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We extend an algorithm of Deng in spherically symmetric spacetimes to higher dimensions. We show that it is possible to
integrate the generalised condition of pressure isotropy and generate exact solutions to the Einstein field equations for a shear-free
cosmological model with heat flow in higher dimensions.Three newmetrics are identified which contain results of four dimensions
as special cases. We show graphically that the matter variables are well behaved and the speed of sound is causal.

1. Introduction

Spherically symmetric gravitating models with heat flow, in
the absence of shear, are important in the study of various
cosmological processes and the evolution of relativistic astro-
physical bodies. For a variety of applications in the presence
of inhomogeneity, see Krasinski [1]. Heat flowmodels are also
important in analysing gravitational collapse and relativistic
stellar processes. Astrophysical studies in which heat flow is
important include the shear-free models of Wagh et al. [2],
Maharaj and Govender [3], Misthry et al. [4], and Herrera
et al. [5]. By studying shear-free models, we avail ourselves
with a rather simpler avenue where we only need to provide
solutions to the generalised condition of pressure isotropy
containing two metric functions. A complete study of shear-
free heat conducting fluids with charge was completed by
Nyonyi et al. [6] using Lie’s group theoretic approach applied
to differential equations. Shearing models where heat flow is
significant have been recently studied by Thirukkanesh et al.
[7] for radiating spherically symmetric spheres. It turns out
that the resulting nonlinear equations with shear are much
more difficult to analyse.

A generic method of obtaining new solutions to the Ein-
stein field equations with heat flowwas provided by Deng [8].
Using this general method, we can regain existing results and
obtain new classes of solutions. Nyonyi et al. [6], Ivanov [9],
and Msomi et al. [10] have obtained new solutions using the
Lie group theoretic approach and other methods, by solving

the underlying pressure isotropy condition. These investiga-
tions are applicable to four dimensions. Extensions to higher
dimensions have also been considered by many authors
because of physical requirements; for example, Bhui et al. [11]
showed the absence of horizons in nonadiabatic gravitational
collapse. Studies of this type motivated the Lie symmetry
analysis of heat conducting fluids by Msomi et al. [12] in
dimensions greater than four. In the present treatment, we
extend the Deng [8] algorithm to higher dimensions and
show that new results are possible.

2. The Model

We consider the line element of a shear-free, spherically sym-
metric (𝑛 + 2)-dimensional manifold in the form

d𝑠2 = −𝐷
2d𝑡2 + 1

𝑉2
(d𝑟2 + 𝑟2d𝑋2

𝑛
) , (1)

where 𝑛 ≥ 2. The gravitational potential components 𝐷 and
𝑉 are functions of 𝑟 and 𝑡 with
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(2)

For a heat conducting fluid, the energy momentum tensor is
given by

𝑇
𝑎𝑏
= (𝜌 + 𝑝)𝑈
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where 𝜌 is the energy density, 𝑝 is the kinetic pressure, q is
the heat flux tensor, andU is a timelike (𝑛+2)-velocity vector.
For a comoving observer, we have𝑈𝑎 = (1/𝐷, 0, 0, . . . , 0) and
𝑞𝑎 = (0, 𝑞, 0, . . . , 0).

Utilizing (1)–(3), we obtain the Einstein field equations

𝜌 =
𝑛 (𝑛 + 1)𝑉

2
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2𝐷2𝑉2
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which are consistent with the derivation of Bhui et al. [11].
Equations (4b) and (4c), togetherwith the transformation𝑢 =
𝑟2, give the pressure isotropy condition

𝑉𝐷
𝑢𝑢
+ 2𝐷
𝑢
𝑉
𝑢
− (𝑛 − 1)𝐷𝑉

𝑢𝑢
= 0 (5)

which is themaster equation for the gravitating fluid in (𝑛+2)-
dimensions.

Deng [8] provided a general recipe for generating a series
of solutions of the isotropy condition (5) for 𝑛 = 2. This tech-
nique may be extended to the master equation (5). Note that
the isotropy condition is an ordinary differential equation in
𝑢 (since no time derivatives appear) which may be reduced
to a simpler differential equation in𝐷 if 𝑉 is known and vice
versa. In this technique, the elementary forms of either 𝑉 or
𝐷 are chosen that are in turn substituted into the equation
to be solved so as to obtain the form of the remaining term.
Below we give a brief outline of the method.

(1) Take a simple form of 𝑉, say 𝑉 = 𝑉
1
, and substitute

it into the master equation to find the most general
solution of 𝐷, say 𝐷 = 𝐷

1
. The pair 𝑉 = 𝑉

1
and 𝐷 =

𝐷
1
provides the first class of solutions to (5).

(2) Take 𝐷 = 𝐷
1
and substitute it into the master equa-

tion. This gives an equation in 𝑉 with 𝑉 = 𝑉
1
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a solution.We are now in a position to obtain a second
solution𝑉 = 𝑉

2
linearly independent of𝑉

1
.The linear

combination𝑉
3
= 𝑎𝑉
2
+𝑏𝑉
1
gives the general solution

that satisfies themaster equation.The pair𝑉 = 𝑉
3
and

𝐷 = 𝐷
1
is the second class of solutions to (5).

(3) Take 𝑉 = 𝑉
3
and substitute it into the master equa-

tion.We obtain an equation in𝐷with𝐷 = 𝐷
1
already

a solution.We are then in a position to obtain𝐷 = 𝐷
2

in the same way we obtained 𝑉
2
. The pair 𝑉 = 𝑉

3
and

𝐷 = 𝑐𝐷
1
+ 𝑑𝐷
2
is the third class of solutions to (5).

(4) Repeat the above process to obtain an infinite seq-
uence of solutions.

It is important to note that, in principle, this is a nontermi-
nating process for obtaining solutions, and an infinite number
of solutions can be listed. The difficulty arises in obtaining
subsequent solutions in the process because the integration
may become more complicated. However, the algorithm
proves to be a powerful mechanism for generating new solu-
tions.

3. Results

We start with a simple case

𝐷
1
= 1. (6)

Equation (5) reduces to

𝑉
𝑢𝑢
= 0. (7)

This equation can be solved directly to obtain

𝑉
1
= 𝑎𝑢 + 𝑏, (8)

where 𝑎 and 𝑏 are arbitrary functions of 𝑡. The pair of
equations (6) and (8) gives the first class of solutions

d𝑠2 = −d𝑡2 + 1

(𝑎𝑢 + 𝑏)
2
(d𝑟2 + 𝑟2d𝑋2

𝑛
) . (9)

Observe that the dimension 𝑛 is absent in metric (9). In
this class of solutions the potentials are independent of the
dimensionality; however, the spatial volume depends on 𝑛

and the matter variables are affected through the field equa-
tions. When 𝑛 = 2, we regain the results of Bergmann [13].

On substituting (8) back into (5) we obtain

(𝑎𝑢 + 𝑏)𝐷
𝑢𝑢
+ 2𝑎𝐷

𝑢
= 0. (10)

The general solution to (10) is

𝐷
2
=
𝑐𝑢 + 𝑑

𝑎𝑢 + 𝑏
, (11)

with 𝑐 and 𝑑 arbitrary functions of 𝑡.The pair of equations (8)
and (11) gives the second class of solutions

d𝑠2 = −(
𝑐𝑢 + 𝑑

𝑎𝑢 + 𝑏
)

2

d𝑡2 + 1

(𝑎𝑢 + 𝑏)
2
(d𝑟2 + 𝑟2d𝑋2

𝑛
) . (12)

Again, we observe that the dimension 𝑛 does not appear
explicitly in (12). This means that the potentials in (12) are
independent of the dimension. When 𝑛 = 2, we regain the
solutions obtained by Maiti [14] and later generalised by
Modak [15] and Sanyal and Ray [16]. We make the general
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point that, for a linear form of 𝑉, the parameter 𝑛 does not
appear in (5). Thus all solutions with a linear form of 𝑉 do
not contain the dimension 𝑛, thereby leading to the metrics
(9) and (12).

Now, substituting (11) into (5), we obtain

𝑉
𝑢𝑢
−

2

𝑛 − 1
(
(𝑏𝑐 − 𝑎𝑑) /(𝑎𝑢 + 𝑏)

2
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2
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3

(𝑐𝑢 + 𝑑) / (𝑎𝑢 + 𝑏)
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(13)

We require two independent solutions𝑉
1
and𝑉

2
of (13). Note

that 𝑉
1
in (8) is a solution to (13). We propose the second

solution to (13) to be given by

𝑉
2
= 𝛼 (𝑢, 𝑡) 𝑉

1
, (14)

where the function 𝛼(𝑢, 𝑡) has to be found explicitly. On sub-
stituting (14) into (13), we obtain

𝛼
𝑢𝑢
+ 2 [

𝑎
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−

1
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(15)

On integrating (15), we obtain 𝛼 expressed as

𝛼 = ∫
𝑢

𝑒(
𝑐𝑠 + 𝑑

(𝑎𝑠 + 𝑏)
𝑛
)

2/(𝑛−1)

d𝑠. (16)

Consequently, the second solution 𝑉
2
will depend on the

dimension 𝑛. To evaluate integral (16), we need to consider
two cases: 𝑎𝑑 = 𝑏𝑐 and 𝑎𝑑 ̸= 𝑏𝑐.

3.1. Case I. When 𝑎𝑑 = 𝑏𝑐 we have
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𝑑

𝑏𝑛
)
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𝑎

𝑏
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,

(17)

where 𝑔 is an arbitrary function of 𝑡. Therefore 𝑉
2
becomes

𝑉
2
= 𝑎𝑔𝑢 + (𝑏𝑔 −

𝑘

𝑎
𝑏
2
) . (18)

This implies that 𝑉
2
is proportional to 𝑉

1
and is therefore not

a second linearly independent solution. The case 𝑎𝑑 = 𝑏𝑐 is
degenerate.

3.2. Case II. When 𝑎𝑑 ̸= 𝑏𝑐, we have

𝛼 =
𝑒
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(
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)(
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𝑎𝑢 + 𝑏
)
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where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑔 are arbitrary functions of 𝑡.Therefore
the second solution 𝑉

2
becomes

𝑉
2
= (

𝑒

𝑎𝑑 − 𝑏𝑐
(
1 − 𝑛
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)
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+ 𝑔) (𝑎𝑢 + 𝑏) .

(20)

And since the general solution to (5) is a linear combination
of 𝑉
1
and 𝑉

2
, we obtain

𝑉
3
= (ℎ (𝑡)

+𝑗 (𝑡) (
𝑒

𝑎𝑑 − 𝑏𝑐
(
1 − 𝑛

𝑛 + 1
)(

𝑐𝑢 + 𝑑

𝑎𝑢 + 𝑏
)

(𝑛+1)/(𝑛−1)

+ 𝑔))

× (𝑎𝑢 + 𝑏) ,

(21)

where we have introduced for convenience ℎ(𝑡) and 𝑗(𝑡). The
third class of solutions is therefore given by (11) and (21) with
metric

d𝑠2 = − (
𝑐𝑢 + 𝑑

𝑎𝑢 + 𝑏
)

2

d𝑡2

+ ([ℎ (𝑡) + 𝑗 (𝑡)

×(
𝑒

𝑎𝑑 − 𝑏𝑐
(
1 − 𝑛

𝑛 + 1
)(

𝑐𝑢 + 𝑑

𝑎𝑢 + 𝑏
)
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+ 𝑔)]

× (𝑎𝑢 + 𝑏) )

−2

× (d𝑟2 + 𝑟2d𝑋2
𝑛
) .

(22)

This is a new class of solutions and it is evident that it certainly
depends on the dimension 𝑛 ≥ 2. Therefore we can conclude
that the dimensionality of the problem does indeed affect the
dynamics of the gravitational field with heat flow. The next
class of solutions can be obtained by substituting 𝑉

3
into (5)

and then solving the resulting equation for 𝐷
3
. This may be

continued to obtain further new solutions. The integration
process gets more complicated for further iterations.

We now consider the special case of four dimensions.
When 𝑒 = 1 and 𝑛 = 2, the line element (22) becomes

d𝑠2 = − (𝑐𝑢 + 𝑑
𝑎𝑢 + 𝑏

)

2

d𝑡2

+ ([ℎ − 𝑗(
1

3 (𝑎𝑑 − 𝑏𝑐)
(
𝑐𝑢 + 𝑑

𝑎𝑢 + 𝑏
)

3

+ 𝑔)]

× (𝑎𝑢 + 𝑏) )

−2

× (d𝑟2 + 𝑟2 (d𝜃2 + sin2𝜃2d𝜙2)) .

(23)
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Figure 1: Energy density 𝜌.
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Figure 2: Pressure.

We can rewrite (23) in the equivalent form

d𝑠2 = − (𝑐𝑢 + 𝑑
𝑎𝑢 + 𝑏

)

2

d𝑡2

+ ( (ℎ + 𝜅) (𝑎𝑢 + 𝑏)

−
𝑗

3𝑎
(
𝑐
2

𝑎2
+
𝑐

𝑎

𝑎𝑢 + 𝑏

𝑐𝑢 + 𝑑
+ (

𝑐𝑢 + 𝑑

𝑎𝑢 + 𝑏
)

2

))

−2

× (d𝑟2 + 𝑟2 (d𝜃2 + sin2𝜃2d𝜙2)) ,

(24)

where the function 𝜅 is given by

𝜅 = (𝑔 −
𝑐3

3𝑎3 (𝑎𝑑 − 𝑏𝑐)
) . (25)

When we set 𝜅 = 0 in (24), we regain the result of Deng [8].
We interpret (22) as the higher dimensional generalisation of
the Deng model with heat flow.

4. Example

We illustrate the validity of our solutions by considering a
simple example with physically viable conditions. For the line

0 2 3 4 5 6

2

4

6

8

10

q

r

×104

Figure 3: Heat flow.
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Figure 4: Speed of sound.

element (22), we make the simple choice: 𝑎 = 𝑑 = 0, 𝑏 = 𝑐 =

1, ℎ + 𝑗𝑔 = 1, and 𝑒 = 𝑗 = 1. This gives the simplified forms
of the potentials

𝐷 = 𝑟
2
, 𝑉 = 1 + (

1 − 𝑛

𝑛 + 1
) 𝑡𝑟
(2(𝑛+1)/(𝑛−1))

. (26)

Even with this simple example, a qualitative analysis of the
matter variables and energy conditions for the interiormatter
distribution is arduous.We therefore generate graphical plots
on a constant timelike hypersurface to illustrate the validity
of our solutions using this example. Figures 1, 2, and 3 are the
plots for the energy density 𝜌, the pressure 𝑝, and the heat
flow 𝑞 for three different dimensions: 𝑛 = 2 (dashed line),
𝑛 = 3 (solid line), and 𝑛 = 4 (dotted line). It is clearly evident
that the matter variables are positive and they decrease with
the increase in dimension. This is due to the fact that an
increase in dimension translates to an increase in the number
of degrees of freedom leading to a decrease in the mass per
unit volume of the gravitating fluid. In Figure 4, we have
plotted the speed of sound. From Figure 4, we observe that
causality is not violated for the dimensions 𝑛 = 2, 3, and 4.
In Figures 5, 6, and 7, we have plotted the quantities 𝐴 =

𝜌 − 𝑝 + Δ, 𝐵 = 𝜌 − 3𝑝 + Δ, and 𝐶 = 2𝑝 + Δ, where
Δ = √(𝑝 + 𝑞)

2
− 4𝑞2 for 𝑛 = 3. We observe that 𝐴, 𝐵, and

𝐶 are positive; hence, the weak, dominant, and strong energy
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Figure 5: Weak energy condition.
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Figure 6: Dominant energy condition.

conditions are satisfied. Therefore the matter distribution for
this example is physically reasonable.

5. Discussion

We obtained new generalised classes of exact solutions to the
Einstein field equations for a neutral relativistic fluid in the
presence of heat flow in a higher dimensional manifold. We
foundnew solutions to the coupledEinstein systemby solving
the higher dimensional pressure isotropy condition which is
a second order nonlinear differential equation.We solved the
master equation bymaking use of theDeng algorithm [8] and
obtained three new metrics. The first metric (9) generalises
the Bergmann [13] line element. The second metric (12)
generalises the Maiti [14], Modak [15], and Sanyal and Ray
[16] line elements. It is remarkable that the potentials in (9)
and (12) are independent of the dimension. The third metric
(22) depends on the dimension 𝑛 and generalises theDeng [8]
line element. We conclude that the dimension of the space-
time affects the dynamics of the heat conducting gravitating
fluid. We briefly studied the physical features by graphically
plotting thematter variables.The energy conditions are found
to be positive and causality is not violated.
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Figure 7: Strong energy condition.
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