑗
			

			
				,
				𝑏
			

			
				𝑖
				𝑗
			

			
				/
				𝑎
				,
				…
				,
				𝑏
			

			
				𝑖
				𝑗
			

			
				/
				𝑎
			

			

				𝑚
			

			

				)
			

		
	
.
Take
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝐵
			

			

				1
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑏
			

			
				1
				1
			

			

				𝑏
			

			
				1
				2
			

			
				…
				𝑏
			

			
				1
				𝑠
			

			

				𝑏
			

			
				2
				1
			

			

				𝑏
			

			
				2
				2
			

			
				…
				𝑏
			

			
				2
				𝑠
			

			
				𝑏
				⋮
				⋮
				⋱
				⋮
			

			
				𝑠
				1
			

			

				𝑏
			

			
				𝑠
				2
			

			
				…
				𝑏
			

			
				𝑠
				𝑠
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

By the theory of linear algebra, there is an invertible matrix
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑝
				𝑃
				=
			

			
				1
				1
			

			

				𝑝
			

			
				1
				2
			

			
				…
				𝑝
			

			
				1
				𝑠
			

			

				𝑝
			

			
				2
				1
			

			

				𝑝
			

			
				2
				2
			

			
				…
				𝑝
			

			
				2
				𝑠
			

			
				𝑝
				⋮
				⋮
				⋱
				⋮
			

			
				𝑠
				1
			

			

				𝑝
			

			
				𝑠
				2
			

			
				…
				𝑝
			

			
				𝑠
				𝑠
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
			

		
	

					such that 
	
		
			

				𝑃
			

			
				−
				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

		
	
 is a Jordan canonical form; that is,
						
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑃
			

			
				−
				1
			

			

				𝐵
			

			

				1
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝐽
				𝑃
				=
			

			
				1
				1
			

			

				𝐽
			

			
				2
				2
			

			
				⋱
				𝐽
			

			
				𝑡
				𝑡
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
			

		
	

					where 
	
		
			

				𝐽
			

			
				𝑖
				𝑖
			

			
				=
				
			

			

				𝜆
			

			

				𝑖
			

			
				1
				𝜆
			

			

				𝑖
			

			
				⋱
				⋱
				1
				𝜆
			

			

				𝑖
			

			

				
			

		
	
 
	
		
			
				(
				𝑖
				=
				1
				,
				…
				,
				𝑡
				)
			

		
	
 are Jordan blocks.
Theorem 13.  The condition is the same as the previous remark. (1)If 
	
		
			
				𝑡
				=
				1
			

		
	
, then 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is a reducible but not completely reducible Hom-
	
		
			

				𝔤
			

		
	
-module.(2)If 
	
		
			
				𝑠
				>
				𝑡
				>
				1
			

		
	
, then 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is a reducible but not completely reducible Hom-
	
		
			

				𝔤
			

		
	
-module.(3)If 
	
		
			
				𝑡
				=
				𝑠
			

		
	
, then 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is a completely reducible Hom-
	
		
			

				𝔤
			

		
	
-module.
Proof. Let
							
	
 		
 			
				(
				3
				1
				)
			
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑣
			

			
				
				𝑖
				0
			

			
				=
				𝑝
			

			
				1
				𝑖
			

			

				𝑣
			

			
				1
				0
			

			
				+
				𝑝
			

			
				2
				𝑖
			

			

				𝑣
			

			
				2
				0
			

			
				+
				⋯
				+
				𝑝
			

			
				𝑠
				𝑖
			

			

				𝑣
			

			
				𝑠
				0
			

			
				𝑣
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
				,
			

			
				
				𝑖
				𝑗
			

			
				=
				1
			

			
				
			
			
				𝑗
				𝜌
			

			

				
			

			
				(
				𝑓
				)
				𝑣
			

			
				
				𝑖
				,
				𝑗
				−
				1
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
				;
				𝑗
				=
				1
				,
				…
				,
				𝑚
				.
			

		
	

						That is,
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝑣
			

			
				
				𝑖
				𝑗
			

			
				=
				𝑝
			

			
				1
				𝑖
			

			

				𝑣
			

			
				1
				𝑗
			

			
				+
				𝑝
			

			
				2
				𝑖
			

			

				𝑣
			

			
				2
				𝑗
			

			
				+
				⋯
				+
				𝑝
			

			
				𝑠
				𝑖
			

			

				𝑣
			

			
				𝑠
				𝑗
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
				;
				𝑗
				=
				1
				,
				…
				,
				𝑚
				.
			

		
	

						Then
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				
				𝑣
			

			
				
				1
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				1
				𝑚
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑠
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑠
				𝑚
			

			
				
				=
				
				𝑣
			

			
				1
				0
			

			
				,
				…
				,
				𝑣
			

			
				1
				𝑚
			

			
				,
				…
				,
				𝑣
			

			
				𝑠
				0
			

			
				,
				…
				,
				𝑣
			

			
				𝑠
				𝑚
			

			
				
				𝑄
				,
			

		
	

						where
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑄
				𝑄
				=
			

			
				1
				1
			

			

				𝑄
			

			
				1
				2
			

			
				…
				𝑄
			

			
				1
				𝑠
			

			

				𝑄
			

			
				2
				1
			

			

				𝑄
			

			
				2
				2
			

			
				…
				𝑄
			

			
				2
				𝑠
			

			
				𝑄
				⋮
				⋮
				⋱
				⋮
			

			
				𝑠
				1
			

			

				𝑄
			

			
				𝑠
				2
			

			
				…
				𝑄
			

			
				𝑠
				𝑠
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				;
			

		
	

						here 
	
		
			

				𝑄
			

			
				𝑖
				𝑗
			

		
	
 are 
	
		
			
				𝑚
				×
				𝑚
			

		
	
 matrices satisfying 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝑄
			

			
				𝑖
				𝑗
			

			
				
				𝑝
				=
				d
				i
				a
				g
			

			
				𝑖
				𝑗
			

			
				,
				…
				,
				𝑝
			

			
				𝑖
				𝑗
			

			
				
				,
				𝑖
				,
				𝑗
				=
				1
				,
				…
				,
				𝑠
				.
			

		
	

						Because 
	
		
			

				𝑃
			

		
	
 is invertible, it is easy to check that the matrix 
	
		
			

				𝑄
			

		
	
 is invertible; therefore 
	
		
			
				{
				𝑣
			

			
				
				1
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				1
				𝑚
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑠
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑠
				𝑚
			

			

				}
			

		
	
 is a basis of 
	
		
			

				𝑉
			

		
	
.Let 
	
		
			

				𝑉
			

			
				
				𝑖
			

			
				=
				ℂ
				{
				𝑣
			

			
				
				𝑖
				0
			

			
				,
				𝑣
			

			
				
				𝑖
				1
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			

				}
			

		
	
, because 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝜌
			

			

				
			

			
				(
				ℎ
				)
				𝑣
			

			
				
				𝑖
				0
			

			
				=
				𝜌
			

			

				
			

			
				
				𝑝
				(
				ℎ
				)
			

			
				1
				𝑖
			

			

				𝑣
			

			
				1
				0
			

			
				+
				𝑝
			

			
				2
				𝑖
			

			

				𝑣
			

			
				2
				0
			

			
				+
				⋯
				+
				𝑝
			

			
				𝑠
				𝑖
			

			

				𝑣
			

			
				𝑠
				0
			

			
				
				=
				𝑚
				𝑣
			

			
				𝑖
				0
			

			

				.
			

		
	
By (32) and the representation of Lie algebra 
	
		
			

				𝐴
			

			

				1
			

		
	
, we have
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝜌
			

			

				
			

			
				
				𝑣
				(
				ℎ
				)
			

			
				
				𝑖
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			
				
				=
				
				𝑣
			

			
				
				𝑖
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			
				
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑚
				⋱
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
				𝜌
				𝑚
				−
				2
				−
				𝑚
			

			

				
			

			
				
				𝑣
				(
				𝑓
				)
			

			
				
				𝑖
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			
				
				=
				
				𝑣
			

			
				
				𝑖
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			
				
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
				𝜌
				0
				0
				…
				0
				0
				1
				0
				…
				0
				0
				0
				2
				…
				0
				0
				⋮
				⋮
				⋱
				⋮
				⋮
				0
				0
				…
				𝑚
				0
			

			

				
			

			
				
				𝑣
				(
				𝑒
				)
			

			
				
				𝑖
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			
				
				=
				
				𝑣
			

			
				
				𝑖
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			
				
				×
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				0
				𝑚
				0
				…
				0
				0
				0
				𝑚
				−
				1
				…
				0
				⋮
				⋮
				⋮
				⋱
				⋮
				0
				0
				0
				…
				1
				0
				0
				0
				…
				0
			

		
	

						Through (38) it is easy to get that 
	
		
			

				𝑉
			

			
				
				1
			

			
				,
				…
				,
				𝑉
			

			
				
				𝑠
			

		
	
 are 
	
		
			

				𝐴
			

			

				1
			

		
	
-irreducible-modules.(1) In this case, by (30), we have 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				𝛽
				
				𝑣
			

			
				
				1
				0
			

			
				,
				𝑣
			

			
				
				2
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑠
				0
			

			
				
				=
				
				𝑣
			

			
				
				1
				0
			

			
				,
				𝑣
			

			
				
				2
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑠
				0
			

			
				
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				𝜆
				0
				0
				1
				𝜆
				⋱
				⋱
				1
				𝜆
			

		
	

						Let 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝑉
			

			
				
				𝑖
			

			
				
				𝑣
				=
				ℂ
			

			
				
				𝑖
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			
				
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
				,
			

		
	

						By (32), it is easy to check that 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				𝛽
				
				𝑉
			

			
				
				𝑖
			

			
				
				⊆
				𝑉
			

			
				
				𝑖
			

			
				+
				𝑉
			

			
				
				𝑖
				+
				1
			

			
				
				𝑉
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
				−
				1
				;
				𝛽
			

			
				
				𝑠
			

			
				
				⊆
				𝑉
			

			
				
				𝑠
			

			

				.
			

		
	

						Then 
	
		
			
				𝜌
				(
				𝑥
				)
				𝑉
			

			
				
				𝑠
			

			
				=
				𝛽
				(
				𝜌
			

			

				
			

			
				(
				𝑥
				)
				𝑉
			

			
				
				𝑠
			

			
				)
				⊆
				𝑉
			

			
				
				𝑠
			

		
	
. Let 
	
		
			

				𝛽
			

			

				𝑠
			

			
				=
				𝛽
				|
			

			

				𝑉
			

			
				′
				𝑠
			

		
	
; then 
	
		
			
				(
				𝑉
			

			
				
				𝑠
			

			
				,
				𝛽
			

			

				𝑠
			

			

				)
			

		
	
 is an irreducible Hom-
	
		
			

				𝔤
			

		
	
-submodule, but 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is not completely reducible.(2) Suppose (omit the order of 
	
		
			

				𝑣
			

			
				
				1
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑠
				0
			

		
	
) 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝛽
				
				𝑣
			

			
				
				1
				0
			

			
				,
				𝑣
			

			
				
				2
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑠
				0
			

			
				
				=
				
				𝑣
			

			
				
				1
				0
			

			
				,
				𝑣
			

			
				
				2
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑠
				0
			

			
				
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝜆
			

			

				1
			

			
				⋱
				𝜆
			

			

				𝑗
			

			

				𝐵
			

			
				𝑗
				+
				1
			

			
				⋱
				𝐵
			

			

				𝑡
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				;
			

		
	

						here 
	
		
			

				𝜆
			

			

				𝑖
			

			
				∈
				ℂ
				,
				𝑖
				=
				1
				,
				…
				,
				𝑗
				,
				𝐵
			

			
				𝑗
				+
				1
			

			
				,
				…
				,
				𝐵
			

			

				𝑡
			

		
	
 are 
	
		
			

				𝑘
			

			

				𝑝
			

			
				×
				𝑘
			

			

				𝑝
			

		
	
 nondiagonal Jordan blocks (
	
		
			

				𝑘
			

			

				𝑝
			

			
				∈
				ℤ
			

			

				+
			

			
				,
				𝑝
				=
				1
				,
				…
				,
				𝑡
				−
				𝑗
			

		
	
).Let 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑉
			

			
				
				𝑖
			

			
				
				𝑣
				=
				ℂ
			

			
				
				𝑖
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			
				
				,
				𝑖
				=
				1
				,
				…
				,
				𝑗
				,
			

		
	

					denoted by 
	
		
			

				𝛽
			

			

				𝑖
			

			
				=
				𝛽
				|
			

			

				𝑉
			

			
				′
				𝑖
			

		
	
. It is easy to check that 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝛽
			

			

				𝑖
			

			
				
				𝑉
			

			
				
				𝑖
			

			
				
				⊆
				𝑉
			

			
				
				𝑖
			

			
				,
				𝜌
				(
				𝑥
				)
				𝑉
			

			
				
				𝑖
			

			
				
				𝜌
				=
				𝛽
			

			

				
			

			
				(
				𝑥
				)
				𝑉
			

			
				
				𝑖
			

			
				
				
				𝑉
				⊆
				𝛽
			

			
				
				𝑖
			

			
				
				⊆
				𝑉
			

			
				
				𝑖
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑗
				.
			

		
	

						By the statement of the proof and Lemma 10, we have that 
	
		
			
				(
				𝑉
			

			
				
				𝑖
			

			
				,
				𝛽
			

			

				𝑖
			

			
				)
				(
				𝑖
				=
				1
				,
				…
				,
				𝑗
				)
			

		
	
 are irreducible Hom-
	
		
			

				𝔤
			

		
	
-submodules.Let
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				𝑉
			

			
				
				𝑗
				+
				𝑝
			

			
				
				𝑣
				=
				ℂ
			

			
				
				𝑗
				+
				𝑘
			

			

				1
			

			
				+
				⋯
				+
				𝑘
			

			
				𝑝
				−
				1
			

			
				+
				1
				,
				0
			

			
				𝑣
				,
				…
				,
			

			
				
				𝑗
				+
				𝑘
			

			

				1
			

			
				+
				⋯
				+
				𝑘
			

			
				𝑝
				−
				1
			

			
				+
				1
				,
				𝑚
			

			
				𝑣
				,
				…
				,
			

			
				
				𝑗
				+
				𝑘
			

			

				1
			

			
				+
				⋯
				+
				𝑘
			

			

				𝑝
			

			
				,
				0
			

			
				𝑣
				,
				…
				,
			

			
				
				𝑗
				+
				𝑘
			

			

				1
			

			
				+
				⋯
				+
				𝑘
			

			

				𝑝
			

			
				,
				𝑚
			

			
				
				,
				𝑝
				=
				1
				,
				…
				,
				𝑡
				−
				𝑗
				.
			

		
	

						Then 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝛽
				
				𝑉
			

			
				
				𝑗
				+
				𝑝
			

			
				
				⊆
				𝑉
			

			
				
				𝑗
				+
				𝑝
			

			
				,
				𝑝
				=
				1
				,
				…
				,
				𝑡
				−
				𝑗
				.
			

		
	

						Let 
	
		
			

				𝛽
			

			

				𝑖
			

			
				=
				𝛽
				|
			

			
				
				𝑉
			

			

				𝑖
			

			
				,
				(
				𝑖
				=
				𝑗
				+
				1
				,
				…
				,
				𝑡
				)
			

		
	
; then 
	
		
			
				(
				𝑉
			

			

				𝑖
			

			
				,
				𝛽
			

			

				𝑖
			

			
				)
				(
				𝑖
				=
				𝑗
				+
				1
				,
				…
				,
				𝑡
				)
			

		
	
 are Hom-
	
		
			

				𝔤
			

		
	
-submodules. As (1) of the theorem, we can prove that 
	
		
			
				(
				𝑉
			

			

				𝑖
			

			
				,
				𝛽
			

			

				𝑖
			

			
				)
				(
				𝑖
				=
				𝑗
				+
				1
				,
				…
				,
				𝑡
				)
			

		
	
 are reducible but not completely reducible Hom-
	
		
			

				𝔤
			

		
	
-modules. We have the conclusion.(3) In this case, by (30) and Theorem 12 (1) we get
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				𝛽
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑣
			

			
				
				1
				0
			

			
				…
				𝑣
			

			
				
				1
				𝑚
			

			
				…
				𝑣
			

			
				
				𝑠
				0
			

			
				…
				𝑣
			

			
				
				𝑠
				𝑚
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
			

			

				𝑡
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑣
			

			
				
				1
				0
			

			
				…
				𝑣
			

			
				
				1
				𝑚
			

			
				…
				𝑣
			

			
				
				𝑠
				0
			

			
				…
				𝑣
			

			
				
				𝑠
				𝑚
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
			

			

				𝑡
			

			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝜆
			

			

				1
			

			
				⋱
				𝜆
			

			

				1
			

			
				
			
			

				𝑎
			

			

				𝑚
			

			
				⋱
				𝜆
			

			

				𝑠
			

			
				⋱
				𝜆
			

			

				𝑠
			

			
				
			
			

				𝑎
			

			

				𝑚
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	
Let 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				𝑉
			

			
				
				𝑖
			

			
				
				𝑣
				=
				ℂ
			

			
				
				𝑖
				0
			

			
				,
				…
				,
				𝑣
			

			
				
				𝑖
				𝑚
			

			
				
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
				;
			

		
	
then 
	
		
			

				𝑉
			

			
				
				1
			

			
				,
				…
				,
				𝑉
			

			
				
				𝑠
			

		
	
 are irreducible 
	
		
			

				𝐴
			

			

				1
			

		
	
-modules and
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				𝛽
				
				𝑉
			

			
				
				𝑖
			

			
				
				⊆
				𝑉
			

			
				
				𝑖
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
				,
				𝜌
				(
				𝑥
				)
				𝑉
			

			
				
				𝑖
			

			
				
				𝜌
				=
				𝛽
			

			

				
			

			
				(
				𝑥
				)
				𝑉
			

			
				
				𝑖
			

			
				
				⊆
				𝑉
			

			
				
				𝑖
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
				,
				∀
				𝑥
				∈
				𝔤
				.
			

		
	

					Denoting by 
	
		
			

				𝛽
			

			

				𝑖
			

			
				=
				𝛽
				|
			

			

				𝑉
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				…
				,
				𝑠
			

		
	
, thanks to Lemma 10 we have that 
	
		
			
				(
				𝑉
			

			
				
				𝑖
			

			
				,
				𝛽
			

			

				𝑖
			

			
				)
				(
				𝑖
				=
				1
				,
				…
				,
				𝑠
				)
			

		
	
 are irreducible Hom-
	
		
			

				𝔤
			

		
	
-submodules. So 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is a completely reducible Hom-
	
		
			

				𝔤
			

		
	
-module.
When 
	
		
			
				𝜏
				=
				(
				𝑚
			

			

				1
			

			
				,
				…
				,
				𝑚
			

			

				1
			

			
				,
				…
				,
				𝑚
			

			

				𝑖
			

			
				,
				…
				,
				𝑚
			

			

				𝑖
			

			
				,
				𝑚
			

			
				𝑖
				+
				1
			

			
				,
				…
				,
				𝑚
			

			

				𝑙
			

			

				)
			

		
	
, suppose that the multiplicity of 
	
		
			

				𝑚
			

			

				𝑡
			

		
	
 (
	
		
			
				𝑡
				=
				1
				,
				…
				,
				𝑖
			

		
	
) is 
	
		
			

				𝑘
			

			

				𝑡
			

		
	
 and 
	
		
			

				𝑘
			

			

				1
			

			
				+
				⋯
				+
				𝑘
			

			

				𝑖
			

			
				+
				𝑙
				−
				𝑖
				=
				𝑠
			

		
	
. By (18) we can get 
	
		
			

				𝛽
			

		
	
 as follows:
						
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				𝛽
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑣
			

			
				1
				0
			

			
				…
				𝑣
			

			
				1
				𝑚
			

			

				1
			

			
				…
				𝑣
			

			
				𝑠
				0
			

			
				…
				𝑣
			

			
				𝑠
				𝑚
			

			

				𝑙
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑣
			

			
				1
				0
			

			
				…
				𝑣
			

			
				1
				𝑚
			

			

				1
			

			
				…
				𝑣
			

			
				𝑠
				0
			

			
				…
				𝑣
			

			
				𝑠
				𝑚
			

			

				𝑙
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝐵
			

			

				1
			

			
				⋱
				𝐵
			

			

				𝑖
			

			

				𝐵
			

			
				𝑖
				+
				1
			

			
				⋱
				𝐵
			

			

				𝑙
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
			

		
	

					where 
	
		
			

				𝐵
			

			

				1
			

			
				,
				…
				,
				𝐵
			

			

				𝑖
			

		
	
 are matrices of the form (27), 
						
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			

				𝐵
			

			

				𝑗
			

			
				
				𝜆
				=
				d
				i
				a
				g
			

			

				𝑗
			

			
				,
				𝜆
			

			

				𝑗
			

			
				
			
			
				𝑎
				𝜆
				,
				…
				,
			

			

				𝑗
			

			
				
			
			

				𝑎
			

			

				𝑚
			

			

				𝑗
			

			
				
				,
				𝑗
				=
				𝑖
				+
				1
				,
				…
				,
				𝑙
				.
			

		
	

Theorem 14.  The condition is as the previous remark. 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is completely reducible if there exist invertible matrices 
	
		
			

				𝑃
			

			

				𝑗
			

			
				(
				𝑗
				=
				1
				,
				…
				,
				𝑖
				)
			

		
	
 such that 
	
		
			

				𝑃
			

			
				𝑗
				−
				1
			

			

				𝐵
			

			

				𝑗
			

			

				𝑃
			

			

				𝑗
			

			
				(
				𝑗
				=
				1
				,
				…
				,
				𝑖
				)
			

		
	
 are diagonal matrices. Otherwise 
	
		
			
				(
				𝑉
				,
				𝛽
				)
			

		
	
 is reducible but not completely reducible.
Proof. It can be got from Theorems 12 and 13 directly.
Proposition 15.  Let 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 be a finite dimensional representation of 
	
		
			
				(
				𝔤
				,
				[
				⋅
				,
				⋅
				]
				,
				𝛼
				)
			

		
	
; then 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is not always completely reducible, and 
	
		
			
				(
				𝜌
				,
				𝑉
				,
				𝛽
				)
			

		
	
 is irreducible if and only if it is of regular Lie-type.
Proof. The claim follows from Theorems 11, 12, 13, and 14 directly.
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