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The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these
resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models
describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-
dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie
point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal
systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.

1. Introduction

Prediction of water and contaminant movements in soils is
important to the theory of soil salinity and underground
water pollution. Among others, the sources of contamination
are movement of agricultural and industrial contaminants.
Some exact solutions are constructed for constraint assump-
tions; as such, investigation and study of these problems are
extremely difficult and challenging [1] evenwhen the problem
is given in terms of linear partial differential equations [2].

Broadbridge et al. [2–4] applied the classical Lie point
symmetries to analyze the convection-dispersion equations
arising in solute transport theory. A compendium of exact
(group invariant) solutions is given in [5]. Other researchers
used different techniques to obtain exact solutions (see,
e.g., [6–8]). Chen et al. [9] constructed analytical solutions
for two-dimensional advection-dispersion equation with
transverse dispersivities depending linearly on the spatial
variable. Yadav et al. [10] constructed analytical solutions for
solute transport in semiinfinite porous domain. Symmetry
reductions and group invariant solutions were constructed
for models describing motion of a polytropic gas [11].

Exact analytical solutions for contaminant transport
in porous media have been constructed, for example, in
[12–15]. Chrysikopoulos and Sim [12] developed the one-
dimensional stochastic model describing virus transport in
homogeneous, saturated semifinite porous media. The ideas
in [12] are extended to three-dimensional problems in [13, 14].
Experimental investigations of acoustically enhanced colloid
transport in water-saturated packed columns are carried out
in [15]. In this paper we focus on theoretical macroscopic
deterministic models given in terms of partial differential
equations.

Numerical models are able to simulate complex reactive
transport phenomena but can be time consuming to con-
struct and subject to numerical discretization errors [7]. Also,
available packages have significant disagreement in their
prediction of solute transport [16]. Therefore, exact solutions
are very important because they are needed both as validation
tests for numerical schemes and also provide insight into the
water and solute transport processes.

In this paper, we construct group invariant solutions and
classify them according to the one-dimensional optimal sys-
tems. This is a significant advancement of the work by [4, 6].
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We consider contaminant transport under radial uniform
water flows. The resulting convection-dispersion equation
given in terms of stream function is analyzedwhen dispersion
coefficient is proportional to the water pore velocity. It
turns out that the Lie point symmetries are admitted when
the dispersion coefficient is a constant in one case and
depending on water pore velocity in the other. In Section 2,
we provide the mathematical models. We briefly discuss
the symmetry methods in Section 3. The problem at hand
is analyzed in Section 4 and the group invariant solutions
are classified according to the one-dimensional optimal
systems in Section 5 and some physically realistic solutions
are discussed. Lastly, some concluding remarks are given in
Section 6.

2. Mathematical Model

The theoretical background in this section is obtained from
Hillel [17]. The macroscopic deterministic model, which is
based on local conservation laws, is given by

𝜕 (𝜃𝑐)

𝜕𝑡
= ∇ ⋅ (𝜃𝐷 (V) ∇𝑐) − ∇ (𝑐V) , (1)

where 𝐷(V) denotes the coefficient of hydrodynamic disper-
sion and ∇ is given in Cartesian coordinates. Experimental
and theoretical observations show that the dispersion coeffi-
cient can take the power law form 𝐷(V) = 𝜆V𝑝 with 𝜆 being
a proportionality constant and 1 ≤ 𝑝 ≤ 2 (see, e.g., [18]).
Here, V is the pore water velocity. Given uniform water flow
in saturated soils, then the continuity equation is given by
∇ ⋅ V = 0. Uniform saturated water flow implies that the
soil water content 𝜃 = 𝜃𝑠, where 𝜃𝑠 is the water content
at saturation. By Darcy’s law, which states that water flux is
proportional to the gradient of the hydraulic pressure head,
that is, V = −𝑘𝑠∇Φ, where Φ is the total hydraulic pressure
head and 𝑘𝑠 is the hydraulic conductivity at saturation (see,
e.g., [17]), as such we obtain Laplace’s equation ∇2Φ = 0.
Under these assumptions, (1) then becomes

𝜕𝑐

𝜕𝑡
= ∇ ⋅ (𝐷 (V) ∇𝑐) + 𝑘∇Φ ⋅ ∇𝑐, (2)

where 𝑘 = 𝑘𝑠/𝜃𝑠 and V = |𝑘∇Φ|. Note that this prob-
lem becomes extremely difficult to solve exactly when V
must be the modulus of the potential flow velocity field
for an incompressible fluid (see, e.g., [2]). However, one
may transform (1) from Cartesian coordinates (𝑥, 𝑦) to the
streamline coordinates (𝜙, 𝜓) using Laplace preserving or
conformal transformations [19]; see also [2]. The resulting
solute transport equation is given by

𝜕𝑐

𝜕𝑡
= V2∇ ⋅ [𝐷 (V) ∇𝑐] + V2

𝜕𝑐

𝜕𝜙
, (3)

where ∇ = (𝜕/𝜕𝜙, 𝜕/𝜕𝜓). The velocity potential is 𝜙 and
𝜓 is a conjugate harmonic stream function such that 𝜙𝑥 =
𝜓𝑦 and 𝜙𝑦 = −𝜓𝑥. Also, the functions 𝜙 and 𝜓 satisfy the
Laplace equation. In radial water flows, the velocity potential
is given by 𝜙 = −(𝑄/𝜃𝑠) log 𝑟 and the stream function

𝜓 = −(𝑄/𝜃𝑠) arctan(𝑦/𝑥), where 𝑄 is the source strength
(pumping rate). Introducing the normalized concentration,
velocity potential, and time given by 𝐶 = 𝑐/𝑐𝑠, 𝜙 = − log𝑅,
and 𝜏 = 𝑡/𝑡𝑠, respectively, with 𝑐𝑠, 𝑡𝑠, and 𝑅 being the
concentration, time at soil saturation, and the distance or
radius from the point source, we may write (3) as

𝜕𝐶

𝜕𝜏
= V2∇ ⋅ [𝐷 (V) ∇𝐶] + V2

𝜕𝐶

𝜕𝜙
. (4)

We refer to (4) as the governing equation. Equation (4) is
susceptible to symmetry analysis (see, e.g., [3, 4]).

3. Algebraic Techniques for
Symmetry Reduction

In brief, a symmetry of a differential equation is an invertible
transformation of the dependent and independent variables
that does not change the original differential equation.
Symmetries depend continuously on a parameter and form
a group: the one-parameter group of transformations. This
group can be determined algorithmically by hand or by
computer software programs such as YaLie [20], Reduce [21],
and Dimsym [22]. The theory of application of Lie groups to
differential equations may be found in texts such as those of
[23–25]. Given a second order partial differential equation
such as (4) describing contaminant transport under radial
water flows, we seek transformations of the form

𝜏 = 𝜏 + 𝜖𝜉
1
(𝜏, 𝜙, 𝐶) + O (𝜖

2
) ,

𝜙 = 𝜙 + 𝜖𝜉
2
(𝜏, 𝜙, 𝐶) + O (𝜖

2
) ,

𝐶 = 𝐶 + 𝜖𝜂 (𝜏, 𝜙, 𝐶) + O (𝜖
2
) ,

(5)

generated by the vector field

𝑋 = 𝜉
1
(𝜏, 𝜙, 𝐶)

𝜕

𝜕𝜏
+ 𝜉
2
(𝜏, 𝜙, 𝐶)

𝜕

𝜕𝜙
+ 𝜂 (𝜏, 𝜙, 𝐶)

𝜕

𝜕𝐶
. (6)

Note that the transformations in (5) are equivalent to the
one-parameter Lie group of transformations that leaves the
equation in question invariant. Since (4) is second order, then
one may prolong the symmetry generator (6) accordingly.
The invariance criterion is then given by

𝑋
[2]
(Equation (4))Equation (4) = 0, (7)

where𝑋[2] is the second prolongation given by

𝑋
2
= 𝜉
1 𝜕

𝜕𝜏
+ 𝜉
2 𝜕

𝜕𝜙
+ 𝜂

𝜕

𝜕𝐶
+ 𝜁𝜏

𝜕

𝜕𝐶𝜏

+ 𝜁𝜙
𝜕

𝜕𝐶𝜙

+ 𝜁𝜙𝜙
𝜕

𝜕𝐶𝜙𝜙

.

(8)

Here 𝜁𝜏, 𝜁𝜙, and 𝜁𝜙𝜙 are the extended or prolonged
infinitesimals (see, e.g., [24]).The invariance criterion results
in the overdetermined system of linear homogeneous partial
differential equations known as the determining equations,
which may be solved even by interactive programs such as
YaLie [20] and Reduce [21].
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4. Lie Point Symmetry Analysis of (4)
We consider contaminant transport under steady radial water
flow in saturated soils. In this case, the relevant normalized
point source, the water velocity, and the dispersion coefficient
are given by 𝜙 = − log𝑅, V = 𝑒

𝜙, and 𝐷(V) = 𝜆𝑒
𝑝𝜙,

respectively (see, e.g. [3]). One may simply omit the depen-
dence of contaminant concentration on the clockwise polar
angle coordinate. In the initial symmetry analysis, (4) with
arbitrary 𝑝 and 𝜆 admits the time translation and the scaling
of 𝐶, that is, 𝑋1 = 𝜕/𝜕𝜏 and 𝑋2 = 𝐶(𝜕/𝜕𝐶), and the infinite
symmetry generator

𝑋𝜗 = 𝜗 (𝜏, 𝜙)
𝜕

𝜕𝐶
, (9)

where 𝜗 is any solution of (4). Extra symmetries are admitted
only when 𝑝 = 0 and 𝑝 = 2.

4.1. Constant Dispersion Coefficient. Given 𝑝 = 0, then the
dispersion coefficient becomes a proportionality constant, 𝜆.
Given dispersion coefficient as an arbitrary constant𝜆 ̸= 0, (4)
admits finite two extra symmetries

𝑋3 = 2𝜏
𝜕

𝜕𝜏
−
𝜕

𝜕𝜙
,

𝑋4 = 𝜏
2 𝜕

𝜕𝜏
− 𝜏

𝜕

𝜕𝜙
−
1

𝜆
(𝜆𝜏 −

𝜏

2
+
𝑒
−2𝜙

4
)𝐶

𝜕

𝜕𝐶
.

(10)

Further, symmetries may be admitted when 𝜆 = 1 and 𝜆 =
−1. Note that 𝜆 = −1 implies negative dispersion coefficient
which is not physically realistic, and as such we focus on the
case 𝜆 = 1. Given 𝑝 = 0 and 𝜆 = 1, then (4) admits finite four
extra symmetries given by

𝑋3 = 𝑒
𝜙 𝜕

𝜕𝜙
,

𝑋4 = 2𝜏
𝜕

𝜕𝜏
−
𝜕

𝜕𝜙
,

𝑋5 = 𝜏
𝜕

𝜕𝜙
+ (

𝑒
−2𝜙

2
)𝐶

𝜕

𝜕𝐶
,

𝑋6 = 𝜏
2 𝜕

𝜕𝜏
− 𝜏

𝜕

𝜕𝜙
− (

𝜏

2
+
𝑒
−2𝜙

4
)𝐶

𝜕

𝜕𝐶
.

(11)

4.2. Velocity-Dependent Dispersion Coefficient. The case 𝑝 =
2 is in agreement with solute transport theory. This implies
that the dispersion coefficient is now given in terms of
the water pore velocity. In this case, (4) with arbitrary

proportionality constant 𝜆 admits extra four finite Lie point
symmetries given by

𝑋3 = 𝑒
2𝜙 𝜕

𝜕𝜙
,

𝑋4 =
1

𝜆
(
𝑒
−4𝜙

4
−
𝜏𝑒
−2𝜙

2
)𝐶

𝜕

𝜕𝐶
+ 𝜏

𝜕

𝜕𝜙
,

𝑋5 = 𝜏
𝜕

𝜕𝜏
−
1

4

𝜕

𝜕𝜙
+
1

𝜆
(
𝑒
−2𝜙

8
−
𝜏

4
)𝐶

𝜕

𝜕𝐶
,

𝑋6 = 𝜏
2 𝜕

𝜕𝜏
−
𝜏

2

𝜕

𝜕𝜙
+
1

𝜆
(
𝜏𝑒
−2𝜙

4
−
𝑒
−4𝜙

16
−
𝜆𝜏

2
−
𝜏
2

4
)𝐶

𝜕

𝜕𝐶
.

(12)

Note that the admitted symmetry structure and number are
not affected by the constant 𝜆; that is, we obtain the same
symmetries up to the specified 𝜆 value.

5. Classification of Group Invariant Solutions

In general it is possible to reduce the number of indepen-
dent variables by one using any linear combination of the
admitted base vectors such as those in (11) and (12). In
other words, for each l-parameter subgroup (or equivalently
l-dimensional subalgebra) of the full symmetry group (or
symmetry algebra) there is a corresponding family of group-
invariant solutions, which may be infinite [23]. Thus one
needs a systematic means to classify these solutions such that
none can be derived from the other. In order to classify these
solutions one needs to construct a set of optimal systems.

Definition 1 (see [23]). An optimal system of 𝑙-parameter
group-invariant solutions to a differential equation (or system
of differential equations) is a collection of solutions with the
following properties.

(i) Each solution in the list is invariant under some 𝑙-
parameter symmetry group of the differential equa-
tion (or system of differential equations).

(ii) If there exists another solution which is invariant
under 𝑙-parameter symmetry group, then there is a
further symmetry generator admitted by the equation
(or system) which maps this old solution to the new
one.

Clearly, an optimal system is a set of elements which lead
to symmetry reductions that are not equivalent by any
transformation. Since we aim to classify the group invariant
solutions of (4), we construct the optimal system for the Lie
point symmetries in (11) and (12).

5.1. Construction of the Optimal System of Subalgebras. In this
section we adopt the method in [23] to construct the one-
dimensional system of subalgebras of the algebra spanned by
the base vectors in array of (11). To construct the optimal
system we first need to determine the commutators of the
admitted symmetries.
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Table 1: Commutators of the admitted symmetries.

[𝑋𝑖, 𝑋𝑗] 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

𝑋1 0 0 0 2𝑋1 2𝑋3 4𝑋4 − 2𝑋2

𝑋2 0 0 0 0 0 0
𝑋3 0 0 0 𝑋3 −𝑋2 2𝑋5

𝑋4 −2𝑋1 0 −𝑋3 0 𝑋5 2𝑋6

𝑋5 −2𝑋3 0 𝑋2 −𝑋5 0 0
𝑋6 2𝑋2 − 4𝑋4 0 −2𝑋5 −2𝑋6 0 0

Definition 2 (see [26]). Given the generators

𝑋1 = 𝜉
𝑖

1
(x, 𝑢) 𝜕

𝜕𝑥𝑖
+ 𝜂1 (x, 𝑢)

𝜕

𝜕𝑢
,

𝑋2 = 𝜉
𝑖

2
(x, 𝑢) 𝜕

𝜕𝑥𝑖
+ 𝜂2 (x, 𝑢)

𝜕

𝜕𝑢
,

(13)

admitted by a kth-order partial differential equation

𝑢
(𝑘)
= 𝐹 (x, 𝑢, 𝑢(1), . . . , 𝑢(𝑘−1)) , (14)

then the commutator of𝑋1 and𝑋2 is defined by

[𝑋1, 𝑋2] = (𝑋1 (𝜉
𝑖

2
) − 𝑋2 (𝜉

𝑖

1
))

𝜕

𝜕𝑥𝑖

+ (𝑋1 (𝜂2) − 𝑋2 (𝜂1))
𝜕

𝜕𝑢
.

(15)

One may list the commutators of symmetries in (11) together
with the time translation and concentration scaling in Table 1.

Furthermore we construct a set of one-dimensional
subalgebras which are equivalent to a unique element of the
set under some element of the adjoint representation given by

Ad (𝑒𝜖𝑋𝑖)𝑋𝑗 =
∞

∑

𝑛=0

𝜖
𝑛

𝑛!
(Ad𝑋𝑖)

𝑛
𝑋𝑗

= 𝑋𝑗 − 𝜖 [𝑋𝑖, 𝑋𝑗] +
𝜖
2

2!
[𝑋𝑖, [𝑋𝑖, 𝑋𝑗]] − ⋅ ⋅ ⋅ ,

(16)

where the commutator of 𝑋𝑖 and 𝑋𝑗 is defined above. The
adjoint representation of base vectors in (11) is given in
Table 2. Let

𝑋 = 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎4𝑋4 + 𝑎5𝑋5 + 𝑎6𝑋6. (17)

It remains to use the adjoint table to simplify as much as
possible the constants in (17). The key here is the recognition
of the function 𝜂(𝑋) = 𝑎2

4
− 4𝑎1𝑎6, which is invariant under

the full adjoint action [23]. To begin the simplification we
concentrate on the constants 𝑎1, 𝑎4, 𝑎6. If𝑋 is given as in (17),
then

𝑋 =

6

∑

𝑖=1

𝑎𝑖𝑋𝑖 = Ad (exp (𝛼𝑋1)) ∘ Ad (exp (𝛽𝑋6))𝑋 (18)

has the coefficients
𝑎1 = 𝑎1 − 2𝛼𝑎4 + 4𝛼

2
𝑎6,

𝑎4 = 𝑎4 − 4𝛼𝑎6 + 4𝛽 (𝑎1 − 2𝛼𝑎4 + 4𝛼
2
𝑎6) ,

𝑎6 = 𝑎6 + 2𝛽 (𝑎4 − 4𝛼𝑎6) + 4𝛽
2
(𝑎1 − 2𝛼𝑎4 + 4𝛼

2
𝑎6) .

(19)

Three cases arise.

Case 1. If 𝜂(𝑋) > 0, then we choose 𝛼 to be a real root of
𝑎1 − 2𝛼𝑎4 + 4𝛼

2
𝑎6 = 0 and 𝛽 = 𝑎6/(8𝛼𝑎6 − 2𝑎4). This implies

𝑎1 = 𝑎6 = 0 and 𝑎4 = √𝜂(𝑋) ̸= 0. Thus, 𝑋 is equivalent to the
vector𝑋 = 𝑋4 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎5𝑋5. Acting on𝑋 by adjoint
maps generated by 𝑋5 and 𝑋3, namely, Ad(exp(−𝑎5𝑋5)) and
Ad(exp(𝑎3𝑋3)), as such 𝑋5 and 𝑋3 in 𝑋 vanish. No further
simplifications are possible; therefore 𝑋 is equivalent to a
multiple of𝑋4 + 𝑎𝑋2 for some 𝑎 ∈ R provided 𝜂(𝑋) > 0.

Case 2. If 𝜂(𝑋) < 0, we set 𝛼 = 0 and 𝛽 = −𝑎4/4𝑎1 so
that 𝑎4 = 0. One may then assume both the coefficients of
𝑋1 and 𝑋6 to be unity. Thus, 𝑋 is equivalent to the vector
𝑋 = 𝑋1 + 𝑋6 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎5𝑋5. Acting on 𝑋 by adjoint
maps generated by 𝑋5 and 𝑋3, namely, Ad(exp((−𝑎3/2)𝑋5))
and Ad(exp((𝑎5/2)𝑋3)), as such 𝑋5 and 𝑋3 in 𝑋 vanish. No
further simplifications are possible; as such𝑋 is equivalent to
𝑋1 + 𝑋6 + 𝑎𝑋2, 𝑎 ∈ R given 𝜂(𝑋) < 0.

Case 3. Consider 𝜂(𝑋) = 0. Two subcases arise. If not all the
coefficients 𝑎1, 𝑎4, 𝑎6 are zero, then we are free to choose 𝛼
and 𝛽 such that 𝑎1 ̸= 0 and 𝑎4 = 𝑎6 = 0. In this case 𝑋 is
equivalent to a multiple of 𝑋 = 𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎5𝑋5.
Acting on �̃� by adjointmaps generated by𝑋1 and𝑋3, namely,
Ad(exp((𝑎3/2𝑎5)𝑋5)) and Ad(exp((−𝑎2/𝑎5)𝑋3)), 𝑎5 ̸= 0, as
such 𝑋2 and 𝑋3 in 𝑋 vanish. Therefore 𝑋 is equivalent
to a multiple of 𝑋1 ± 𝑋5. If 𝑎5 = 0, then acting on 𝑋
by Ad(exp(−(𝑎3/2)𝑋5)), so 𝑋 is equivalent to a multiple of
𝑋1 + 𝑎𝑋2, 𝑎 ∈ R. If all the coefficients 𝑎1, 𝑎4, 𝑎6 are
zero, assuming 𝑎3 ̸= 0 (say 𝑎3 = 1), then acting on 𝑋 by
Ad(exp(𝑎2𝑋5)) andAd(exp((−𝑎5/2)𝑋5)) yields𝑋3, amultiple
of𝑋. If 𝑎3 = 0 but 𝑎5 ̸= 0, acting by any group generated by𝑋1,
namely, Ad(exp(𝜖𝑋1)), gives a nonzero coefficient in front of
𝑋3 implying that this case is similar to the case when 𝑎3 ̸= 0.
Thus, the only remaining vectors are multiples of𝑋2. The set
of one-dimensional optimal system is given by

{𝑋4 + 𝑎𝑋2, 𝑋1 + 𝑋6 + 𝑎𝑋2, 𝑋1 ± 𝑋5, 𝑋1 + 𝑎𝑋2, 𝑋2, 𝑋3} ,

𝑎 ∈ R.

(20)

Repeating these calculations, we construct the one-
dimensional optimal system for the Lie point symmetries in
(12) together with the time translation and the scaling of 𝐶
and obtain
{𝑋5 + 𝑎𝑋2, 𝑋1 + 𝑋6 + 𝑎𝑋2, 𝑋1 ± 𝑋4, 𝑋1 + 𝑎𝑋2, 𝑋2, 𝑋3} ,

𝑎 ∈ R.

(21)
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Table 2: Adjoint representation for the base vectors.

Ad 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

𝑋1 𝑋1 𝑋2 𝑋3 −2𝜖𝑋1 + 𝑋4 −2𝜖𝑋3 + 𝑋5 4𝜖
2
𝑋1 + 2𝜖𝑋2 − 4𝜖𝑋4 + 𝑋6

𝑋2 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

𝑋3 𝑋1 𝑋2 𝑋3 −𝜖𝑋3 + 𝑋4 𝜖𝑋2 + 𝑋5 −𝜖
2
𝑋2 + 𝑋6 − 2𝜖𝑋5

𝑋4 𝑒
2𝜖
𝑋1 𝑋2 𝑒

𝜖
𝑋3 𝑋4 𝑒

−𝜖
𝑋5 𝑒

−2𝜖
𝑋6

𝑋5 𝑋1 + 2𝜖𝑋3 − 𝜖
2
𝑋2 𝑋2 −𝜖𝑋2 + 𝑋3 𝑋4 + 𝜖𝑋5 𝑋5 𝑋6

𝑋6 𝑋1 − 2𝜖𝑋2 + 4𝜖𝑋4 + 4𝜖
2
𝑋6 𝑋2 𝑋3 + 2𝜖𝑋5 𝑋4 + 2𝜖𝑋6 𝑋5 𝑋6

5.2. Construction of Group-Invariant Solutions. The group-
invariant solutions are constructed in this section. We
further classify the group-invariant solutions according to
the elements of the one-dimensional optimal systems. The
reductions and group invariant solutions are listed in Tables
3 and 4.

Definition 3 (see [24]). 𝑢 = 𝐻(x) is a group-invariant
solution of a 𝑘th-order PDE corresponding to the appropriate
admitted symmetry generator if and only if 𝑢 = 𝐻(x) satisfies

𝑋 (𝑢 − 𝐻 (x)) = 0, when 𝑢 = 𝐻 (x) . (22)

That is,

𝜉
𝑖
(x, 𝐻 (x)) 𝜕𝐻

𝜕𝑥𝑖
= 𝜂 (x, 𝐻 (x)) . (23)

The solution of (23) is obtained from the characteristics
equation

𝑑𝜉
1

𝑑𝑥1
=
𝑑𝜉
2

𝑑𝑥2
= ⋅ ⋅ ⋅ =

𝑑𝜂

𝑢
. (24)

Classifications of the group-invariant solutions by the ele-
ments of the optimal system in (20) and (21) are listed in
Tables 3 and 4, respectively. Wherever they appear, 𝑘1 and 𝑘2
are arbitrary constants, 1𝐹1(𝑏, 𝑐; 𝑧) and𝑈(𝑏, 𝑐; 𝑧) are the con-
fluent hypergeometric functions, Ai(𝑧) and Bi(𝑧) are the Airy
functions, while 𝐽𝑛(𝑧) and Γ(𝑧) represent the Bessel function
of the first kind and Euler gamma function, respectively,
and erf(𝑧) represents an error function. A well-documented
review of such functions is presented by Abramowitz and
Stegun [27].

5.3. Some Physical Examples

5.3.1. Given Constant Dispersion Coefficient

Example a. Suppose a concentration𝐶0 of a solute is supplied
to a single point in an instant of time.We require to determine
the subsequent concentration of the pollution at various
distances from where it was released (see, e.g., [28]). We
would expect concentration to vanish at large distance; that
is,

𝐶 (𝜙, 𝜏) → 0, as 𝜙 → −∞. (25)
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Figure 1: Contaminant concentration profile along the radius. Here
𝐶0 = 5.

The generator 𝑋4 in (11) (also, an element of the one-
dimensional optimal systems given 𝑎 = 0) leads to an
invariant solution in functional form given by

𝐶 = 𝐺 (𝛾) , (26)

where 𝛾 = √𝜏𝑒𝜙 and 𝐺 satisfies the equation

2𝛾
3
𝐺

+ (4𝛾
2
− 1)𝐺


= 0, (27)

and hence

𝐺 = 𝑐1 + 𝑐2 erf (
1

2𝛾
) . (28)

Here erf(𝑧) = (2/√𝜋) ∫
𝑧

0
𝑒
−]2
𝑑] is the error function [27].

In terms of the original variable and subject to the boundary
conditions, we obtain

𝐶 = 𝐶0 erfc(
𝑒
−𝜙

2√𝜏
) . (29)

Here, the erfc(⋅) is the complement error function defined by
(1 − erf(⋅)). Solution (29) is depicted in Figure 1.
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Figure 2: Solute flux across a fixed radius. Here𝑅𝑎 = 4 and𝐶0 = 10.
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Figure 3: Contaminant concentration profile as time evolves.

Total flux across 𝑅 = 𝑅𝑎 is given by

𝐶 +
1

𝑅

𝜕𝐶

𝜕𝑅

𝑅=𝑅𝑎

= 𝐶0 erfc(
𝑅𝑎

2√𝜏
) −

𝐶0𝑒
−𝑅
2

𝑎
/4𝜏

√𝜋𝜏𝑅𝑎

. (30)

The contaminant flux (30) is depicted in Figure 2. Total flux
across 𝑅𝑎 = 4 increases and flattens at large time.

Example b. The 𝑋6-invariant solution is given in functional
form as

𝐶 =
1

√𝜏
exp(−𝑒

−2𝜙

4𝜏
)𝐺 (𝛾) , (31)

where

𝛾 = 𝜏𝑒
𝜙
, 𝐺 satisfies the ODE 𝛾𝐺 + 𝐺 = 0. (32)

We impose the boundary conditions

𝐶 → 0, 𝜙 → −∞, 𝐶 = 𝜔 (𝜏) , 𝜙 → ∞. (33)
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Figure 4: Contaminant concentration profile at various fixed times.

Infinite concentration at the origin implies that there is a
high supply of contaminants at this point. Furthermore,
contaminant concentration vanishes when time evolves. In
terms of the original variables we obtain the exact (group-
invariant) solution given by

𝐶 =
1

√𝜏
exp(−𝑒

−2𝜙

4𝜏
) . (34)

Solution (34) is depicted in Figures 3 and 4. In Figure 3,
a sharp peak of concentration is observed shortly after
𝜏 = 0 and decreases at later stage. This may be interpreted
as an injection of contaminants at a single point; that is,
the concentration at a single point increases but due to
diffusion at larger time it smoothes out. Note that here we
have restricted our analysis using symmetry generator 𝑋6.
This symmetry generator leads to simpler and realistic exact
solution. In Figure 4, we observe that concentration at the
origin decreases with time. Furthermore, this concentration
vanishes at large distances.

5.3.2. Given Velocity-Dependent Dispersion Coefficient

Example a (steady-state solution).The time translation leads
to the analysis of the steady-state contaminant transport.
Steady-state solutions may be constructed and subjected to
the following imposed boundary conditions:

𝐶 = 𝐶0, 𝑅 = 0, (35)

𝐶 +
1

𝑅

𝑑𝐶

𝑑𝑅
= 0, 𝑅 = 𝑅𝑎. (36)

The boundary condition (35) implies that pollutants are sup-
plied at the origin, and boundary condition (36) correspond
to the assumption that pollutants are not carried though at



Advances in Mathematical Physics 9

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

P = 1
P = 1.5

P = 2

C

Figure 5: Steady contaminant profile for concentration given in
(37). Here 𝜆 = 1.

some distance 𝑅𝑎, rather it accumulates here. We obtain the
exact solution

𝐶 = 𝐶0 {(1 −
1

Δ
) +

1

Δ
exp(𝑅

𝑝

𝜆𝑝
)} , (37)

where Δ is given by

Δ = 1 − (1 +
𝑅
𝑝−2

𝑎

𝜆
) exp(

𝑅
𝑝

𝑎

𝜆𝑝
) . (38)

The solution (37) is depicted in Figures 5, 6, and 7. We
observe in Figure 5 that concentration starts decreasing and
converges to some value at large distance for 𝑝 = 2 than for
lower values of 𝑝, whereas 𝜆 has an opposite effect as shown
in Figure 6.

Example b (transient-state solution). It is quite difficult to
construct exact solutions for transient contaminant transport
subject to these boundary conditions (35) and (36). However,
if one assumes that at an initial time, say 𝜏 = 1, the
concentration at the point source is given by a constant
and that this concentration vanishes at large distances and
prolonged periods, then using the symmetry combination
𝑋1 + 𝑎𝑋2 from Table 4, the group invariant solution is given
by

𝐶 = 𝐶0𝑒
𝑎𝜏 exp{(1 −

√1 − 4𝑎𝜆

4𝜆
)𝑅
2
} , ∀𝑎 < 0, 𝜆 > 0.

(39)

Solution (39) is depicted in Figures 8 and 9.
In his work, Philip [6] considered the instantaneous point

source for contaminant dispersion during radial water flow in
porous media. Exact solutions were constructed for the two-
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Figure 6: Steady contaminant profile for concentration given in
(37). Here 𝑅 = 𝑅𝑎 = 2.
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Figure 7: Effects of 𝜆 and 𝑝 on concentration profile for solution
given in (37). Here 𝑅 = 𝑅𝑎 = 2.

and three-dimensional models with dispersion coefficient
depending on Péclet number. Here, we consider models in
stream functions coordinates. Exact close-form (similarity)
solutions are constructed using the elements of the one-
dimensional optimal systems. These new solutions may be
viewed as representing the continual supply of contaminant
at a point (source) which are dispersed radially.

6. Some Concluding Remarks

In this paper, we have focused only on the two-dimensional
solute concentration fieldwithinwater from a single injection
well. The considered problem is a significant improvement
in the study of solute transport under radial water back-
ground since we analyze the convection-dispersion equation
in stream functions. We have observed that extra Lie point
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Figure 9: Effects of 𝜆 on the concentration profile for solution given
in (39). Here 𝑅 = 𝑅𝑎 = 2, 𝐶0 = 1, and 𝜏 = 2.

symmetries are admitted when the dispersion coefficient is
a constant or when it is given as a power law function of
velocity, with exponent being given by two.We have classified
the group invariant solutions by the elements of the optimal
systems. In fact, new exact solutions are constructed. The
symmetry (invariant) solution is obtainable when dispersion
coefficient is a constant or is given by Taylor’s theory of
mixing in soils.
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