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We consider a generalized Malthus-Verhulst model with a fluctuating carrying capacity and we study its effects on population
growth. The carrying capacity fluctuations are described by a Poissonian process with an exponential correlation function. We will
find an analytical expression for the average of a number of individuals and show that even in presence of a fluctuating carrying

capacity the average tends asymptotically to a constant quantity.

1. Introduction

During the past decades, the phenomena induced by noise in
nonlinear systems have received considerable attention [1-6].
In the ecological context we can mention resource manage-
ment, new techniques for pollution and waste control, and
a better understanding of biophysical processes in living
organisms (see, e.g., [7, 8]). In this paper, we study the
stochastic effects on the environment in a successful coloniz-
ing population. In absence of fluctuations of the environment,
it is assumed that the population grows according to the
generalized Malthus-Verhulst model
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where the dot represents the time derivative. The factor y"
has been made explicit so as to include in (1) the Gompertz
model [9] by taking the limit 4 — 0.

In recent decades, several generalizations of the Malthus-
Verhulst model have been applied, for example, to laser
physics [10, 11], and have been widely used in literature (see
[12, 13] for a large list of references). In the above references,
the reader can find many applications to the processes of dif-
ferent species growth, such as animals that inhabit the rivers
and seas of our planet, human populations, components of

the central nervous system in living organisms, transmission
of diseases by different types of viruses, growth of malignant
tumors caused by abnormal and uncontrolled cell division,
interaction of vortices in a turbulent fluid, coupled chemical
reactions that occur in our upper atmosphere, interactions
between galaxies, competition between different political par-
ties, companies business, and talks between different coun-
tries. Furthermore, the generalized Malthus-Verhulst model,
among other possible models, has the applications for other
areas of knowledge, such as social science [14, 15], auto-
catalytic chemical reactions [3, 16], biological and bioche-
mical processes, population of photons in a single mode laser
[2], freezing of supercooled liquids [17], grain growth in
polycrystalline materials [18], and cell growth in foam [19].

A fluctuating environment can affect the dynamics of (1)
in different ways as follows.

(i) Changes in Net Growth Rate. Stochastic elements in the
growth rate r can be introduced in the formr — r(t) =1, +
0&(t) where &(t) represents noise, r, = (r), and o is a
parameter that controls the noise intensity. In [9, 20], the case
where &(t) is Gaussian white noise is studied. In [21], the
authors studied the case where &(t) is given by the Ornstein-
Uhlenbeck process [22]. In [23], several cases of white
non-Gaussian noise are examined. In [24], the problem of
asymmetric Poissonian dichotomic noise is solved and an



exact expression for the probability density was found. Finally
in [25], an extension to non-Poissonian dichotomic noise has
been addressed.

(ii) Changes in the Upper Limit to Growth. In [9], in order to
incorporate randomness in the carrying capacity K, the fol-
lowing modification has been considered:
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with K|, the deterministic value of the carrying capacity, o a
constant parameter measuring the intensity of the noise, and
&(t) Gaussian white noise.

The authors obtained the probability density function at
steady state. In [26], the authors considered only stochastic
discrete populations growth models. The two aspects men-
tioned in the previous paragraph are considered and a large
list of references is provided.

In this paper, we will study the effects of random fluctua-
tions in the environment on a successful population. By this,
we mean a population with a magnitude of the critical size
order of the system. Thus, the number of individuals x and
the changes produced by time dependent fluctuations can be
treated as a continuous variable. In [9], the authors modeled
environment fluctuations by white Gaussian noise which has
zero correlation time. In this case, the process is Markovian
and a Fokker-Planck equation for the probability density
p(x,t) can be obtained. However, this noise cannot always
replace real noise, which has a finite correlation time, perhaps
small, but not zero. In this case, the hypothesis of Gaussian
white noise could be inadequate to describe the stochastic
process.

Willing to take into account the color of the noise, we
should choose a mathematically tractable colored noise [6].
Among many possible noises, two have drawn a lot of atten-
tion in the literature. The former is the Ornstein-Uhlenbeck
process. Stochastic processes driven by this kind of noise have
been studied, for example, in [5, 27] and, with respect to the
white noise assumption, different features have been found.
The latter noise is the two-step Markov process or dichoto-
mous noise. This noise is not Gaussian but Markovian and its
influence in the stochastic processes has been studied in
[5, 28]. Experimental evidences of the dichotomic noise have
been studied in literature [5, 29-31]. Interesting results, some
of them quite similar to the former case, have been obtained
in the stationary state. Few dynamical properties are known
in this case [28, 32]. This type of noise has found a wide
application in the construction of models [5]. Furthermore,
by appropriate processes of limit, it can be demonstrated
that the asymmetric dichotomic noise converges to Gaussian
white noise, and it also converges to the white shot noise
(33, 34].

This paper will focus mainly on the analytical evaluation
of the average number of individuals (x(t)), exploiting the
properties of the correlation function of the stochastic vari-
able &(t) without using the probability density p(x,t). The
analytical formula for (x(¢)) will be supported by numerical
simulations showing an excellent agreement with the analyt-
ical calculations.
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2. Mean Value of x(t)

As in all stochastic processes, the evaluation of the average of
the stochastic variable under study is important. In this
section, we will evaluate the mean value of x(t) without eval-
uating the probability density but with using the exponential
properties of the correlation function of the stochastic vari-
able &. Note that the equation for the probability density can
be written utilizing the Shapiro-Loginov derivative [35].
Instead, to evaluate the mean value of x(t), we will follow a
different approach based on the properties of the correlation
function of &(¢). In spite of the fact that, usually, the calcu-
lations performed using the correlation function are a hard
task, sound analytical results can be found (see, e.g., [36]). In
this section, we will show a technique that in principle can be
applied to other stochastic equations. We may rewrite (1) as

u
x=Llx [1 - (i> (1 +0§)_”]
¢ Ko
r x \
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¢ Ky
where for sake of compactness we set
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and we considered the symmetric case (§(¢)) = 0. Performing
the substitutions

a \# ~1/u
x=[z+<—>] , T=rt (5)
K,
we obtain
dz b\
E __z+(?0> E (6)

The above equation can be solved via standard methods and
we obtain for the variable x(¢) the following result:

a\! ik
x (1) = [<?> + 2z, exp[—‘r]]

0

y [1 . (b/Ky) exp 7]
(a/Ky) + zy exp [-1]
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where z;, is related to the initial condition of the function x(t)
through the relation

%(0) = [(Kio)“ . ZO]W. (8)
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To make handier the above expression, let us define the fol-
lowing symbols:

% (1) = x(® ,
[(a/KO)’4 + 2z, exp[—‘r]]_l/ﬂ
9)
B(0) = (b/Ko)"

(a/Ko)M +zgexp [-7] '

and, taking the average with respect to the & realizations, we
may write [37]

w (1
() =) < u > B (z) exp [-n7] n!
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with 7, > 7, > -+ 1,,. We focus our attention on a symmetric
dichotomic noise with an exponential correlation function
(Poissonian process); that is,

(EWE)) =exp(-y[e-1)). 1)

Exploiting the factorizing of the correlation functions [37,
38], after long but straightforward algebra, we obtain

w (_1
(x (1)) = Z < z‘u > B> (1) (2n)! exp [-2n7]
n=0 n

T Ton-1
xJ dT1~--J dr,,
0 0
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where y. = 1 -y and y, = 1 + y. To obtain an analytical
expression of the multiple integral, we use the Laplace
transform and we obtain
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The quantity (x(7)) is so reduced to a convolution integral
o (_1
@)=Yy < u ) B (z) (2n)!
n=0 21’1 (14)

<[ expl-2n(e- )l £ (- ) de,
where

f@O="[f6]

. [ 2727 [=s/2] T [s/2 + /2] ] (15)
N Tn-s/2]T[n-s/2+y/2] |
For 7 — 00, we may write (14) as
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where f (2n) is the Laplace transform of f(t) evaluated in 2n
and F(a,b,c,z) is the hypergeometric function (for more
details, see, e.g., [39]). Expressing the result in terms of (x(7)),
(9), we have

Iz ~1u
w@n = [(£) +zewl-m]
0 17)
1 1+ L+p 1+ y
F[ﬂ 2w B )]
or, going back to the time t,
u -1/u
(x (0) = [(Ki) ‘2, exp[—rt]]
’ (18)
1 1+p r+y 5
F[ﬁ,w, o ,ﬁ (Tt)]

From (8), we deduce that, for x(0) — 0,z, — o0; that is,
the more we start near to the point x(0) = 0, the more
extended on time is the transient region (Figures 1, 2, and 3).
For a deeper discussion about the dynamic near the point
x(0) = 0, see [40]. Considering the limit for t — ©o0, we
may write the asymptotic expression as

_Kop[ L 14p ry é)z"
(X () eo = aF[Z“, T ,<a . (19)

Some interesting conclusions can be extrapolated from the
above expression taking the limits 0 — 0 and 0 — 1. The
limito — 0 gives the following approximated expression:

K, [1 - Maz] . (20)

(x () o 2(r+7)
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FIGURE 1: The plot of the mean value of x(¢) versus time in arbitrary
units. The values of the parameters are x;, = 1,y = 02,0 = 0.5,
p=19,K, = 13,and r = 1. The analytical value of (x(t)) is given by
(18). The agreement between the analytical expression (dashed line)
and the numerical simulation (continuous line) is remarkable.
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FIGURE 2: The plot of the mean value of x(t) versus time in arbitrary
units. The values of the parameters are x, = 1,y = 0.5,0 = 0.9,
p = 1.5, K, = 10, and r = 2.3. The analytical value of (x(t)) is given
by (18). The agreement between the analytical expression (dashed
line) and the numerical simulation (continuous line) is remarkable.

As expected for a vanishing intensity of the noise, the number
of individuals takes the maximum population size allowed,
namely, K,,. More, (20) shows that in general the average value
of the population is always smaller than the unperturbed
value of the carrying capacity K, even if half of the stochastic
realizations exceed this value, that is, K,(1+0). The deduction
holds true also for an arbitrary value 0 < o < 1. Indeed, in
this range of the noise intensity, the hypergeometric function
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FIGURE 3: The plot of the mean value of x(t) versus time in arbitrary
units. The values of the parameters are x, = 0.01,y = 0.5,0 = 0.9,
u = 1.5, K, = 10, and r = 2.3. The analytical value of (x(t)) is given
by (18). The agreement between the analytical expression (dashed
line) and the numerical simulation (continuous line) is remarkable.

is decreasing and for ¢ — 1 we have (x(¢)),, — 0. For
o0 — 1, we have the following approximate expression:

(X (t)>oo = KO ( (2(1_M/2)(y/r)(1 — O—)V.“/ZVI*
r+7y Y 1
< 2 H‘;*;D 1)

LT\
(= il) )
4
By a direct inspection of (21), we note that there is a relation-
ship among the parameters (r, y, i), given by

yu=2r (22)

such that the T function argument vanishes, producing a
divergent value of the numerical coefficient in (21). Such a
divergence is only apparent and it disappears considering
further terms in the expansion of (19). Nevertheless, if we
consider the derivative of (x())., with respect to o we have
that

%o« (e ~ (1= o)1, (23)

This means that when the fluctuations are very large, that is,
o ~ 1, for yu < 2r, the quantity (x(¢))., vanishes with an
infinite slope, that is to say, vanishes faster than the case yu >
2r (see Figures 4 and 5).

3. Numerical Check

In order to validate the analytical results obtained in
Section 2, we solved numerically the stochastic differential



Advances in Mathematical Physics

1.0
0.8

0.6

() oo

0

0.4

K

0.2

g

FIGURE 4: The plot of K "{x(t)), as function of the noise intensity
0. The values of the parameters are y = 0.8, 4 = 0.5,andr = 1. In
this case, yu = 0.4 < 2r and, for o ~ 1, the number of individuals
decreases with an infinite slope.
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FIGURE 5: The plot of K ! (x(t)) o, as function of the noise intensity
0. The values of the parameters are y = 4.8, 4 = 0.5,and r = 1. In
this case, yu = 2.4 > 2r and, for 0 ~ 1, the number of individuals
decreases with a finite slope.

equation (3). The numerical simulation is done by creating
an ensemble of trajectories following the prescription of (3),
where the random variable &(¢) fluctuates between the two
values +1. We simulated a symmetric process so the proba-
bility to take the value 1 or —1 is the same. The initial value
of &(t), selected by tossing a fair coin, lasts for a time 7,. At
the end of this time interval, we toss again the coin and the
random variable may or may not change sign according to the
result of tossing the coin procedure. The random variable
keeps the new sign for the whole time 7,. This procedure is
iterated at the succeeding times T;.

For a dichotomous process with an exponential corre-
lation function, the waiting time distribution density is an
exponential function. The time durations 7; are drawn from a
waiting time distribution y/(¢t) = y exp[-yt]. The numerical
simulation is used to check the theoretical prediction of (19).
As showed in Figures 1, 2, and 3, the theoretical and numerical
values are in very good agreement.

4. Concluding Remarks

In this paper, we studied a generalized logistic equation
(Malthus-Verhulst model) with a fluctuating carrying capac-
ity. We found an analytical expression for the average of the
number of individuals that allowed us to make few nontrivial
remarks. We showed that, even in presence of a fluctuating
carrying capacity, the average tends, asymptotically, to a
constant quantity, (19). The asymptotic value is always smaller
than the unperturbed value of the carrying capacity K|, even
if half of the stochastic realizations exceed this value. Finally,
we found that, in case of very large fluctuation, in particular
of the unperturbed carrying capacity size order, the number
of individuals, for yu < 2r, decreases with an infinite slope,
while, for pu > 2r, the number of individuals decreases with a
finite slope. Our theoretical study has been supported by
numerical simulations showing an excellent agreement with
the analytical results.
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