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A predator-prey model incorporating individual behavior is presented, where the predator-prey interaction is described by a
classical Lotka-Volterra model with self-limiting prey; predators can use the behavioral tactics of rock-paper-scissors to dispute
a prey when they meet. The predator behavioral change is described by replicator equations, a game dynamic model at the fast
time scale, whereas predator-prey interactions are assumed acting at a relatively slow time scale. Aggregation approach is applied
to combine the two time scales into a single one. The analytical results show that predators have an equal probability to adopt
three strategies at the stable state of the predator-prey interaction system. The diversification tactics taking by predator population
benefits the survival of the predator population itself, more importantly, it also maintains the stability of the predator-prey system.
Explicitly, immediate contest behavior of predators can promote density of the predator population and keep the preys at a lower
density. However, a large cost of fighting will cause not only the density of predators to be lower but also preys to be higher, which

may even lead to extinction of the predator populations.

1. Introduction

The investigation of phenomena involving complex geome-
try, patterns, and scaling has undergone a substantial devel-
opment in the past decades. In natural reality, many objects
are “self-similar” at different scales, which is the essence
of fractal. We see fractal patterns almost everywhere in
nature, even the more random-appearing patterns of clouds
or coastlines. Fractal has been applied into a variety of
areas as a new concept and method, scaling is another
important concept with it. In ecosystem, an ecological process
including some small parts which happen on different scales
is commonly observed; it is possible to take advantage of
these time scales in order to reduce the dimension of the
initial complete model and to build a simplified system that
describes the dynamics of a small number of global variables.
Aggregation methods are extended to systems with different
time scales to reduce the number of variables [1-6].

Game theory as a very useful branch of mathematics has
long been widely used to investigate the interaction between
rational players in a game, the core problem in game theory
is what kind of strategies will be adopted to improve player’s
payoff as much as possible. Smith and Price [7] ingeniously
linked its concept of payoft functions and players to the
biological terminology of fitness and individuals, respectively,
in order to explain the evolution of ritualised conflicts within
species, for example, when individuals compete for mates or
territory. Their seminal work thus inspired an entirely new
approach to behavior ecology; evolutionary game theory is
born to investigate problems involving frequency-dependent
selection. It deals with entire populations of individuals, all
programmed to use some strategies (or types of behavior);
strategies with higher payoff will spread within population,
through learning, copying, or inheriting, even by infection.
The payoffs depend on the actions of coplayers and hence on
the frequencies of the strategies within the populations.



In population biology, understanding the effects of inter-
acting species at the population and community level is one
of the most important issues. The classical predator-prey
system is considered as a basic aspect and has long been
investigated since Lotka in 1920 [8] followed by Volterra [9]
from a theoretical point of view, respectively, where a simple
coupled set of differential equations is devised to describe
an autocatalytic reaction and the statistics of fish catches in
the Adriatic. This first model (to be called Lotka-Volterra
model (LVM)) has since become one of the central paradigms
to elucidate the main features of species interactions and
population cycles in predator-prey systems, where predator
depends on the prey for food, and each species has an
inherent birth and death rate. The two populations end up
oscillating, with the predator population crests slightly offset
from that of prey. Based on LVM, a proliferation of models
has been employed to qualitatively capture and qualitatively
understand the primary features of predator-prey systems
as well as competition system (e.g., [10-12]), by considering
factors which influence the stable coexistence of ecosystem
[13] and maintenance of biodiversity [14-17].

Individual’s behaviors play an important role in pop-
ulation dynamics [18, 19]. Individuals have the ability of
learning and can change tactics along their life according to
the environment conditions and the results of past contests.
Behavioral plasticity [20] allows an individual to be more
flexible to adopt the behavior that can optimize its survival in
the present environment [21]. Typically, aggressive behavior
is commonly observed in animal kingdom when the prey
resource is rare, thus making predators food-deprived to
monopolize the limited resources, for example, in vertebrates
[22], in birds [23], and in mammals [24]. Particularly, in a
real world, predators are expected to choose their strategy
both in relation to the density of prey and in relation with
the strategies adopted by the other competitors. Inspired
by this point, Auger et al. [6] studied a predator-prey
system incorporating predators using the classical hawk and
dove tactics. In their work, individual behavior structure of
predators is firstly incorporated into the classical predator-
prey model.

In this paper, a traditionally defined Lotka-Volterra inter-
action system is used to investigate the dynamics of predator-
prey system, where predators use different strategies when
disputing a prey. The canonical rock-paper-scissors (R-P-
S) strategy [17] is assumed, with the second out-competing
the first, the third out-competing the second, and the first
out-competing the third, which has been invoked to cap-
ture the remarkable coexistence of three types of cyclically
competition. The principle aim of this study is to explore the
effect of individual behavior on the dynamics of the predator-
prey system. In particular, we will look at the existence of
coexistence equilibria between the prey and predator and the
corresponding internal structure of the predator population:
monomorphic or polymorphic state. We are interested in the
coevolution at the individual and community level.

At first, we present the game dynamic model representing
the fast scale part of the complete system in Section 2.1. Then
the slow scale part is built up based on the classical LVM
with prey-density dependence. Combining the fast and slow

Advances in Mathematical Physics

scale parts together, Sections 2.3 and 2.4 are devoted to the
construction and analysis of the ensuing aggregated model.
The dynamics of the system can be studied by mathematical
analyses and computer simulations, some details of the
analysis are given in the appendix.

2. Model and Analysis

Suppose that all predators hunt the same prey, after a predator
catches a prey, this predator has to fight with others to keep
the prey. Simplifying, we assume that once a prey is killed,
a second predator in the vicinity arrives and is disputing the
prey to the predator that has caught the prey. Predators can
use three behavior tactics rock, paper, and scissors to dispute
a prey when they meet. After a certain number of encounters,
on average, the tactic that gives predators the better payoft
will be carried out. This dynamic process can be described by
replicator equations [25-30].

Because predators encounter and fight frequently (for
example, each day) to keep a captured prey or to dispute
a prey to another predator, we suppose the game dynamics
correspond to a fast time scale. However, a few preys are killed
each day in comparison to the total reservoir of prey, so the
predator-prey interaction terms correspond to a slow time
scale, involving birth, death, and predation.

Denote n(t) and p(t) as the densities of prey and predator
population at time t, respectively. Next, we will construct
models to describe the interaction of predators and prey.

2.1. Replicator Dynamics of Predators on a Fast Time Scale.
Let us denote a; (i,j € {1,2,3}, 1, 2, 3 represent rock,
paper, scissors, respectively) as the element of payoff matrix
A, which corresponds to the gain that is obtained by an
individual playing tactic i against an individual playing tactic
j. When two individuals with the same behavior meet, they
share the gain G equally but also the cost C(C > 0) due to
fighting, a; = (G — C)/2, and vice versa, the winner gets
G while the loser gets nothing. For example, when a rock
strategy individual meets a paper strategy one, the first one
gets nothing, but another gets G. Consequently, the payoft
matrix A takes the following form:

ﬁ 0 G
2 G-C
A= G — 0 . 1
0 ¢ 9-¢
2

The gain G of the game corresponds to the prey amount that
two predators dispute each day. To simplify, a classical type I
linear functional response is taken into account, that is,

G = an, (2)

where a is a positive parameter.

Denote p,(t), p,(t), and p,(t) as the densities of indi-
viduals with rock, paper, and scissors strategies at time ft,
respectively. The total density of predators will be

p(t)=p, (1) + p, () + p, (1), 3)
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Furthermore, let x,(¢), x,(t), and x5(¢) be respectively the
rock, paper, and scissor proportions in the population of
predators at time ¢ as follows:

_p @ _ P ®
p() p@)’ (4)
x3(B)=1-x,(t)—x,(t).

The replicator equations describing the evolutionary dynam-
ics of the three strategies read as follows:

x (t)

> x, (t)

dx; T
— =x; [(Ax); -x Ax|, i=123,
i X; [( X); — X x] i
3 ©)
x Ax = ij(Ax)j,
=1
where x = (x;,x,,x3). Obviously, if a strategy brings a

better payoff than the average payoft of the population, the
proportion of individuals playing this strategy is increasing
and conversely is decreasing. In (5), 7 is the fast time scale.
Thus, we assume that the R-P-S game is in fast time scale
compared to the processes that we will now consider in the
model, such as predator death, prey growth, and capturing of
preys by predators.

2.2. Dynamics of Predator-Prey at the Slow Time Scale. A
classical Lotka-Volterra model with self-limiting prey [31] is
assumed to describe the total prey density as follows:

dn n
ikl <1 K) anp, (6)
where ¢ corresponds to the slow time scale. Usually, we have
the relationship ¢t = et for two time scales. From (6) we know,
in absence of predators, that the growth of prey population
depends on a logistic equation with an intrinsic growth rate
r towards a carrying capacity K. Besides, we assume a Lotka-
Volterra functional response of type I; the parameter a is
positive, which represents predation force and is the same as
the one in the functional response.

Predators are assumed to have a constant natural mortal-
ity rate u(p > 0) no matter what kind of strategies they use.,
the growth rate of each subgroup with the same strategy is
proportional to the average payoff obtained by an individual
using the tactic on the occasion of each type of encounter.
For example, a rock player can encounter either a rock player
in proportion of p,/p and gets the gain (G — C)/2, or a
paper player in proportion of p,/p and gets zero, or as a
proportion of p,/p to encounter a scissor player and gets G.
Consequently, the growth of the rock predator subpopulation
is described as follows:

d G-C
£V =_‘upr+pr<OCT%+(XG%>, (7)
where « is a conversion positive coeflicient of gain and cost
into biomass of predators. Analogously, it also holds for the
paper subpopulation of predators as follows:
dp

p Pr G-CPp)
—_— = e —_— . 8
&t ypp+pp<opo+oc > p (8)

3
For the scissors subpopulation of predators, we obtain
dps ( pP G-C Ps )
— =- G—+a——=—|.
dt [’lps + Ps @ P +o 2 p (9)

2.3. The Complete Slow-Fast Predator-Prey Model. By comb-
ing both fast and slow processes in a similar way as in previous
papers [6, 32-35], the complete model reads as follows:

d
ed—?=e<rn<1—%>—anp>.
G-C
edt =e<—ypr+p,<(x—2 %+(XG%>>
+ px, ((Ax)1 - XTAX) .

L _ (- Pr ﬂ&)) (10)
edt —e< ptpp+pp<opo+tx > p

+ px, ((Ax)2 - xTAx) .

_ef- Pr ﬂ&))
edt—e< ‘ups+ps<(pr+0c > )

+ px; ((Ax)3 - XTAX) ,

where € « 1 is a small parameter. By using the fast time scale
7, the system changes to

% =e(rn<1—%)—anp).

+ px, ((Ax)1 - XTAX).
dp, _ P, G-CPp (1)
? = €<—[/lpp + pp ((XG; + OCT?>>

+ px, ((Ax)2 - XTAX) .

dps _ (- Py ﬂ&))
d‘r_6< ptps+ps<opo+oc >

+ px; ((Ax)3 - xTAx) .
Obviously, the game dynamics correspond to the fast time
scale while the small terms of the order of € correspond to

the slow time scale. Next, aggregation method will be carried
to reduce the dimension of the system.

2.4. The Aggregated Predator-Prey Model

2.4.1. Derivation of the Aggregated Model. Since € < 1, we
neglect the small terms of the order of € and do stability



analysis for the fast part of the system which relates to the
game dynamics as follows:

d

% = px, ((Ax)1 —XTAX),

d

% = px, ((Ax), - x"Ax), (12)
d

% = px3 ((Ax)3 -X Ax)

Since we are only interested in positive solutions, by realizing
the fact that x; +x, +x; = 1 always holds at any time ¢, we can
limit our analysis on the region called a three-dimensional
simplex, $* = {(x,,%,,X3) € Ri DX, + X, +x3 = 1}. By
letting the right-hand side of (12) equal zero, the equilibria of
the system can be derived, which depends on the parameters
GandC.

The system has an interior stable focus (1/3,1/3,1/3) no
matter what the parameters are. There exist three fixed points
(1,0,0), (0,1,0), and (0,0, 1) located on the vertex of S”; they
are all saddle points given G > C, unstable equilibrium points
for the inverse condition of G < C. Besides, three boundary
equilibria ((G+C)/2C, 0, (-G+C)/2C)), (-G+C)/2C), (G+
C)/2C,0), and (0, (-G + C)/2C), (G + C)/2C) can also exist
as saddle points provided that G < C. Therefore, x* =
(1/3,1/3,1/3) is the only nontrivial interior asymptotically
stable point without depending on initial conditions. In this
case, the predator population is a polymorphic state with
equal probability of three tactics of predators.

In order to aggregate, we make the assumption that the
fast process is at fast equilibrium. Then we come back to
the complete initial system (10), substitute the previous fast
equilibrium and add the three predator equations together. It
is necessary to replace the fast variables in terms of the fast
equilibrium which are p, = p/3, p, = p/3,and p, = p/3.

After some algebra, one obtains the following system of
two equations governing the total prey and predator densities
at the slow time scale, that we call the aggregated model (AM)
as follows:

dn n

T —rn<1—E)—anp+o(e).

d 3G-C )
_p—_ —

i Up + o 5 p+ol(e).

Because € is small enough and the system is structurally stable
[36]; it is a good approximation of the real dynamics. Then by
neglecting these terms of higher order of € and realizing the
fact that G(n) = an, the aggregated model simply reads as
follows:

dn < n )
— =|r-r—-ap|n

dt K
(14)
d_p B (_ 3oan ﬁ )
dt 2 2
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2.4.2. Analyses of the Dynamics of the Aggregated Model. The
phase plane {n, p} is separated by the vertical nullcline L
denoted as rK — rn — apK = 0 and the horizontal nullcline
M denoted as -2y + 3aan — aC = 0 into different regions,
both the signs of dn/dt and d p/dt do not change in every part.
Next, the dynamics of the system will be studied through the
analysis of the intersection of the lines L and M.

(1) K < Qu+ aC)/(3aa), L and M are not intersected in
phase plane.

In this case, the system has two equilibria, where (0, 0) isa
saddle point while (K, 0) is an asymptotically stable point (see
Appendix A.1). There does not exist any limit cycle. We know
that closed trajectory should enclose equilibrium point, but
there is no equilibrium point in the interior part of the phase
plane. Therefore, the trajectories that originated from the
vertical axis representing n(t) = 0 will approach to the point
(0, 0); otherwise, all trajectories will end at the point (K, 0).
That is to say, the dynamic result will die out of predators
no matter what the initial densities of prey and predators are.
Once the initial density of prey is not zero, it will reach to a
stable density with a value of K in the end.

(2) K> Qu+ aC)/(3aa), L and M intersect in the phase
plane.

The system includes three equilibria, (0,0) and (K, 0)
are saddle points, the interior point x = (,p) = ((2u +
aC)/(Baa), r(3aaK - 2u — aC)/(3aa’*K)) standing for the
intersection point of L and M is an asymptotically stable point
(see Appendix A.1). In addition, we can testify that there is no
limit cycle, the details are written in Appendix A.3. Therefore,
once the initial densities of prey and predators are all larger
than zero, their density will finally reach the point x.

In reality, 0 = (2u + aC)/(3aa) is the least food
requirement for viability of predators, and K is the carrying
capacity. 0 > K means that the least food requirement for
predators is larger than the reproduction and fecundity of
prey, so predators will extinct without any doubt, or else, the
predators and preys will coexist together.

3. Results

A classical LVM will be studied in this part in order to give a
comparison with our AM. Suppose that there is no difference
between the strategy adopted by predators, the predator-prey
interaction can be described as follows:

% —rn<1—£>—an
dr K P

dp B
T up + aanp.

(15)

By using a similar method as in the last model, the dynamics
can also be recognized to be two cases. When K < u/(«a),
the system has two equilibria, (0, 0) is a saddle point, (K, 0)
is an asymptotically stable point. While for K > u/(aa),
the system has three equilibria, both (0,0) and (K,0) are
saddle points, ¥ = (11, p) = (u/(aa),r(xaK — u)/(aa’K))
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TABLE 1: The evolutionary stable state in LVM and AM.

2 2
C<E( ”+“C<i) VM AM C>E(i< ”+“C) VM AM
o 3aa aa a \aa 3aa
2
K < 2urac (K, 0) (K, 0) K< (K,0) (K,0)
3aa aa
uraC gt (K, 0) ) b g raC (7 p) (K, 0)
3aa aa aa 3aa
K>2 (7 ) #P) K > 2Fac (7 ) . P)
aa P P 3aa P P
n>n p<p n<n p>p

A comparison between evolutionary stable state of the models LVM and AM is given. Parameters C, K, u, «, a represent fighting cost, carrying capacity of
prey, natural mortality rate of prey, a conversion positive coeflicient into biomass of predators, a positive parameter in functional response, respectively. Two
cases are recognized by considering whether C is smaller than u/(aa) or not. Furthermore, parameter region {K, u, &, a, C} can be divided into three parts
according to the evolutionary stable state in two models for each case. It shows that the stable state for two modes appears as either kept a constant with only
prey at carrying capacity, or coexistence of prey and predators with a variation of population density, or a change between only prey at carrying capacity and
coexistence of prey and predators. The values of (7, p) and (7, p) are given in the main text.

is an asymptotically stable interior point. The details are
given in Appendix A.2. In addition, we can verify there is
no limit cycle in the phase plane by using the same method
as in Appendix A.3. In summary, all results are concluded in
Table 1.

Therefore, we find that the stable state of the predator-
prey system will be changed somehow considering that
predator population uses different strategies when disputing
a prey, which can be recognized as four cases depending
on different parameter settings. The stable state can change
from only preys with a value at carrying capacity in LVM to
coexistence between preys and predators in AM, Figures 1(a)
and 1(b) give an example. It also shows from the coexistence
of prey and predators in LVM to only prey with a value
at carrying capacity in AM (see Figures 2(a) and 2(b)). In
addition, the case that the prey population with the density
of carrying capacity but predators dying out can be held.
Coexistence of the predator and prey populations but with
a variation of population densities in the two models can also
be kept. When C < u/a, for the parameter region (2u +
aC)/(Baa) < K < u/(aa), the density of prey in the LVM will
be higher than that in the AM at the stable state, but the result
is inverse for the predators, as shown in Figures 1(c) and 1(d);
while for C > u/«, when the parameters satisfy u/(aa) < K <
(2u+aC)/(3aa), the density of prey in the LVM will be lower
than that in the AM, but it is inverse for the predator popu-
lations, Figures 2(c) and 2(d) are an example. In conclusion,
we can note that fighting between predators could promote
the growth of the predator population when the coming cost
is smaller than the division of natural mortality of prey by
conversion coefficient, so a moderate degree of fighting will
also benefit the evolution of the predator population. In other
words, a slight extent of competition is helpful for the survival
of the population. On the other side, fighting will naturally
cause a negative effect on the survival of predator population
when the cost is relatively large, thus making an acceleration
of the prey population, this phenomenon confirms the
reality.

4. Conclusions and Discussion

A vulnerable subject in population ecology is understanding
that how diversity and complexity of natural populations
contribute to the overall stability and persistence of ecological
systems. The idea that diversity promotes stability is intu-
itively appealing. In this work, the stability of a predator-
prey interaction system with predators using diversification
strategies is investigated to study the effect of different tactics
taken by predators when disputing a prey, thus providing us
a better understanding of the important effect of biodiversity
on the stability of the ecosystem.

In this study, a dynamic modeling method [37] is
employed to explore the dynamics of a predator-prey system
by connecting individual behavior with population dynam-
ics. Particularly, by resorting to game theory, replicator
equations are constructed to derive ESS of the fast dynamics
describing the variation of frequencies of different tactics.
Here, by taking the R-P-S strategy to investigate the effect of
predator behavior on the stability of predator-prey system,
we found that the ESS in fast time scale of disputing a prey
is independent of parameters and is very symmetric, which
locates on the center of the strategy space. This result is
dramatically different from that by Auger et al. [6], where the
ESS in the fast time scale will stay on different equilibrium
points with a variation of the density of preys in their
system. Therefore, the main conclusion of their studies is
that there exists a relationship between prey density and
the strategy adopted by predators. Aggressive behavior is
connected to high prey and low predator densities, whereas
a polymorphism dove-hawk is found at low prey and high
predator densities. This result is consistent well with the
previous studies of a domestic cat population [33, 35]. In
rural areas, low density, most of the individuals are aggressive
while in urban areas, high density, most of them are dove
individuals.

In addition, we found that the equilibrium state of the
system was determined by parameters K, u, «, a, C, r. More
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FIGURE 1: The dynamics of LVM and AM given the condition C < u/wa. Parametersarer =5, K =23/12,a=1,a=1,C =3/2,andu = 2 in
the first two figures, the carrying capacity is set to be K = 3 in the other two.

importantly, the change of the stable state by considering
predator behavior with R-P-S strategy through comparing
with the common Lotka-Volterra system without considering
it can be observed, which also depends on K, u, «, a, C,
but not relates to r (the birth rate of prey). Explicitly, it
can be firstly recognized as two classes according to the
numerical relationship of C and u/a. Furthermore, in every
class, constrained by the relationship of K with u/aa and
(2u + aC)/(3aa), it appears that either a change from the
extinction of predator populations in LVM to the coexistence
state with predators and preys in AM, or from the coexistence
in LVM to the extinction of predator population in AM, or
coexistence state will be kept in both situations but with a
change of the density of the population.

Especially, it is worth noting that given the conditions of
C < u/a and K > u/(aa), that is, when carrying capacity
of predators is large enough and fighting cost of predators
is small, coexistence state will be kept in both Lotka-
Volterra and Aggregated system, it shows an increase of
the density of predator population and a decrease of the
density of prey population. This verified the nature rule that
an immediate competition will benefit the survival of the
population. We also concluded that a diversification behavior
of the predator population would maintain the stability of
the ecosystem for certain parameters; that is, C < u/a and
2u + aC)/(3aa) < K < u/(aa). Predator population will
not go extinct by taking different strategies when disputing a

prey.
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FIGURE 2: The dynamics of LVM and AM given the condition C > u/«. Parametersarer = 5, K = 13/12,a=1,a=1,C=3/2,andu =21in
the first two figures, all parameter values are the same in the other two except K = 2.

In future, some more interesting researches are expected
to expand by considering other intricate strategies taken by
predators which would raise diverse ESS situations depend-
ing on different levels of prey densities, thus leading to
diversification of the system. In addition, motivated by
Huffaker’s experiments [38], it has been documented that the
distribution of prey and predators in the spatial configuration
as well as the dispersal behaviors are all important factors
to influence the dynamics of the predator-prey system;
these factors play an important role in understanding the
emergence of biodiversity and the stability of ecosystems (i.e.,
[39-42]). From this point of view, combining spatial effect
into our model also deserves research, further studies are
expected along this direction.

Appendix
A. Local Stability of the Equilibria

A.L Case of Model (14)

The stability analysis of the aggregated model (14), the
Jacobian matrix is

2n
r (1 - E) —ap —an
J= . (A
3aap B 3aan  aC
2 2 2



At the origin point (0, 0), we have

r 0
]|(00)=< ocC>.
5! O _‘u__

2

It has two real eigenvalues with opposite signs, the origin
point is a saddle point.
For the equilibrium point (K,0), the Jacobian matrix

reads as follows:
~r -aK
]|(K,0) = 0 —p+ 3aaK _ @ >
2 2

it K < Qu+aC)/3aa, (K, 0) is an asymptotically stable point,
while for K > 2u + aC)/3aa, a saddle point.

For the positive equilibrium point (1, p) = ((2u +
aC)/(Baa), r(3aaK —2u—aC)/(3aa’K)), the Jacobian matrix
reads as follows:

(A.2)

(A3)

]|(ﬁ,§) = (A-4)

So it is straightforward that when the initial state of the
population belongs to the positive quadrant, the trace of the
Jacobian matrix is negative and the determinant is positive
which implies stability.

A.2. Case of Model (15)

The stability analysis of the Lotka-Volterra model (15): the
Jacobian matrix is

1 2n
I:<r< _E>_ap —n ) (A5)
aap -y + aan
At the origin point, we have
r 0
o) = (O —[/t> (A.6)

with two real eigenvalues with opposite signs. The origin
point is a saddle point.

For the equilibrium point (K, 0), the Jacobian matrix
reads as follows:

_(-r —aK
Jaco) = { o —u+aaK )"
it K > p/(aa), (K, 0) is a saddle point, while for K < y/(aa),
(K, 0) is a stable node.

For the positive equilibrium point ¥ = (%, p) = (u/aa,
(r/a)(1 — u/aaK)), the Jacobian matrix reads as follows:

r_ ~
—En —-an
J |(ﬁ,§) = >
aap 0

where it is obvious that when the point belongs to the
positive quadrant, the trace of the Jacobian matrix is negative;
consequently, the determinant is positive so the equilibrium
point is stable.

(A7)

(A.8)
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A.3. Limit cycle analysis to system (14)

We assume that there is a closed orbit I, around the interior
point X, the equation is

n=n(t), —00 < t < +00. (A.9)

p=p®,

Then there must be a T' > 0, where n(T') = 0, p(T') = 0. Next,
we calculate the index y, of I,

1 (T, ,
Yo =7 L [Pn (n(®),p®)+Q,(n (t),p(t))] dt, (A.10)

where P(n, p) = n(r — r(n/K) — ap) and Q(n, p) = p(—u +
3aan/2 — aC/2). Thus, (15) can be rewritten as

r—rn—a _dn
K p_n

All
4 3agn aC _dp (A1)
= 2 p’
Calculating the equations on two sides, we can get
1 (T n(t) "D dn (T)
f . [T - T’? —ap (t)] dt = ,[,,(0 ; = 1I1|i’l||n(o>
T r(T) 4
lj [—M+ Saan(t) _aCl 4 _ I dap _ 1n|P||P(oT)~
T Jo 2 2 PO P PO
(A12)

It shows that (1/T) JOT n(t)dt and (1/T) j()T p(t)dt also satisty
the following algebra equation:

n
r—r——ap=0
x %

3aan  aC

(A.13)

2 2
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Therefore,
1 (T
T J n (t) dt =n
; (A.14)
1 _
T L p)dt =p.
Then the index of T} is
—lJT<r—2r£—a + - +3(xan_£>dt
Yo = T Jo K p+-u > >
. (A.15)
] _
= —J <—r£)dt -2 <o.
T Jo K K

Therefore, the closed orbit should be stable, it contradicts that
X is an asymptotically stable equilibrium, so the assumption
is wrong; there are not any closed orbits.
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